Section A

Answer all questions from this section. Each question carries 8 marks.

1. Find the focus, directrix and axis of the parabola

$$y = x^2 - 2x + 3$$

and sketch the corresponding curve.

[8]

- 2. Prove by induction that every set of $n \ge 0$ elements has exactly 2^n subsets. [8]
- 3. Using the method of differences to find the sum of the first n terms of the series

$$S_n = 1 + 3x + 5x^2 + 7x^3 + \dots + (2n-1)(x)^{n-1}.$$
[8]

4. Solve the difference equations

(i)
$$u_{n+1} = 2u_n + n$$
 $n = 0, 1, 2, ..., u_0 = 0$ [4]

- (ii) $u_{n+2} 7u_{n+1} + 6u_n = 1$, n = 0, 1, 2, ... [4]
- 5. A is the matrix given by

$$\mathsf{A} = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 2 & 3 & 1 \end{array} \right).$$

- (i) Find the determinant of A. [3]
- (ii) Find the inverse of A. [5]
- 6. Find all four complex solutions to

$$z^4 = -4$$

Identify which solutions form conjugate pairs. [8]

Turn over . . .

Section B

Answer two questions from this section. Each question carries 26 marks.

7. (a) Find all solutions of the equation

$$2\cos^2 2\theta - \sin 2\theta = 1$$

with $0 \le \theta \le 2\pi$, expressing your answer in terms of π .

(b) Express $\sin 3\theta$ in terms of $\sin \theta$.

[5]

[10]

- (c) Write down the definition of $\cos^{-1} x$, giving the domain and range of the function.
- (d) Express $\sin(2\cos^{-1} x)$ in terms of x only.

[8]

[3]

8. (a) Give the definitions of symmetric, reflexive and transitive relations.

[4]

A relation \sim is defined on the set $A = \{a, b, c\}$.

Say whether the following relations are symmetric, reflexive and/or transitive, giving reasons:

- (i) $\sim = \{(a, a), (b, b), (b, c), (c, b), (c, c)\},$ [3]
- (ii) $\sim = \{(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)\},$ [3]
- (iii) $\sim = \{(a, a), (a, b), (b, a), (b, b)\}.$ [3]
- (b) (i) A relation \sim is defined on the complex numbers **C** by $z_1 \sim z_2$ if $|z_1 1| = |z_2 1|$. Show that \sim is an equivalence relation on **C**. Describe geometrically the equivalence classes of \sim . [7]
 - (ii) We define a relation < on the complex numbers **C** by $z_1 < z_2$ if $|z_1-1| < |z_2-1|$. Is this (1) an equivalence relation, (2) a partial ordering, (3) a total ordering. In each case give your reasons.

[6]

Turn over ...

9. (a) Write the following system of equations in matrix form:

$$x + y + z = 1,$$

 $2x + 3y + 5z = 5,$
 $4x + 3y + a^2 z = a,$

where a is a constant. By considering the rank of the resulting matrix and augmented matrix, say how many solutions there are for this system of equations for the three cases a = -1, 0 and 1. Do *not* calculate the solution to the equations when possible. [13]

(b) Using row manipulation methods, find the inverse of the following matrix:

$$\left(\begin{array}{rrrr} 1 & 1 & 1 \\ 2 & 3 & 5 \\ 4 & 3 & 0 \end{array}\right).$$

[13]

Internal Examiners:	Dr A.G. Cox
	Dr O. S. Kerr
External Examiners:	Professor J. Billingham
	Professor M.E. O'Neill