MATHEMATICS: TERM 2 QUESTIONS 1A MORE RELATIONS

1. From 2005 Summer examination

(a) A relation \sim is defined on the set $A = \{a, b, c, d\}$. Give the definitions of symmetric, reflexive and transitive relations.

Say whether the following relations are are symmetric, reflexive or transitive, giving reasons:

- (i) $\sim = \{(a, a), (a, d), (b, b), (c, c), (d, a), (d, d)\},\$
- (ii) $\sim = \{(a, a), (a, c), (b, b), (c, a), (c, c)\},\$
- (iii) $\sim = \{(a, a), (a, b), (b, a), (b, c), (c, b), (c, c), (d, d)\}.$
- (b) For any set A, the power set P(A) is the set of all subsets of A.
 - (i) Write down all the elements of P(A) when $A = \{0, 1, 2\}$.
 - (ii) Draw a Hasse diagram for the partially ordered set $(P(A), \subseteq)$
 - (iii) Give the lower bounds for the subset of P(A) given by $\{\{0, 1\}, \{0, 2\}\}$. What is the greatest lower bound?
- 2. ρ is a relation defined on the set M of 2×2 matrices. A is a given 2×2 matrix. For any two matrices $X, Y \in M, X \rho Y$ if there is some real number k such that X Y = kA. Prove whether or not ρ is an equivalence relation.

Solutions

- 1. (a) The definitions are:
 - **Reflexive**: $x \sim x$ for all x.
 - Symmetric: If $x \sim y$ then $y \sim x$.
 - Transitive: If $x \sim y$ and $y \sim z$ then $x \sim z$.
 - (i) Reflexive, symmetric and transitive
 - (ii) Not reflexive (no (d, d)), but is symmetric and transitive
 - (iii) Not reflexive (no (b, b)), is symmetric, but not transitive (have (a, b) and (b, c), but no (a, c))
 - (b) (i) \emptyset , {0}, {1}, {2}, {0,1}, {1,2}, {0,2}, {0,1,2}
 - (ii) The Hasse diagram is

- (iii) Lower bounds are \emptyset and $\{0\}$. Greatest lower bound is $\{0\}$.
- 2. The relation is an equivalence relation as it is:
 - (i) Reflexive: For all X, X X = 0A
 - (ii) Symmetric: If X ρ Y then there exists k such that X Y = kA. Then Y X = (-k)A so Y ρ X.
 - (iii) Transitive: If X ρ Y and Y ρ Z then there exist k, k' such that X Y = kA and Y Z = k'A. Then X Z = (k + k')A so X ρ Z.