MATHEMATICS: TERM 2 QUESTIONS 3 MORE MATRICES

1. Verify:

- 2. Write down some 3×3 matrix and verify that pre-multiplying by the first 4 matrices in the previos question (a) adds $\lambda \times \text{row } 2$ to row 3, (b) $\lambda \times \text{row } 3$ to row 1, (c) swaps rows 2 and 3 and (d) multiplies row 2 by α .
- 3. Write the following systems of equations in matrix form, then write down the corresponding augmented matrix and solve using the Gaussian elimination/row reduction method:

(a)	$\begin{aligned} x + y &= 4\\ 3x + 2y &= 9 \end{aligned}$	(b)	4x - y = 5 $3x + y = 9$
	x - 2y + z = 6		2x - 2y + z = 6
(c)	2x - y + 4z = 15	(d)	x - y + 3z = 8
	x + 5y + z = -1		4x + y + z = -5

4. Use row reduction techniques to find the inverses of the following matrices:

(a)
$$\begin{pmatrix} 1 & 0 \\ 3 & -2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & -1 & 4 \\ 1 & 0 & 0 \\ 1 & -2 & 0 \end{pmatrix}$

- 5. Use Cramers theorem to solve (a) and (c) in question 3 (and (b) and (d) if you are feeling keen).
- 6. Solve the system of equations in the "Cost of Beer" handout, verifying that the solutions given are (a) unique and (b) correct. Note: you can't just insert the values given as this will not show uniqueness.

Solutions

1. --2. --3. (a) x = 1, y = 3, (b) x = 2, y = 3, (c) x = 1, y = -1, z = 3 (d) x = -1, y = -3, z = 2. 4. (a) $\begin{pmatrix} 1 & 0 \\ 3/2 & -1/2 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1/2 & -1/2 \\ 1/4 & -3/8 & -1/8 \end{pmatrix}$ 5. --6. --