MATHEMATICS: TERM 2 QUESTIONS 5 SERIES

- 1. Use the method of differences to find the sum the first n terms of the following series

 - (a) $S_n = 1 + 2x + 3x^2 + 4x^3 + \cdots$ (b) $S_n = 4 + 6x + 8x^2 + 10x^3 + \cdots$ (c) $S_n = 0 + 3x + \cdots + (i^2 1)x^{i-1} + \cdots$ (d) $S_n = 1 + 2^2x + 3^2x^2 + x^3 + \cdots$
- 2. In parts (a) and (d) of question 1 you could try and find the sums $1 + 2 + 3 + \cdots + n$ and $1+2^2+3^2+\cdots+n^2$ by setting x=1, but it doesn't work. Why? However, once you have found S_n to can recover the correct expressions by finding

$$\lim_{x \to 1} S_n.$$

Verify that this works.

- 3. Which of the following series converge, giving your reasons
 - (b) $\sum_{n=0}^{\infty} n \left(\frac{1+\sqrt{2}}{3} \right)^n$ (a) $\sum_{n=0}^{\infty} \frac{n+2}{3n+2}$ (c) $\sum_{n=1}^{\infty} \frac{n^{2n}}{n!}$ (d) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

Solutions

1. (a)
$$\frac{1 - (n+1)x^{n} + nx^{n+1}}{(1-x)^{2}}$$

(b)
$$\frac{4 - 2x - (4+2n)x^{n} + 2(n+1)x^{n+1}}{(1-x)^{2}}$$

(c)
$$\frac{3x - x^{2} - n(n+2)x^{n} + (2n^{2} + 2n - 3)x^{n+1} - (n^{2} - 1)x^{n+2}}{(1-x^{3})}$$

(d)
$$\frac{1 + x - (1+n)^{2}x^{2} + 2n(n+1)x^{n+1} - n^{2}x^{n+2}}{(1-x)^{3}}$$

- 2. Setting x = 1 means that when you multiply the series by x and subtract it from the original series you get $(1 x)S_n = 0$. So S_n is no longer in your equation.
- 3. (a) $(n+2)/(3n+2) \to 1/3$ as $n \to \infty$, since the individual terms do not tend to zero the series cannot converge.
 - (b) By the ratio test, $|a_{n+1}/a_n| = |\frac{(n+1)(1+\sqrt{2})}{3n}| \to \frac{1+\sqrt{2}}{<}1$ so the series converges.
 - (c) By the ratio test $a_{n+1}/a_n = \frac{(n+1)^{2(n+1)}}{(n+1)!} \times \frac{n!}{n^{2n}} = \frac{(n+1)^{2n+1}}{n^{2n}} = (\frac{n+1}{n})^{2n}(n+1)$. But $\frac{n+1}{n} > 1$ and so $a_{n+1}/a_n > n+1 > 1$ for all n. Hence the series diverges.
 - (d) Use the integral test. As

$$\int \frac{1}{x \ln x} dx = \ln (\ln x) + C \to \infty \quad \text{as} \quad x \to \infty$$

so the series must diverge.