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Basic idea

We are going to look at a class of models from probability —
Markov Chains.

These will use matrices and powers of matrices.

A typical problem: Days are either “sunny” or “not sunny”. One of
the better ways of predicting the weather for tomorrow is to say
the weather will be just the same as today’s.

Example: The probability of a correct forecast if today is sunny is
3/4, and if today is not sunny is 2/3. What is the probability of
the weather being sunny in 4 days time if today is sunny? What is
the probability in 100 days time?
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This model has the important property — the Markov property
— that tomorrow’s weather only depends on today’s weather.
What happened yesterday is not important.
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Conditional probability

Consider a bowl containing three red balls and two blue balls:

R1 R2

R3 B1 B2

If balls are not replaced: If the balls are chosen at random, what is
the the probability that the second ball is red?

Dr Oliver Kerr Computational Mathematics/Information Technology



Markov Chains
Basic idea - Markov property
Conditional probability
Markov Chain

R1 R2

R3 B1 B2

OK — not the most difficult problem!

The answer is:

3/5.

But we will look at it also considering what happened with the first
choice.
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We can choose the first ball in five ways and, given the first choice,
the second in four ways giving 5× 4 = 20 possible ordered pairs of
the form R1B1, B2R2, etc.

To calculate the number of pairs where the second choice is a red
ball we could list all 20 possible pairs and then count how many
ended in a red choice.

A more general approach would be to say that we have a success if
we choose either a red followed by a red (RR) or a blue followed by
a red (BR).
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I For BR we can choose the first ball in 2 ways from 5 and the
second in 3 ways from 4, giving a total of 2× 3 = 6 ways
from the 20 possible selections.

I Thus the probability of selecting BR,

P(BR) =
2× 3

20
=

2

5
× 3

4
= P(B)P(R|B) =

6

20

Where P(B) is the probability of selecting a blue ball on the
first draw and P(R|B) is the probability of selecting a red ball
on the second draw given that a blue ball was chosen on the
first draw. P(R|B) is referred to as the conditional
probability of selecting a red ball given that a blue has
already been chosen.
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I For RR we can choose the first ball in 3 ways from 5 and the
second in 2 ways from 4, giving a total of 3× 2 = 6 ways
from 20. As before we then have

P(RR) =
3

5
× 2

4
= P(R)P(R|R) =

6

20

I Since to succeed only one or other of these can happen the
total chance is obtained by adding the two, thus:

P(Red Second) = P(B)P(R|B) + P(R)P(R|R)

=
6

20
+

6

20
=

12

20
=

3

5

Not a great surprise there!
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The above example can be represented by the following transition
diagram which will then be developed into a Markov Chain shortly.

RR

B

First Second
choice

3
4

P (R) = 3
5

P (B) = 2
5

2
4 choice
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Markov Chain

Using the prediction that the weather for tomorrow will be just the
same as today’s:

The probability of a correct forecast if today is sunny is 3/4, and if
today is not sunny is 2/3. This gives the following transition
diagram:

SS

N

day 10

1
4

Sunny

Not Sunny

3
4

-

Transition from

1
3

day 0 to day 1

N
2
3
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Denoting the probability of being sunny on day k by Pk(S) and
not sunny by Pk(N) we deduce from the diagram that:

P1(S) =
3

4
P0(S) +

1

3
P0(N)

and

P1(N) =
1

4
P0(S) +

2

3
P0(N)
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We can write this in matrix form: P1(S)

P1(N)

 =

 3
4

1
3

1
4

2
3

 P0(S)

P0(N)


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which is denoted as P1 = MP0
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Moving from day to day we have:

P1 = MP0 → P2 = MP1 = M2P0 . . . Pn = MnP0

Calculating Mn for general n is clearly a difficult problem if M has
many rows and columns.

Sometimes it is possible...
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We can write the array M in the form

M = RDR−1

where R is an invertible matrix and D is a diagonal matrix: 3
4

1
3

1
4

2
3

 =

 4 1

3 −1

 1 0

0 5/12

 4 1

3 −1

−1

=

 4 1

3 −1

 1 0

0 5/12

 1/7 1/7

3/7 −4/7


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We can see that

M2 =
(
RDR−1

) (
RDR−1

)
= RD

(
R−1R

)
DR−1

= RDIDR−1 = RDDR−1 = RD2R−1

In a similar way we can show that

Mn = RDnR−1

and in general for a diagonal matrix

Dn =

 a 0

0 b

n

=

 an 0

0 bn


and so

Mn =

 4 1

3 −1

 1 0

0 (5/12)n

 1/7 1/7

3/7 −4/7


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It is straight forward to calculate M4 now, and even easier to see
what happens a long time in the future.

When n = 100 it is clear that (5/12)100 is very small (around
10−38). So

M100 ≈

 4 1

3 −1

 1 0

0 0

 1/7 1/7

3/7 −4/7

 =

 4/7 4/7

3/7 3/7


and whatever the weather is today the probability of it being sunny
is 4/7 and not sunny is 3/7.
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This last bit will be covered in Linear Algebra in Part 2 — so is
beyond the scope of this course and you will not be expected to
find R and D for a given M.

But you can still be expected to find M4 using Excel, or to see if
Mn converged for large n using iteration similar to previous
material in this course.

The above example only had two possible states, we can use these
ideas for much larger systems...
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