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Answer Sheet
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− · · ·(d)

3. z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1) = 0. Taking real and imaginary parts gives

(1) x1x2 − y1y2 = 0 and (2) x1y2 + x2y1 = 0.

Assume, without loss of generality, that z1 6= 0. Then adding x1×(1) to y1×(2) gives

x2(x
2
1 + y2

1) = 0. Since z1 6= 0 this implies x2 = 0. Similary subtracting y1×(1) from

x1×(2) gives y2(x
2
1 + y2

1) = 0 and so y2 = 0. Hence if z1 6= 0 then z2 = 0 as required.
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(c) −3 = 3eiπ(d)

i = 1eiπ/2(e)
−i sinφ

1 + cosφ
= −i tan

φ

2
= tan

φ

2
e−iπ/2(f)

5. r(cos θ + i sin θ)× r′(cos θ′ + i sin θ′)

= rr′(cosθ cos θ′ − sin θ sin θ′ + i(sin θ cos θ′ + sin θ′ cos θ) = rr′(cos(θ + θ′) + i sin(θ + θ′)).

Statement in question is obviouslly true for n = 1. If true for n then from above result

(with r = r′ = 1)

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)× (cos θ + i sin θ)n

= (cos θ + i sin θ)× (cosnθ + i sinnθ) = cos(n+ 1)θ + i sin(n+ 1)θ.

Hence it is also true for n+ 1, and by induction true for all n.

cos 5θ = Re(cos 5θ + i sin 5θ) = Re
(
(cos θ + i sin θ)5

)
= Re

(
cos5 θ + 5i cos4 θ sin θ − 10 cos3 θ sin2 θ − 10i cos2 θ sin3 θ + 5 cos θ sin4 θ + i sin5 θ

)
= cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ.



6. Can use previous result with z = cos θ + i sin θ to show z5 = 1 ⇒ 5θ = 2nπ. Hence

θ = 0,±2
5
π,±4

5
π, . . .. These points give the corners of a pentagon whose corners lie on the

unit circle, with one corner at 1.

7. z1/z2 =
x1x2 + y1y2

x2
2 + y2

2

+ i(
x2y1 − x1y2

x2
2 + y2

2

) =
x1x2 + y1y2

x2
2 + y2

2

− i(x2y1 − x1y2

x2
2 + y2

2

)

=
(x1 − iy1)(x2 + iy2)

(x2 + iy2)(x2 − iy2)
=
x1 − iy1

x2 − iy2

= z1/z2.

|z1 ± z2|2 = (z1 ± z2)(z1 ± z2) = z1z1 ± z1z2 ± z2z1 + z2z2.

8. Hence

|z1 + z2|2 + |z1 − z2|2 = 2z1z1 + 2z2z2 = 2(|z1|2 + |z2|2).

9. |z + 1| > |z − 1| ⇒ |z + 1|2 > |z − 1|2 ⇒ (z + 1)(z + 1) > (z − 1)(z − 1)

⇒ z + z > −z − z ⇒ Rez > 0

Geometrically this inequality is satisfied by all points that are closer in the complex plane

to 1 than to -1, hence it gives all points in the right-half plane.

10.
∣∣∣a−b
a−b

∣∣∣ < 1⇔ |a− b|2 < |a− b|2 ⇔ aa− ab− ab+ bb < aa− ab− ab+ bb

⇔ ab− ab− ab+ ab < 0⇔ (a− a)(b− b) < 0⇔ Ima× Imb > 0.

11. Recall x = (z+z)/2 and y = (z−z)/2i. Substitute in and rearrange to get z(a/2− ib/2)+

z(a/2 + ib/2) = c, which is of the form given when B = a/2 + ib/2.

12. The circle is given by the formula |z−a| = r or (z−a)(z − a) = r2. This can be rearranged

to give zz−az−az+a2−r2 = 0, which is of the required form if B = −a and C = a2−r2.

The circle passes through the origin when C = 0.

13. Let w = 1/z then z = 1/w. Substitute into the equation for a line: B/w + B/w = c. If

c 6= 0 this can be rearranged to ww − (B/c)w − (B/c)w = 0, which is the equation of a

circle passing through the origin. If c = 0 then you get wB + wB = 0, the equation of

another line passing through the origin.

Similarly for the circle you get after substitution ww + (B/C)w + (B/c)w + 1/C = 0

provided C 6= 0. Again this is the equation of a circle. If C = 0 you get Bw+Bw+ 1 = 0,

the equation of a line that doesn’t pass through the origin.

14.

x(x− 1) + y2

(x− 1)2y2
,

−y
(x− 1)2 + y2

, 1, −1(a)

x2 − y2 − 3y − 3, 2xy + 3x, −6, 5(b)

x4 − 6x2y2 + y4, 4x3y − 4xy3, −4, 0(c)

(x+ 1)2 − y2

(x+ 1)2 + y2
,
−2(x+ 1)y

(x+ 1)2 + y2
, 3/25, −4/25(d)



15. (a) If f(z) = z then f(z + ∆z)− f(z) = z + ∆z − z = ∆z. Hence, given any ε > 0 we can

choose δ equal to ε. Then ∀|∆z| < δ, |f(z+ ∆z)− f(z)| < ε. I.e. f(z) is continuous. Note

the choice of δ here is independent of z, and so z is uniformly continuous.

(b) |f(z+∆z)−f(z)| = ||z+∆z|−|z||. If |z+∆z| > |z|, then, using the triangle inequality,

|f(z + ∆z) − f(z)| = |z + ∆z| − |z| ≤ |z| + |∆z| − |z| = |∆z|. If |z + ∆z| < |z|, then

|f(z + ∆z) − f(z)| = |z| − |z + ∆z| = |z| − |z − (−∆z)|. From the triangle inequality

we can show that |a − b| ≥ |a| − |b|, and so |f(z + ∆z) − f(z)| = |z| − |z − (−∆z)| ≤
|z| − |z| + |∆z| = |∆z|. So as in example (a) If we choose δ equal to ε then ∀|∆z| < δ,

|f(z + ∆z)− f(z)| < ε.

(c) If f(z) = z2 then f(z + ∆z) − f(z) = 2z∆z + ∆z2. If δ ≤ 1 then |∆z| < δ implies

|2z∆z + ∆z2| ≤ |2z∆z| + |∆z2| < (2|z| + δ)δ ≤ (2|z| + 1)δ. Hence, given any ε > 0 if we

choose δ to be the smaller of 1 or ε/(1 + 2|z|) then we will have |f(z + ∆z) − f(z)| < ε

for all |∆z| < δ. So f(z) = z2 is continuous for all values of z, including the ones in the

region |z| < 1. To show uniform continuity we note that for |z| < 1 ε/(1 + 2|z|) > ε/3 and

so if we set δ = ε/3 then |f(z + ∆z)− f(z)| < ε for all values of z in the disc if |∆z| < δ,

hence f(z) = z2 is uniformly continuous in |z| < 1.

16. If anyone managed to evaluate (c) correctly without recourse to complex variable techniques

I would like to see their solutions. The answers were (a) 2π/
√

3, (b) π/3 and (c) 1
2

√
π/2.

You will be given a handout later that will show how to evaluate these integrals using

complex variable methods. To do the integral (a) use the standard substitution t = tan θ/2,

then sin θ = 2t/(1 + t2), cos θ = (1− t2)/(1 + t2) and tan θ = 2t/(1− t2). So∫ 2π

0

dθ

2 + sin θ
=
∫ π

−π

dθ

2 + sin θ
=
∫ ∞
−∞

1

2 + 2t
1+t2

× 2

1 + t2
dt =

∫ ∞
−∞

2

2 + 2t2 + 2t
dt

=
∫ ∞
−∞

2

3/2 + (2t+ 1)2/2
dt =

4

3

∫ ∞
−∞

1

1 + ((2t+ 1)/
√

3)2
dt

=
4

3

[√
3

2
tan−1

(
2t+ 1√

3

)]∞
−∞

=
4

3
×
√

3

2
× π =

2π√
3
.

To do integral (b) you need to spot the factorization

x6 + 1 = (x2 + 1)(x4 − x2 + 1) = (x2 + 1)(x2 +
√

3x+ 1)(x2 −
√

3x+ 1)

Some partial fractions will get you to integrals you should be able to do. And with a bit

of care about what happens as x→∞ and you can get the result.


