MATHEMATICAL METHODS: COMPLEX VARIABLES 1
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. 2129 = T1X9 — Y1y + i(T1y2 + w21 ) = 0. Taking real and imaginary parts gives
(1) @22 —1hy2 =0 and (2) @1y + 22y1 = 0.

Assume, without loss of generality, that z; # 0. Then adding z1x(1) to y; x(2) gives
zo(2? + 3?) = 0. Since z; # 0 this implies o = 0. Similary subtracting y; x (1) from
71 x(2) gives yo(2? + y?) = 0 and so y, = 0. Hence if 2; # 0 then 25 = 0 as required.

. (a) \/i(cos /4 +isinT/4) = V2eim/4 (b) = 1e™/?

24 j
(c) 5~ ;z = 5exp (—z’ tan ™ (;4)) (d) —3=3e"

(e) i=1e"™? () —ising — _itan ¢ — tan ¢ oim/2
1+ cos¢ 2 2
r(cosf + isinf) x r'(cos @ + isinf’)

= r1'(cosf cos 0" — sinOsin 0’ + i(sinf cos ' + sin @ cos ) = rr'(cos(d + 6') + isin(6 + 0")).

Statement in question is obviouslly true for n = 1. If true for n then from above result
(with r =1"=1)

(cos@ +isin )" = (cosf +isind) x (cos® + isinh)"
= (cosf +isin®) x (cosnb + isinnf) = cos(n + 1)0 + isin(n + 1)0.
Hence it is also true for n + 1, and by induction true for all n.
cos b8 = Re(cos 50 + isin 50) = Re ((cos 0 + isin 9)5)
= Re ((3085 0 + 5i cos® fsin  — 10 cos® A sin? § — 10i cos® fsin® § + 5 cos fsin* § + 4 sin® 6)

=cos’ @ — 10 cos® Osin® O + 5 cos A sin* 6.
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Can use previous result with z = cos@ + isinf to show 2° = 1 = 50 = 2nw. Hence
0=0, :l:%w, :l:%w, .... These points give the corners of a pentagon whose corners lie on the

unit circle, with one corner at 1.

7 = T1T2 + Y192 n Z.(IL“Q?A - 90192) _ T1T2 1Y Z.(l'Zyl - 90192)
1/%2 = = -
73+ y3 3+ v3 73+ v3 3 + 3
(=) (o i) wm—diy
= ; ; = — = 2’1/22~
(29 + 1yo)(za — iya) X2 — iys
‘21 + 22’2 = (21 + 22)(71i72) = leilj: 21272:& 2921 + 29Z23.
Hence
|21 + 22|2 + |Zl — 22|2 = 221714’ 22272 = 2(|Zl|2 + |ZQ|2).

z+1>z=1=z+1P>z-1PP=:+1)E+1) > (z-1)(Fz-1)

=>2z24+Z>—2—Z=Rez>0

Geometrically this inequality is satisfied by all points that are closer in the complex plane

to 1 than to -1, hence it gives all points in the right-half plane.

Z—:g‘ <l&|a—b?<l|a—b?< aa—ab—ab+bb < aa— ab—ab+ bb
Sab—ab—ab+ab <0< (a—a)(b—b) <0<« Ima x Imb > 0.

Recall z = (2+%)/2 and y = (2 —Z)/2i. Substitute in and rearrange to get z(a/2 —ib/2)+
Z(a/2 +ib/2) = ¢, which is of the form given when B = a/2 + ib/2.

The circle is given by the formula |z —a| = r or (z—a)(z — a) = r?. This can be rearranged
to give 2Z —az —az +a? —r? = 0, which is of the required form if B = —a and C = a? — 2.

The circle passes through the origin when C' = 0.

Let w = 1/z then z = 1/w. Substitute into the equation for a line: B/w + B/w = c. If
¢ # 0 this can be rearranged to ww — (B/c)w — (B/c)w = 0, which is the equation of a
circle passing through the origin. If ¢ = 0 then you get wB + wB = 0, the equation of

another line passing through the origin.

Similarly for the circle you get after substitution ww + (B/C)w + (B/c)w + 1/C = 0
provided C # 0. Again this is the equation of a circle. If C' = 0 you get Bw + Bw+1 = 0,

the equation of a line that doesn’t pass through the origin.
(a) z(r — 1)+y2 —Y 1 1
(x—1)2y2 7 (x—1)24+y2" 7

(b) 2*—y*—3y—3, 2ay+3xr, -6, 5
(c) a*—62%* +vy*, dady—4xy®, —4, 0

(412 —y*  —2(x+1)y
(x+1)2+9y* (z+1)2+y?

3/25, —4/25



15. (a) If f(z) ==z then f(z +Az) — f(2) = 2+ Az —z = Az. Hence, given any € > 0 we can
choose § equal to €. Then V|Az| <9, |f(z+ Az) — f(2)| < e. Le. f(2) is continuous. Note

the choice of § here is independent of z, and so Z is uniformly continuous.

(b) |[f(z+Az)—f(2)| = ||z +Az|—|z]||. If |z+Az| > |z|, then, using the triangle inequality,
lf(z4+ Az) — f(2)| = |2+ Az| — |2| < |2| + |Az| — |2| = |Az|. If |z + Az| < |z|, then
|f(z+ Az) — f(2)] = |z| — |z + Az| = |z| = |z = (=Az)|. From the triangle inequality
we can show that |a — b] > |a| — [b], and so |f(z + Az) — f(2)] = |z] — |z — (—=Az2)| <
|z| — |z + |Az| = |Az|. So as in example (a) If we choose § equal to € then V|Az| < 4,
F(s+ A2) — f(2)] < e

(c) If f(z) = 2% then f(z + Az) — f(2) = 22Az + Az%. If § < 1 then |Az| < § implies
1220z + AZ?| < [22Az2] + |AZ?| < (2]2] +6)d < (2]z| + 1)d. Hence, given any € > 0 if we
choose d to be the smaller of 1 or €/(1 + 2|z|) then we will have |f(z + Az) — f(2)] < €
for all |Az| < §. So f(z) = z? is continuous for all values of z, including the ones in the
region |z| < 1. To show uniform continuity we note that for |z| < 1 €/(1+ 2|z|) > ¢/3 and
so if we set 6 = €/3 then |f(z + Az) — f(z)] < € for all values of z in the disc if |Az| < 4,

hence f(z) = 22 is uniformly continuous in |z| < 1.

16. If anyone managed to evaluate (c) correctly without recourse to complex variable techniques
I would like to see their solutions. The answers were (a) 27/v/3, (b) 7/3 and (c) 1,/7/2.
You will be given a handout later that will show how to evaluate these integrals using
complex variable methods. To do the integral (a) use the standard substitution t = tan /2,
then sinf = 2t/(1 + t?), cos = (1 — ¢*)/(1 + t?) and tand = 2¢/(1 — t*). So
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To do integral (b) you need to spot the factorization
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xw—%.
1= (22 +1)(a* =22 +1) = (2 + D)(2® + VBz + 1)(z® — 3z + 1)

Some partial fractions will get you to integrals you should be able to do. And with a bit

of care about what happens as x — oo and you can get the result.



