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Answer Sheet

1. (a) ∇2(xy + x+ y) = ∂2

∂x2 (xy + x+ y) + ∂2

∂y2 (xy + x+ y) = 0 + 0 = 0. Harmonic.

(b) If u(x, y) = y
(x+1)2+y2 then ux = −2(x+1)y

((x+1)2+y2)2 , uxx = 6(x+1)2y−2y3

((x+1)2+y2)3 , and uy = (x+1)2−y2

((x+1)2+y2)2 ,

uxx = −6(x+1)2y−2y3

((x+1)2+y2)3 . Hence ∇2u(x, y) = uxx + uyy = 0. Harmonic.

(c,d) If u(x, y) = (y cosx ∓ x sinx)e−y then ux = (−y sinx ∓ (x cosx + sinx))e−y, uxx =

(−y cosx ∓ (−x sinx + 2 cosx))e−y, and uy = (cosx − y cosx ∓ (−x sinx))e−y, uyy =

(y cosx − 2 cosx ∓ (x sinx))e−y. Hence ∇2u(x, y) = (∓2 cosx − 2 cosx)e−y and so (c)

∇2u(x, y) = −4 cosx e−y. Not Harmonic. (d) ∇2u(x, y) = 0. Harmonic.

For (a) ux = y + 1 = vy ⇒ v = 1
2y

2 + y + g(x)

uy = x+ 1 = −vx = −g′(x)⇒ g(x) = −1
2x

2 − x+ C.

Hence v(x, y) = 1
2(y2− x2) + y− x+C and f(z) = u(z, 0) + iv(z, 0) = z− 1

2 iz
2− iz+ iC =

(1− i)z − i
2z

2 + iC.

For (b) ux = −2(x+1)y
((x+1)2+y2)2 = vy ⇒ v = (x+1)

(x+1)2+y2 + g(x)

uy = (x+1)2−y2

((x+1)2+y2)2 = −vx = (x+1)2−y2

((x+1)2+y2)2 + g′(x)⇒ g′(x) = 0⇒ g(x) = C.

Hence v(x, y) = x+1
(x+1)2+y2 +C and f(z) = u(z, 0)+ iv(z, 0) = 0+ i z+1

(z+1)2+0
+ iC = i

z+1 + iC.

Note (c) is not harmonic so it is NOT the real part of some analytic function.

For (d) ux = −y sinx e−y+sinx e−y+x cosx e−y = vy ⇒ v = y sinx e−y−x cosx e−y+g(x).

uy = (−y cosx+cosx−x sinx)e−y = −vx = −(y cosx−cosx+x sinx)e−y−g′(x)⇒ g′(x) =

0⇒ g(x) = C.

Hence v(x, y) = (y sinx−x cosx)e−y+C and f(z) = u(z, 0)+iv(z, 0) = z sin z−iz cos z. This

can be further simplified: f(z) = z sin z−iz cos z = z
2i

(
eiz − e−iz

)
− iz

2

(
eiz + e−iz

)
= −izeiz.

2. (a) i. Splitting the contour into two parts∫ 2

0
z dz =

∫ 2

0
x dx =

[
x2

2

]2

0

= 2

∫ 2+2i

2
z dz =

∫ 2

0
(2− iy) idy =

[
2iy +

y2

2

]2

0

= 2 + 4i.

Giving the total integral of 4 + 4i.

ii. With z = x+ iy = 2t+ 2it2, dz = (2 + 4it)dt, and so∫
C
z dz =

∫ 1

0
z
dz

dt
dt =

∫ 1

0
(2t− 2it2)(2 + 4it)dt

=
∫ 1

0
4t+ 4it2 + 8t3 dt =

[
2t2 +

4it3

3
+ 2t4

]1

0

= 4 +
4i
3
.



(b) i. Again splitting the contour into two parts

∫ 2

0
z2 + 2iz dz =

∫ 2

0
x2 + 2ix dx =

[
x3

3
+ ix2

]2

0

=
8
3

+ 4i

∫ 2+2i

2
z2 + 2iz dz =

∫ 2

0
(2 + iy)2 + 2i(2 + iy) idy = i

∫ 2

0
4(1 + i) + (4i− 2)y− y2 dy

= i

[
4(1 + i)y + (2i− 1)y2 − y3

3

]2

0

= i

(
16i+

4
3

)
= −16 +

4
3
i

Giving the total integral of −131
3 + 51

3 i.

ii. Again with z = x+ iy = 2t+ 2it2, dz = (2 + 4it)dt:∫
C
z2 + 2iz dz =

∫ 1

0
(z2 + 2iz)

dz

dt
dt =

∫ 1

0

[
(2t+ 2it2)2 + 2i(2t+ 2it2)

]
(2 + 4it) dt

=
∫ 1

0
8it− 16t2 + 16it3 − 40t4 − 16it5 dt

=
[
4it2 − 16

3
t3 + 4it4 − 8t5 − 8i

3
t6
]1

0
= −131

3 + 51
3 i.

Note for integral (b) the function is analytic, and the answers should be the same. Finding

the indefinite integral ∫
z2 + 2iz dz =

z3

3
+ iz2 + C,

we can check these integral:
[
z3/3 + iz2 + C

]2
0 = (2+2i)3

3 + i(2 + 2i)2 = −131
3 + 51

3 i as

required.

3. The formula given holds if the function f(z) is analytic inside and on a closed simple contour

C that encloses the point z0. This contour is traversed in an anticlockwise direction.

Applying Cauchy’s Integral Formula

|f (n)(z0)| =
∣∣∣∣ n!
2πi

∮
C

f(z′)
(z′ − z)n+1

dz′
∣∣∣∣ ≤ n!

2π

∣∣∣∣∮
C

f(z′)
(z′ − z)n+1

dz′
∣∣∣∣ ,

where C is the circle of radius r centred on z0. But on this circle |z−z0| = r and |f(z)| ≤M
and so ∣∣∣∣∮

C

f(z′)
(z′ − z)n+1

dz′
∣∣∣∣ ≤ M

rn+1
× 2πr =

2πM
rn

,

giving

|f (n)(z0)| ≤ n!
2π
× 2πM

rn
=
n!M
rn

.

If f(z) = ez then |f(z)| = ex where x is the real part of z. Hence on the circle |z| = 1 the

maximum modulus of f(z) will correspond to the point with largest real part, i.e. z = 1,

and so M = e. This gives an upper bound for |f (n)(0)| of

|f (n)(0)| ≤ n!e.



We know that f (n)(0) = 1 for all n, however the upper bound derived here grows as n!, so

although this method produces a reasonable bound for the first couple of of derivatives, the

bound rapidly becomes very weak for larger values of n and may not be of much practical

use.

If a function is entire then it is analytic for all z, and we can apply the above result for any

circle of arbitrary radius and centre. If a function is globally bounded in modulus by M ′,

say, then using the above result applied to a circle of radius r centred on z we find that the

modulus of the derivative of f(z) bounded by

|f ′(z)| ≤ M

r
.

But the radius can be chosen to be as large as we want, and so this implies that |f ′(z)| = 0.

This is true for all points, and so f ′(z) = 0 ∀z. Hence f(z) is constant.

The real function f(x) = cosx is indeed bounded everywhere and is not constant, but

the above result is a result for complex analytic functions. The complex function that

corresponds to the real function cosx, i.e. cos z, has a modulus that grows roughly as 1
2e
|y|

as y, the imaginary part of z, gets large in magnitude. Hence the complex function cos z is

clearly not globally bounded in the same way.

4. Cauchy’s Integral Formula states that if a function is analytic inside and on a simple closed

contour C, and a point z lies within C then

f(z) =
1

2πi

∮
C

f(z′)
z′ − z

dz′,

where the contour is traversed in the anticlockwise direction. For proof see notes. The

formula for higher derivatives is

f (n)(z) =
n!

2πi

∮
C

f(z′)
(z′ − z)n+1

dz′.

(a) Note z2 + 1 = (z + i)(z − i), so we will have to deform the contour into two separate

contours, C1 and C2, surrounding the singularities at z = i and z = −i respectively.

Around z = i we see that

cosh 2z
z2 + 1

=
cosh 2z
z + i

× 1
z − i

.

If the contour around z = i doesn’t contain z = −i then the first fraction is analytic

and we can apply Cauchy’s Integral Theorem. If we let

g(z) =
cosh 2z
z + i

then

g(i) =
cosh 2i
i+ i

=
1

2πi

∫
C1

g(z′)
z′ − i

dz′,



and so ∫
C1

cosh 2z
z2 + 1

dz = (2πi)× cosh 2i
2i

.

Similarly the contribution from around the singularity at z = −i is∫
C2

cosh 2z
z2 + 1

dz = (2πi)× cosh−2i
−2i

= −(2πi)× cosh 2i
2i

,

and so the contribution from each singularity cancels the other out and the total

integral is 0. This result could be anticipated from the symmetry of the argument of

the integral: observe cosh 2z/(z2 + 1) = cosh(−2z)/((−z)2 + 1) and so contributions

from opposite side of the circle will cancel.

(b) Again we will split the contour of integration into three parts around each of the

singularities, C1 about z = 0, C2 about z = i and C3 about z = −i. Then if we set

g(z) = sin 2z
z2+1

, then g(z) is analytic in the neighbourhood of z = 0 and we can apply

Cauchy’s Integral Formula for the first derivative

g′(0) =
1

2πi

∫
C1

g(z′)
z′2

dz′.

Giving∫
C1

sin 2z
z2(z2 + 1)

dz = 2πi×g′(0) = 2πi× 2(z2 + 1) cos 2z − 2z sin 2z
(z2 + 1)2

∣∣∣∣∣
z=0

= 2πi×2 = 4πi.

In a similar fashion to part (a)∫
C2

sin 2z
z2(z2 + 1)

dz =
∫
C2

sin 2z
z2(z + i)

× 1
z − i

dz = 2πi× sin 2i
i2(i+ i)

= −π sin 2i

and∫
C3

sin 2z
z2(z2 + 1)

dz =
∫
C3

sin 2z
z2(z − i)

× 1
z + i

dz = 2πi× sin(−2i)
(−i)2(−i− i)

= −π sin 2i.

Giving the total integral∫
C

sin 2z
z2(z2 + 1)

dz = 4πi− π sin 2i− π sin 2i = 2π(2i− sin 2i) [= 2πi(2− sinh 2)].

5. From Cauchy’s Integral Formula

f(z) =
1

2πi

∫
C

f(z′)
z′ − z

dz′,

where C is a simple contour going around the point z anticlockwise. Deform the contour

to a circle of radius r centred on a. Then z′ = a+ reiθ, and dz′ = ireiθdθ. Giving

f(a) =
1

2πi

∫
C

f(z′)
z′ − a

dz′ =
1

2πi

∫ 2π

0

f(a+ reiθ)
a+ reiθ − a

ireiθdθ =
∫ 2π

0
f
(
a+ reiθ

)
dθ,

as required.



6. Assume that there is a point, z′, with maximum modulus in the interior of the region under

consideration. Let r be the radius of a circle centred on the point such that all points on

the circle lie inside or on C. Then from Gauss’ mean Value Theorem

f(z′) =
1

2π

∫ 2π

0
f(z′ + reiθ) dθ.

And so

|f(z′)| = 1
2π

∣∣∣∣∫ 2π

0
f(z′ + reiθ) dθ

∣∣∣∣ ≤ 1
2π

∫ 2π

0

∣∣∣f(z′ + reiθ)
∣∣∣ dθ.

If M is the maximum modulus of f(z) for any point on this circle then

|f(z′)| ≤ 1
2π

∫ 2π

0

∣∣∣f(z′ + reiθ)
∣∣∣ dθ ≤ 1

2π

∫ 2π

0
M dθ = M.

But |f(z′)| has a global maximum at z′, and so |f(z′)| ≥ M , hence |f(z′)| = M . This

equality is only possible if

1
2π

∫ 2π

0

∣∣∣f(z′ + reiθ)
∣∣∣ dθ =

1
2π

∫ 2π

0
M dθ.

Because f(z) is continuous this can only be the case if |f(z)| = M for all points on the circle.

Since r is arbitrary this implies that the modulus of f(z) is constant in any disc centred on

z′ inside or on the boundary, and will hold for the largest possible circles that just touches

the boundary, hence there must be a point on the boundary at which |f(z)| = M . And so

the maximum modulus is to found on the boundary too. Hence result.

7. A function f(z) is analytic inside and on a boundary C, and is not zero for any point

inside or on the boundary (if it was zero on the boundary the minimum modulus theorem

is trivially true). Then consider g(z) = 1/f(z), this function is analytic for all points inside

and on the boundary, and so from Q6 its maximum modulus is attained on the boundary.

However, the maximum modulus of g(z) corresponds to the minimum modulus of f(z),

hence result.

8. If a line γ1 is given by z = g1(t), then the angle the curve makes with the real axis at

any point is given by arg
(
dz
dt

)
= arg g′1(t). Similarly if another curve is given by z =

g2(s) then the angle this makes with the real axis is arg
(
dz
ds

)
= arg g′2(s). If the curves

meet when t = t0 and s = s0 then the angle between the curves will be arg g′1(t0) −
arg g′2(s0) = arg[g′1(t0)/g′2(s0)]. The angle the corresponding curves will make in the w-

plane are arg
(
d f(z)
dt

)
= arg [f ′(g1(t))g′1(t)], and arg

(
d f(z)
ds

)
= arg [f ′(g2(s))g′2(s)]. The

angle between these two lines at the point of intersection will be

arg
[
f ′(g1(t0))g′1(t0)

]
− arg

[
f ′(g2(s0))g′2(s0)

]
= arg

[
f ′(g1(t0))g′1(t0)
f ′(g2(s0))g′2(s0)

]
.

But g1(t0) = g2(s0) and so the terms involving the derivatives of f cancel, giving the same

angle as was found between the lines in the z-plane.



9. (a) See notes.

(b) See notes.

(c) From a point z = reiθ consider a point a distance δr in the radial direction, i.e.

z = reiθ + δreiθ. Then considering the limit as δr → 0

f ′(z) = lim
δr→0

f(z + δreiθ)− f(z)
δreiθ

= lim
δr→0

u(r + δr, θ) + iv(r + δr, θ)− u(r, θ)− iv(r, θ)
δreiθ

=
ur(r, θ) + ivr(r, θ)

eiθ
.

Similarly, if we consider the derivative as a limit as z + δz approaches z along the

circular arc |z + δz| = r, i.e. let z + δz = rei(θ+δθ) then

f ′(z) = lim
δθ→0

f(rei(θ+δθ))− f(reiθ)
r(ei(θ+δθ) − eiθ)

=
u(r, θ + δθ) + iv(r, θ + δθ)− u(r, θ)− iv(r, θ)

r(ei(θ+δθ) − eiθ)

But ei(θ+δθ) − eiθ = ieiθδθ +O(δθ2) and so

f ′(z) =
uθ(r, θ) + ivθ(r, θ)

ireiθ

These must be the same, hence

ur(r, θ) + ivr(r, θ)
eiθ

=
uθ(r, θ) + ivθ(r, θ)

ireiθ

or

ur(r, θ) + ivr(r, θ) =
1
ir

(uθ(r, θ) + ivθ(r, θ)).

Taking real and imaginary parts gives the required result

rur = vθ and rvr = −uθ.

Lastly, if v(r, θ) = r−2 cos 2θ then

vr = − 2
r3

cos 2θ = −uθ
r
⇒ u =

sin 2θ
r2

+ g(r)

ur = −2 sin 2θ
r3

+ g′(r) =
vθ
r

= −2 sin 2θ
r3

⇒ g′(r) = 0⇒ g(r) = C.

Hence

u(r, θ) =
sin 2θ
r2

+ C

and

f(z) = u(r, θ) + iv(r, θ) =
sin 2θ + i cos 2θ

r2
+ C =

ie−2iθ

r2
+ C =

i

r2e2iθ
=

i

z2
.


