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Answer Sheet

1. Assume P (z) has no roots then 1/P (z) will have no singularities. Also, since n ≥ 1,

1/P (z)→ 0 as z →∞, and so 1/P (z) will be bounded in magnitude. Hence by Liouville’s

theorem 1/P (z) is a constant. This is clearly not the case, therefor our assumption that

P (z) has no roots must be false, and that there exists at least one point, z1 say, such that

P (z1) = 0.

Since P (z1) = 0 then P (z) = P (z) − P (z1) = a1(z − z1) + a2(z2 − z2
1) + a3(z3 − z3

1) +

· · · + an(zn − zn1 ). We can take out a factor of (z − z1) from each term to give P (z) =

(z − z1)[a1 + a2(z + z1) + a3(z2 + zz1 + z2
1) + · · · + an(zn−1 + zn−2z1 + · · · + zn−1

1 )]. The

expression inside the brackets [. . .] is a polynomial of order n − 1, hence we have shown

that P (z) = (z − z1)Q(z), where Q(z) is a polynomial of order n− 1. This process can be

repeated to show that Q(z) has a root, z2, and so P (z) = (z − z1)(z − z2)R(z) where R(z)

is a polynomial of order n − 2. We continue repeating this process until we are left with

P (z) = (z − z1)(z − z2)(z − z3) . . . (z − zn)C, where C is a constant. Examination of the

coefficient of zn shows us that C = an as required. From this expression it is clear that

P (z) has n roots.

2. (a) i. α is a removable singularity, means that limz→α f(z) exists, and if f(α) is redefined

too take this value at the point α then f(z) becomes analytic at α.

ii. α is a pole, means that there exists a positive integer n and a constant A 6= 0 such

that limz→α f(z)(z − α)n = A.

iii. α is an essential singularity means that if f(z) is a single-valued function (i.e. α

is not a branch point) and that the point α is not analytic, but it is neither a pole

nor a removeable singularity, then it is an essential singularity.

Note that the last two singularities can also be defined in terms of their Laurent series.

If the Laurent series has a finite number of non-zero coefficients of the negative powers,

then the singularity is a pole. If it has an infinite number of such coefficients then the

point is an essential singularity.

(b) In case (i) if limz→α 6= 0 then the singularity of 1/f(z) is also removable. If the limit

is 0, then the singularity is a pole.

In case (ii) the singularity will be a removable singularity, it can be replaced with the

value 0.

In case (iii) the singularity of 1/f(z) is also an essential singularity.

(c) The function f(z) = e1/z(z−π)
sin z has singularities at z = 0, ±π, ±2π, . . .. From consid-

eration of the Laurent series for e1/z = 1 + z−1 + z−2/2! + z−3/3! + · · ·, it is clear that



there are an infinite number of terms in this series about z = 0 with negative powers,

and so z = 0 is an essential singularity. The singularity at z = π corresponds to both

(z − π) = 0 and sin z = 0. As z → π, f(z) = e1/z(z−π)
sin z → −e1/π, and so this is a

removable singularity. All the other singularities are simple poles.

3. an =
√
n+ 1−

√
n =
√
n(
√

1 + 1/n− 1). But 1 + ε ≤ 1 + ε+ ε2/4 and so
√

1 + ε ≤ 1 + ε/2,

hence an ≤
√
n(1 + 1/(2n) − 1) = (2

√
n)−1 → 0 as n → 0. However if SN =

∑N
0 an =

1 − 0 +
√

2 − 1 + · · · +
√
N −

√
N − 1 +

√
N + 1 −

√
N =

√
N + 1 and so SN → ∞ as

N →∞.

4. (a) (n+ 2)/(3n+ 2i)→ 1/3 as n→∞, since the individual terms do not tend to zero the

series cannot converge.

(b) By the ratio test, |an+1/an| = | (n+1)(1+i)
2n | →

∣∣∣1+i
2

∣∣∣ = 1/
√

2 < 1 so the series converges.

(c) By the ratio test an+1/an = (n+1)2(n+1)

(n+1)! × n!
n2n = (n+1)2n+1

n2n = (n+1
n )2n(n+1). But n+1

n > 1

and so an+1/an > n+ 1 > 1 for all n. Hence the series diverges.

(d) Both the root test and the ratio test fail to say whether this series diverges or con-

verges. Probably the easiest way to see that this series converges is to consider the real

and imaginary parts separately. In both cases you get a sequence of numbers converging

to zero with alternating signs, and hence each subseries converges and so the whole series

converges.

5. Consider limn→∞
n
√
|an(z − z0)n| = limn→∞ |z − z0| n

√
|an| = L|z − z0|. By the root test, if

L|z − z0| > 1, i.e. if |z − z − 0| > 1/L then the series diverges, similarly if L|z − z0| < 1,

i.e. |z − z0| < 1/L, the series converges. This means that the radius of convergence is 1/L.

It is probably easiest to see this works by using a “hand-waving” argument. If the sequence

has more than one limit point then all the points that we need to worry about in this

sequence will have values in some neighbourhoods of these limit points. If we then separate

the terms in the series into several power series according to which limit point the terms
n
√
|an| are near then from the above argument we see that each of the separate series will

have different radii of convergence. The series with the largest radius of convergence will

be the one with the lowest vale of lim→∞ n
√
|an|, and the smallest radius of convergence

will have the largest value. For the power to converge as a whole the individual power

series must also converge, and this will be limited by the smallest radius of convergence of

the individual power series. This will correspond to the largest of the limit points of the

sequence { n
√
|an|}.

Examination of the coefficients in the given power series shows that for even n the general

term is (2+2−n) and so n
√
|an| = 1. For odd n the general term is 2−n, and so n

√
|an| = 1/2.

The larger of these is 1, so the radius of convergence of this power series is 1/1 = 1.



When applying the above and the root test you may find it useful to know that for large n,

n! ≈
√

2πnnne−n (Stirling’s formula), and so n
√
n! ≈ n/e.

6. (a) dn

dzn log(z + 1) = (−1)n−1(n− 1)!/(z + 1)n and so log(z + 1) = z − z2/2 + z3/3− z4/4 +

· · · − (−z)n/n− · · ·

(b) dn

dzn (z+1)−1 = (−1)nn!/(z+1)n+1 and so 1/(z+1) = 1−z+z2−z3+z4+· · ·+(−z)n+· · ·

(c) dn

dzn (−1/(z + 1)2) = (−1)n−1(n+ 1)!/(z + 1)n+2 and so −1/(z + 1)2 = −1 + 2z − 3z2 +

4z3 − 5z4 · · · − (n+ 1)(−z)n − · · ·

It is straight forward to show that if you integrate the series term-by-term (b) you get the

series (a), and if you differentiate it term-by-term you get the series (c).

7. (a) We can either use the result from 6(b) or alternatively:

1
1+z = 1

2(1+ z−1
2 )−1 = 1/2−(z−1)/4+(z−1)2/8−(z−1)3/16+· · ·+(−1)n(z−1)n/2n+1+· · ·,

R = 2.

(b) It is easiest in this case to use partial fractions:

1
1 + z2

= 1/2
[

1
1− iz

+
1

1 + iz

]
=

1
2(1− i)

1

1− i(z−1)
1−i

+
1

2(1 + i)
1

1 + i(z−1)
1+i

=
1

2(1− i)

[
1 +

i(z − 1)
1− i

+
i2(z − 1)2

(1− i)2
+
i3(z − 1)3

(1− i)3
+ · · ·

]

+
1

2(1 + i)

[
1− i(z − 1)

1 + i
+
i2(z − 1)2

(1 + i)2
− i3(z − 1)3

(1 + i)3
+ · · ·

]
= 2−3/2eiπ/4

[
1 + 2−1/2e3iπ/4(z − 1) + 2−1e6iπ/4(z − 1)2 + 2−3/2e9iπ/4(z − 1)3 + · · ·

]
+2−3/2e−iπ/4

[
1 + 2−1/2e−3iπ/4(z − 1) + 2−1e−6iπ/4(z − 1)2 + 2−3/2e−9iπ/4(z − 1)3 + · · ·

]
= 2−3/2[eiπ/4 + e−iπ/4] + 2−2[eiπ + e−iπ](z − 1) + 2−5/2[e7iπ/4 + e−7iπ/4](z − 1)2

+ 2−3[e10iπ/4 + e−10iπ/4](z − 1)3 + 2−7/2[e13iπ/4 + e−13iπ/4](z − 1)4 + · · ·

=
1
2
− 1

2
(z − 1) +

1
4

(z − 1)2 − 1
8

(z − 1)4 +
1
8

(z − 1)5 − 1
16

(z − 1)6 +
1
32

(z − 1)8 + · · ·

(c) This one gets a bit tedious:

f(z) = sinπz2 ⇒ f(2) = 0

f ′(z) = 2πz cosπz2 ⇒ f ′(2) = 4π

f ′′(z) = 2π cosπz2 − 4π2z2 sinπz2 ⇒ f ′′(2) = 2π

f ′′′(z) = −8π3z3 cosπz2 − 12π2z sinπz2 ⇒ f ′′′(2) = −64π3

f ′′′′(z) = −48π3z2 cosπz2 + (16π4z4 − 12π2) sinπz2 ⇒ f ′′′′(2) = −192π4

and so on. Hence f(z) = 4π(z−2)+π(z−2)2− 32
3 π(z−2)3−8π3(z−2)4+

(
128
15 π

5 − 2π3
)

(z−
2)5 + · · ·.

(d) ln 2z = ln(2(z−2)+4) = ln 4+ln(1+ (z−2)
2 ) = ln 4+ (z−2)

2 − (z−2)2

4 + (z−2)3

24 − (z−2)4

64 + · · ·



8. Remembering

an =
1

2πi

∮
C

1
1− z

× 1
(z + 1)n

dz (1)

bn =
1

2πi

∮
C

1
1− z

× (z + 1)n−1 dz (2)

where C is an appropriate contour surrounding z0 = −1. For the Laurent series near the

centre we can use any circle of radius less than 2 centred on 1. In this case the singularity

of the 1/(1 − z) term is not included in the contour, and hence the integrand for (2) is

analytic inside C, and so bn = 0 for all n. In (1) the only singularity is that at z = −1.

This is a pole of order n. Using Cauchy’s integral formula this gives

an =
1

2πi

∮
C

1
1− z

× 1
(z + 1)n

dz =
1

2πi
× 2πi

1
(n− 1)!

d(n−1)

dz(n−1)

1
1− z

∣∣∣∣∣
z=−1

=
1

(n− 1)!
× (n− 1)!(1− z)−n

∣∣∣∣
z=−1

= (n− 1)!× (n− 1)!
2n

=
1
2n

Hence the Laurent/Taylor series for |z + 1| < 2 is

1/(1− z) = 1 +
(z + 1)

2
+

(z + 1)2

4
+

(z + 1)3

8
+ · · ·

For C of radius larger than 2 integral we still get the above contribution for the coefficients

an, but in addition we get a contribution from the singularity at z = 1. From Cauchy’s

integral formula we find this extra bit

1
2πi

∮
C1

1
1− z

× 1
(z + 1)n

dz =
1

2πi
×−2πi

1
(z + 1)n

∣∣∣∣
z=1

= − 1
2n
.

Thus an = 2−n − 2−n = 0. (2) now contains the singularity at z = 1. From Cauchy’s

integral formula

bn =
1

2πi

∮
C

1
1− z

× 1
(z + 1)n

dz =
1

2πi
×−2πi(z + 1)n−1

∣∣∣∣
z=1

= −2n−1

Hence for |z + 1| > 2 the Laurent series is 1/(1− z) = −1− 2
(z+1) −

4
(z+1)2 − 4

(z+1)3 − · · ·

9. (a) 1
z−3 = − 1

3(1−z/3) = z−1 1
1−3/z . To find the Laurent series for |z| < 3 (i.e. the Taylor

series) expand the second expresseion, and for |z| > 3 the third expression to give:

For |z| < 3, 1/(z − 3) = −1/3− z/9− z2/27− z3/81− z4/243− · · ·.

For |z| > 3, 1/(z − 3) = z−1 + 3z−2 + 9z−3 + 27z−4 + 81z−5 + · · · .

(b) Use partial fractions 1/[z(z − 1)(z − 2)] = 1
2z
−1 − (z − 1)−1 + 1

2(z − 2)−1. We then

expand the relevant terms according to whether (i) |z| < 1, (ii) 1 < |z| < 2 or (iii) 2 < |z|.

(i) = 1
2z
−1 +

[
1 + z + z2 + z3 + z4 + · · ·

]
+
[
−1

4 −
z
8 −

z2

16 − · · ·
]

= 1
2z
−1 + 3

4 + 7
8z+ 15

16z
2 + · · ·

(ii) = 1
2z
−1 +

[
−z−1 − z−2 − z−3 − · · ·

]
+
[
−1

4 −
z
8 −

z2

16 − · · ·
]

(ii) = 1
2z
−1 +

[
−z−1 − z−2 − z−3 − · · ·

]
+
[

1
2z + 1

z2 + 2
z3 + 4

z4 · · ·
]

= 1
z3 + 3

z4 + 7
z5 + 15

z6 + · · ·



10. (a) There is one singularity at z = 2. It is a simple pole, so the residue is limz→2(z − 2)×
2/(2− z) = −2.

(b) There are two singularities at z = ±1. Both are double. The residue at z = 1 is given by

limz→1
d
dz [(z−1)2×ez/(z2−1)2] = limz→1

d
dz [ez/(z+1)2] = limz→1(z−1)ez/(z+1)3 = 0. The

residue at z = −1 is given by limz→−1
d
dz [(z+1)2×ez/(z2−1)2] = limz→−1

d
dz [ez/(z−1)2] =

limz→−1(z − 3)ez/(z − 1)3 = e−1/2.

(c) There is one singularity at z = 0. To find the residue we could either expand cos z in pow-

ers of z and find the appropriate term in the Laurent series directly, or we use the formula

for a pole of order 5: The residue = limz→0
1

(5−1)!
d4

dz4 [z5×(cos z)/z5] = 1
24

d4

dz4 cos z|z=0 = 1
24 .

(d) π tanπz has singularities at z = ±1/2, ±3/2, ±5/2, . . .. At a general singularity

the residue is limz→1/2+nπ(z − (1/2 + nπ))π tanπz = limz→1/2+nπ
π(z−(1/2+n))

cotπz . Using

l’Hospital’s rule this gives a residue of limz→1/2+n
π

−π csc2 πz
= −1 for all n.

11. (a) Using the standard substitution z = eiθ we get∫ 2π

0

1 + sin θ
2 + cos θ

dθ =
∮
C

1 + 1
2i(z − z

−1)
2 + 1

2(z + z−1)
dz

iz
= −

∮
C

z2 + 2iz − 1
z(z2 + 4z + 1)

dz.

The function inside the integral has singularities at z = 0 and z = −2 ±
√

3. Only z = 0

and z = −2 +
√

3 lie inside the circle C of radius 1 centred on the origin. The residue at

z = 0 is

lim
z→0

z × z2 + 2iz − 1
z(z2 + 4z + 1)

=
z2 + 2iz − 1
z2 + 4z + 1

∣∣∣∣∣
z=0

= −1.

The residue at z = −2 +
√

3 is

lim
z→−2+

√
3
(z + 2−

√
3)× z2 + 2iz − 1

z(z2 + 4z + 1)
=

z2 + 2iz − 1
z(z + 2 +

√
3)

∣∣∣∣∣
z=−2+

√
3

=
6− 4

√
3 + 2i(−2 +

√
3)

(−2 +
√

3)2
√

3
= 1 +

i√
3
.

Hence the integral is −2πi× [(−1) + (1 + i/
√

3)] = 2π/
√

3.

(b) Again using the standard substitution z = eiθ we get∫ 2π

0

cos 3θ
5 + 4 cos θ

dθ =
∮
C

1
2(z3 + z−3)

5 + 2(z + z−1)
dz

iz

=
1
4i

∮
C

z6 + 1
z3(z2 + 5/2z + 1)

dz =
1
4i

∮
C

z6 + 1
z3(z + 2)(z + 1/2)

dz,

where C is the circle of radius 1 centred on z = 0. This has a pole of order 3 at z = 0 and

a simple pole at z = 1/2 that lie inside this circle. The residue at z = −1/2 is then

lim
z→−1/2

(z + 1/2)× z6 + 1
z3(z + 2)(z + 1/2)

=
(−1/2)6 + 1

(−1/2)3(−1/2 + 2)
= −65/12.



To find the residue at z = 0 we can simplify things by noting that if we split the expression
z6+1

z3(z2+5/2z+1)
into two parts, one with z6 on the top, z6

z3(z2+5/2z+1)
= z3

(z2+5/2z+1)
, and one

with 1 on the top, 1
z3(z2+5/2z+1)

, we see that the former has no singularity at z = 0. This

simplifies things a bit. The residue at z = 0 is

lim
z→0

1
2!
d2

dz2
z3 × 1

z3(z + 2)(z + 1/2)
= lim

z→0

1
2
d2

dz2

[−2/3
z + 2

+
2/3

z + 1/2

]

=
1
2

[
−2

3
2

(z + 2)3
+

2
3

2
(z + 1/2)3

]∣∣∣∣
z=0

= − 1
12

+
16
3

=
21
4
.

Hence the integral is 2πi× 1
4i × (−65/12 + 21/4) = −π/12.

12. All these integrals are done by using the semicircular contour which has its diameter going

between −R and R along the real axis, and is closed in the upper half plane. In each case

the contribution from the curved part of the contour vanishes as R→∞

(a) Poles at ±1+i√
2

and ±−1+i√
2

, only the ones with a plus sign in front lie inside our contour.

Residues at 1+i√
2

and 1+i√
2

are [using rule that if q(z) has a simple zero at z0, and p(z) is

non-zero at z0 then the residue of p(z)/q(z) is P (z0)/q′(z0)]

1 + z2

4z3

∣∣∣∣∣
z= 1+i√

2

=
1

2
√

2i
and

1 + z2

4z3

∣∣∣∣∣
z=−1+i√

2

=
1

2
√

2i

respectively. Hence the integral around the contour is 2πi × 2 × 1
2
√

2i
=
√

2π. But our

integral only goes from 0 to ∞ and so the required integral is π/
√

2.

(b) Double poles at +i and −i, only the former lies inside our contour.

The residue at +i is

lim
z→i

d

dz

[
(z − i)2 × 1

(z2 + 1)2

]
= lim

z→i

d

dz

[
1

(z + i)2

]
=

−2
(z + i)3

∣∣∣∣
z=i

=
1
4i
.

Again our integral only goes from 0 to ∞ so the integral is 1
2 × 2πi× 1

4i = π/4.

(c) Simple poles at ±i and ±2i, only those at i and 2i lie inside our contour.

The residues are

lim
z→i

(z − i)× 1
(z2 + 1)(z2 + 4)

=
1

(z + i)(z2 + 4)

∣∣∣∣
z=i

=
1
6i
,

lim
z→2i

(z − 2i)× 1
(z2 + 1)(z2 + 4)

=
1

(z2 + 1)(z + 2i)

∣∣∣∣
z=2i

= − 1
12i

,

respectively. This time the integral is from −∞ to∞, and so our answer is 2πi×( 1
6i−

1
12i) =

π/6.

(d) The function inside the integral is an odd function, hence the integral is 0.


