
Engineering Mathematics: Complex Variables

Analytic functions

Polynomials and rational functions

It is clear from the definition of differentiability that both f(z) = 1 and g(z) = z

are analytic functions. From the rules of differentiation (sums of analytic functions are

analytic, products of analytic functions are analytic, etc.) we can show that all integer

powers of z and hence all polynomials are analytic. e.g. If zn is analytic, the zn×z = zn+1 is analytic, since the product of two analytic
functions is analytic. Since we know that zn is analytic for n = 0 and n = 1, by
induction zn is analytic for all integer n > 0.


Also f(z) = 1/z is analytic for all z 6= 0 [See Examples Sheet] and so, using similar

arguments to the above, we can show that all negative integer powers of z are also analytic

except at z = 0.

We can combine these results to show that rational functions of the form

f(z) =
p(z)

q(z)
,

where p(z) and q(z) are polynomials, are also analytic except at the zeros of q(z) (assuming

that all the common factors of p and q have been canceled) [see Examples Sheet].

Exponential function ez

It is possible to define the complex exponential function in terms of a power series,

however we will take a different approach and define the exponential function as

ez = ex(cos y + i sin y).

This definition makes ez a natural extension of the real function ex since if y = 0, then

cos 0 = 1 and sin 0 = 0, and we recover the real exponential function as we would hope.

This function satisfies the Cauchy-Riemann equations since

u(x, y) = ex cos y and v(x, y) = ex sin y
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It also satisfies the differential equation f ′(z) = f(z), since

f ′(z) = = + i = f(z).

Further properties:

• The product of exponentials is given by

ez1ez2 = ex1(cos y1 + i sin y1)× ex2(cos y2 + i sin y2)

=

=

= ez1+z2

Hence also ez·e−z = e0 = 1, and so e−z = 1/ez.

This last result tells us that since all values of ez have multiplicative inverses then

ez 6= 0 for all values of z.

• For the case z = iy we obtain the Euler formula

eiy = cos y + i sin y.

Hence the polar form of z can be written

z = r(cos θ + i sin θ) = .

• Note |ez| = ex. This also has the implication noted above that ez is never zero.

• The function f(z) = ez is periodic with period 2πi. I.e.

ez+2πi = ez ∀z.

This follows from the periodicity of cos and sin.

Trigonometric functions

Just as we extended the real function ex to ez we would like to extend cosx and sinx,

the real trigonometric functions, into the whole complex plane. From the Euler formula

eix = cosx+ i sinx

and

e−ix = cosx− i sinx.



Hence we obtain

cosx =
1

2

(
eix + e−ix

)
and

sinx = .

This would suggest the following definitions for complex z

cos z =

sin z = .

The analyticity of ez ensures the analyticity of these two function. Also Euler’s formula

carries over without modification to complex values

eiz = cos z + i sin z.

In addition we can define, just as in the real case, the trigonometric functions

tan z =
sin z

cos z
, cot z =

cos z

sin z
,

sec z =
1

cos z
, csc z =

1

sin z
.

It is straight forward to show from (ez)′ = ez that

(cos z)′ = , (sin z)′ = , (tan z)′ = .

We can rewrite

cos z =
1

2

(
eiz + e−iz

)

=

= .

Similarly

sin z = sinx cosh y + i cosx sinh y.

From this it is clear that both sin z and cos z are periodic with period 2π. Hence the

periodicity of tan z, etc. follows.

Note: Although cos2 z + sin2 z = 1 just as for reals, it is no longer the case that | cos z| is

bounded since

| cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y

=

=

= cos2 x+ sinh2 y,



and so the absolute value of cos z tends to ∞ as |y| → ∞.

Hyperbolic functions

We define the hyperbolic cosine and sine by

cosh z =
1

2

(
ez + e−z

)
and sinh z =

1

2

(
ez − e−z

)
.

These definitions coincide with the real functions when z is real, and are analytic. In

addition their derivatives are as you would expect;

(cosh z)′ = sinh z and (sinh z)′ = cosh z.

We can also define in the obvious way

tanh z =
sinh z

cosh z
, coth z =

cosh z

sinh z
,

We also have from the definitions of the trigonometric and hyperbolic functions the rela-

tionships

cosh iz = , and sinh iz = ,

cos iz = , and sin iz = ,

Note: In real analysis there is no clear connection between exponentials and the trigono-

metric functions. However their complex analogues are clearly interrelated.

Logarithm

The natural logarithm of z = x+ iy is denote by log z or ln z, and is defined as the

inverse of the exponential function. That is to say, the function w = log z is defined by

the relation

ew = z.

Note that since ew is never zero this means that the logarithm is not defined for z = 0.

If we set w = u + iv, and z = reiθ and substitute these into the above expression we

see

eu+iv = eueiv = reiθ.

Comparing the modulus and the argument gives

eu = r, v = θ,

and so

log z = log r + iθ, (r = |z| > 0, θ = arg z).

Note that just as arg z can take many values (all differing my integer multiples

of 2π) so can log z! If we restrict ourselves to the principal value of the argument



only then the logarithm becomes single valued, and is called the principal value of

the logarithm. However with this definition the logarithm has a discontinuity along the

negative real axis (this discontinuity, called a branch cut, cannot be avoided, although

its position can be altered by taking different definitions of the argument). It is, however,

conventional to ensure that the definition used of the argument to make the logarithm

single valued leaves the logarithms of positive real numbers as reals.

Logarithms satisfy the Cauchy-Riemann equations since

u = log r =
1

2
log(x2 + y2), v = arg z = tan−1 y

x
.

Then

ux = = vy = ,

uy = = −vx = .

The derivative of log z is given by

(log z)′ = ux + ivx = ux − iuy =

= = .

General powers of z

General powers of z are defined by

zc = ec log z,

where c is complex and z 6= 0.

Since log z is many-valued then so in general is zc. If we take the principal value of

log z the we will obtain the principal value of zc. If c takes an integer value then zn

is single valued and the definition here matches the normal definition of zn. If c = 1/n

where n = 2, 3, . . . then zc is determined up to multiples of 2πi/n and so we obtain n

distinct roots of z. If, however, c is real irrational or has an imaginary part then zc has

infinitely may values.

E.g., find ii [see Example Sheet]


