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Mathematical Methods: Complex Variables
Analytic functions

Polynomials and rational functions

It is clear from the definition of differentiability that both f(z) = 1 and g(z) = z
are analytic functions. From the rules of differentiation (sums of analytic functions
are analytic, products of analytic functions are analytic, etc.) we can show that all
integer powers of z and hence all polynomials are analytic.

e.g. If zn is analytic, the zn × z = zn+1

is analytic, since the product of two analytic
functions is analytic. Since we know that zn is
analytic for n = 0 and n = 1, by induction zn is
analytic for all integer n > 0.
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Also f(z) = 1/z is analytic for all z 6= 0 [See Examples Sheet] and so, using
similar arguments to the above, we can show that all negative integer powers of z
are also analytic except at z = 0.

We can combine these results to show that rational functions of the form

f(z) =
p(z)
q(z)

,

where p(z) and q(z) are polynomials, are also analytic except at the zeros of q(z)
(assuming that all the common factors of p and q have been canceled) [see
Examples Sheet].
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Exponential function ez

It is possible to define the complex exponential function in terms of a power series,
however we will take a different approach and define the exponential function as

ez = ex(cos y + i sin y).

This definition makes ez a natural extension of the real function ex since if y = 0,
then cos 0 = 1 and sin 0 = 0, and we recover the real exponential function as we
would hope.
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This function satisfies the Cauchy-Riemann equations since

u(x, y) = ex cos y and v(x, y) = ex sin y

Giving
∂u

∂x
= and

∂u

∂y
= ,

and
∂v

∂x
= and

∂v

∂y
= .

Hence
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

It also satisfies the differential equation f ′(z) = f(z), since

f ′(z) = = + i = f(z).
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Further properties:

• The product of exponentials is given by

ez1ez2 = ex1(cos y1 + i sin y1)× ex2(cos y2 + i sin y2)

=

=

= ez1+z2

Hence also ez·e−z = e0 = 1, and so e−z = 1/ez.

This last result tells us that since all values of ez have multiplicative inverses
then ez 6= 0 for all values of z.
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• For the case z = iy we obtain the Euler formula

eiy = cos y + i sin y.

Hence the polar form of z can be written

z = r(cos θ + i sin θ) = .

• Note |ez| = ex. This also has the implication noted above that ez is never zero.

• The function f(z) = ez is periodic with period 2πi. I.e.

ez+2πi = ez ∀z.

This follows from the periodicity of cos and sin.
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• For the case z = iy we obtain the Euler formula

eiy = cos y + i sin y.

Hence the polar form of z can be written

z = r(cos θ + i sin θ) = reiθ .
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Trigonometric functions

Just as we extended the real function ex to ez we would like to extend cosx and
sinx, the real trigonometric functions, into the whole complex plane. From the
Euler formula

eix = cosx+ i sinx

and
e−ix = cosx− i sinx.

Hence we obtain

cosx =
1
2
(
eix + e−ix

)
and

sinx = .
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This would suggest the following definitions for complex z

cos z = ,

sin z = .

The analyticity of ez ensures the analyticity of these two function. Also Euler’s
formula carries over without modification to complex values:

eiz = cos z + i sin z.
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In addition we can define, just as in the real case, the trigonometric functions

tan z =
sin z
cos z

, cot z =
cos z
sin z

,

sec z =
1

cos z
, csc z =

1
sin z

.

It is straight forward to show from (ez)′ = ez that

(cos z)′ = , (sin z)′ = , (tan z)′ = .
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In addition we can define, just as in the real case, the trigonometric functions

tan z =
sin z
cos z

, cot z =
cos z
sin z

,

sec z =
1

cos z
, csc z =

1
sin z

.

It is straight forward to show from (ez)′ = ez that

(cos z)′ = − sin z , (sin z)′ = cos z , (tan z)′ = sec2 z .
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We can rewrite

cos z =
1
2
(
eiz + e−iz

)
=

= .

Similarly
sin z = sinx cosh y + i cosx sinh y.

From this it is clear that both sin z and cos z are periodic with period 2π. Hence
the periodicity of tan z, etc. follows.
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We can rewrite

cos z =
1
2
(
eiz + e−iz

)
=

1
2
[
e−y(cosx+ i sinx) + ey(cosx− i sinx)

]
= .
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sin z = sinx cosh y + i cosx sinh y.
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Note: Although cos2 z + sin2 z = 1 just as for reals, it is no longer the case that
| cos z| is bounded since

| cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y

=

=

= cos2 x+ sinh2 y,

and so the absolute value of cos z tends to ∞ as |y| → ∞.
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Hyperbolic functions

We define the hyperbolic cosine and sine by

cosh z =
1
2
(
ez + e−z

)
and sinh z =

1
2
(
ez − e−z

)
.

These definitions coincide with the real functions when z is real, and are analytic.
In addition their derivatives are as you would expect;

(cosh z)′ = sinh z and (sinh z)′ = cosh z.

We can also define in the obvious way

tanh z =
sinh z
cosh z

, coth z =
cosh z
sinh z

,
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We also have from the definitions of the trigonometric and hyperbolic functions
the relationships

cosh iz = , and sinh iz = ,

cos iz = , and sin iz = .

Note: In real analysis there is no clear connection between exponentials and the
trigonometric functions. However their complex analogues are clearly interrelated.
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Logarithm

The natural logarithm of z = x+ iy is denote by log z or ln z, and is defined as
the inverse of the exponential function. That is to say, the function w = log z is
defined by the relation

ew = z.

Note that since ew is never zero this means that the logarithm is not defined for
z = 0.

If we set w = u+ iv, and z = reiθ and substitute these into the above expression
we see

eu+iv = eueiv = reiθ.

Comparing the modulus and the argument gives

eu = r, v = θ,

and so
log z = log r + iθ, (r = |z| > 0, θ = arg z).
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Note that just as arg z can take many values (all differing my integer
multiples of 2π) so can log z! If we restrict ourselves to the principal value of
the argument only then the logarithm becomes single valued, and is called the
principal value of the logarithm. However with this definition the logarithm has a
discontinuity along the negative real axis (this discontinuity, called a branch cut,
cannot be avoided, although its position can be altered by taking different
definitions of the argument). It is, however, conventional to ensure that the
definition used of the argument to make the logarithm single valued leaves the
logarithms of positive real numbers as reals.
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Logarithms satisfy the Cauchy-Riemann equations since

u = log r =
1
2

log(x2 + y2), v = arg z = tan−1 y

x
.

Then

ux = = vy = ,

uy = = −vx = .
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.
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The derivative of log z is given by

(log z)′ = ux + ivx = ux − iuy =

= = .
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General powers of z

General powers of z are defined by

zc = ec log z,

where c is complex and z 6= 0.

Since log z is many-valued then so in general is zc. If we take the principal value
of log z the we will obtain the principal value of zc. If c takes an integer value
then zn is single valued and the definition here matches the normal definition of
zn. If c = 1/n where n = 2, 3, . . . then zc is determined up to multiples of 2πi/n
and so we obtain n distinct roots of z. If, however, c is real irrational or has an
imaginary part then zc has infinitely may values.

E.g., find ii [see Example Sheet]


