
Mathematical Methods: Complex Variables 4

1. Prove the Fundamental Theorem of Algebra, that a polynomial P (z) = a0 +a1z+
a2z

2 + · · ·+anz
n, where the degree n ≥ 1 and an 6= 0, has at least one root. [Hint:

Assume it has no roots, consider 1/P (z) and apply Liouville’s Theorem.]

Further show that if z1 is a root show that P (z) = (z − z1)Q(z) where Q(z) is a
polynomial of degree n−1. Hence show that P (z) = an(z−z1)(z−z2) . . . (z−zn)
and so has n roots. [Hint: Consider P (z) = P (z)− P (z1)]

2. (a) Let α be an isolated singularity of the analytic function f . Define the state-
ments:

i. α is a removable singularity,

ii. α is a pole,

iii. α is an essential singularity.

(b) Assume that α is also an isolated singularity of 1/f(z). In each of the above
cases describe the nature of the singularity of 1/f(z) at α with proof.

(c) Find the singularities of the function

f(z) =
e1/z(z − π)

sin z

and the nature of each singularity.

3. Show that the sequence an =
√
n+ 1 −

√
n converges, but that the series

∑
an

diverges.

4. Which of the following series converge, giving your reasons
∞∑
n=0

n+ 2

3n+ 2i
(a)

∞∑
n=0

n
(

1 + i

2

)n
(b)

∞∑
n=1

n2n

n!
(c)

∞∑
n=1

in

n

[
You may not find
this one obvious

]
(d)

5. In lectures we gave the method for finding the radius of convergence of the power
series

∑∞
0 an(z−z0)n by looking at the limit of |an+1/an| as n→∞. This method

was based on the ratio test. Another method is based on the root test:

Show that if limn→∞
n

√
|an| = L then the power series has a radius of convergence

of R = 1/L.

This approach has the advantage that it can be used to provide the radius of con-
vergence for “badly behaved” series.

If we consider the sequence { n

√
|an|} then if it remains bounded it will have some

limit points (see first handout), i.e. points in neighbourhoods of which there are
an infinite number of points of the sequence. If L∗ is the greatest such limit point



then show that the radius of convergence of the power series is R = 1/L∗. (Don’t
spend too much time on this if you can’t see how it is done.)

Consider the power series
∞∑
n=0

[
1 + (−1)n +

1

2n

]
zn = 3 + 2−1z + (2 + 2−2)z2 + 2−3z3 + (2 + 2−4)z4 + · · ·

Find the limits of n

√
|an| for even n and for odd n as n → ∞. Which of these is

the larger? What is the radius of convergence of the series.

When applying the above and the root test you may find it useful to know that
for large n, n! ≈

√
2πnnne−n (Stirling’s formula), and so n

√
n! ≈ n/e (I do not

expect you to remember this!)

6. Find the Taylor series for (a) log(z + 1), (b) 1/(z + 1) and (c) −1/(z + 1)2 about
z = 0. Verify that you can obtain series (a) by term-by-term integration of series
(b), and series (c) by term-by-term differentiation of series (b).

7. Find the Taylor series for the following functions about the centres z0, giving the
radii of convergence

1

1 + z
, z0 = 1(a)

1

1 + z2
, z0 = 1(b)

sin πz2, z0 = 2(c) ln 2z, z0 = 2(d)

8. Find the coefficients of the Laurent series for 1/(1− z) about the centre z = −1
using the integral formulæ for the coefficients an and bn, showing clearly the
different regions of validity for the different series.

9. Find all the Laurent series for the following functions about the given centres z0

1

z − 3
, z0 = 0(a)

1

z(z − 1)(z − 2)
, z0 = 0(b)

10. Find all the singularities and calculate the corresponding residues for the follow-
ing:

2

2− z
(a)

ez

(z2 − 1)2
(b)

cos z

z5
(c) π tanπz(d)

11. Evaluate the integrals∫ 2π

0

1 + sin θ

2 + cos θ
dθ(a)

∫ 2π

0

cos 3θ

5 + 4 cos θ
dθ(b)

12. Evaluate the integrals∫ ∞
0

1 + x2

1 + x4
dx(a)

∫ ∞
0

dx

(1 + x2)2
(b)

∫ ∞
−∞

dx

(x2 + 1)(x2 + 4)
dx(c)

∫ ∞
−∞

x3

1 + x6
dx [Think first!](d)


