MATHEMATICAL METHODS: COMPLEX VARIABLES 5
COURSEWORK QUESTIONS. TO BE HANDED IN MONDAY, 25 APRIL

1. Investigate the convergence or divergence of the following series and power series:
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2. Find the Taylor series for the following functions about the given centres, zy:
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3. Find the Laurent series for the following functions about the given centres, zy:
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4. Find all the singularities and the corresponding residues of the following functions:
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5. Evaluate the integrals using contour integration techniques
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6. Evaluate the integrals using contour integration techniques
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7. Evaluate the following integrals:
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[Hint: Consider cos ax to be the real part of €?**, then choose as your contour of
integration the semicircle radius R in the upper-half plane (why?) centred on 0
with its base running along the real axis as shown.]
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[Hint: Remember sinz is the imaginary part of ¢ when z lies on the real axis.
Use the contour from the previous integral, but with a small semicircular detour

of radius r around the origin as shown.]

. The function f(t) is a solution to the initial value problem
fr=Af +3f =2t +1, f(0)=0, f(0)=1.

Find the Laplace transform F'(s) of f(¢).

Using the inverse Laplace transform

£6) = = A T st p(s) ds
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find the solution f(¢). What are the restrictions on the value of v that you can
choose? Verify that your solution satisfies the original differential equation and

the initial conditions.



