
Mathematical Methods: Complex Variables 5

Coursework Questions. To be handed in Monday, 25 April

1. Investigate the convergence or divergence of the following series and power series:
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2. Find the Taylor series for the following functions about the given centres, z0:
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3. Find the Laurent series for the following functions about the given centres, z0:
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4. Find all the singularities and the corresponding residues of the following functions:
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5. Evaluate the integrals using contour integration techniques∫ 2π
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6. Evaluate the integrals using contour integration techniques∫ ∞
0

dx

1 + 4x2
(a)

∫ ∞
−∞

1 + 2x2

x4 + 10x2 + 9
dx(b)

7. Evaluate the following integrals:∫ ∞
−∞

cos ax

b2 + x2
dx(a)

[Hint: Consider cos ax to be the real part of eiaz, then choose as your contour of

integration the semicircle radius R in the upper-half plane (why?) centred on 0

with its base running along the real axis as shown.]∫ ∞
0

sin x

x
dx(b)



[Hint: Remember sinx is the imaginary part of eiz when z lies on the real axis.

Use the contour from the previous integral, but with a small semicircular detour

of radius r around the origin as shown.]

8. The function f(t) is a solution to the initial value problem

f ′′ − 4f ′ + 3f = 2t+ 1, f(0) = 0, f ′(0) = 1.

Find the Laplace transform F (s) of f(t).

Using the inverse Laplace transform
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find the solution f(t). What are the restrictions on the value of γ that you can

choose? Verify that your solution satisfies the original differential equation and

the initial conditions.


