MATHEMATICAL METHODS: COMPLEX VARIABLES 5 COURSEWORK QUESTIONS. TO BE HANDED IN MONDAY, 25 APRIL

1. Investigate the convergence or divergence of the following series and power series:

(a)
$$\sum_{n=1}^{\infty} \frac{n+i}{2n-3}$$
 (b) $\sum_{n=1}^{\infty} \frac{(2i)^n n!}{n^n}$
(c) $\sum_{n=0}^{\infty} \frac{(z+2i)^{2n}}{3^n}$ (d) $\sum_{n=1}^{\infty} \frac{n!}{n^2} (z-i)^n$

2. Find the Taylor series for the following functions about the given centres, z_0 :

(a) $\sin \pi z$, $z_0 = \frac{1}{2}$ (b) $\frac{e^z}{z-1}$, $z_0 = 1$

3. Find the Laurent series for the following functions about the given centres, z_0 :

(a)
$$\frac{2}{1-z^2}$$
, $z_0 = 1$ (b) $\frac{e^z}{z-1}$, $z_0 = 1$

4. Find *all* the singularities and the corresponding residues of the following functions:

(a)
$$\frac{z^2 + 1}{z^2 - z}$$
 (b) $\frac{e^z}{(z+1)^5}$
(c) $\frac{z^6 - 1}{z^3(z+2)(z+\frac{1}{2})}$ (d) $\pi \cot \pi z$

5. Evaluate the integrals using contour integration techniques

(a)
$$\int_0^{2\pi} \frac{\sin\theta}{3+\cos\theta} d\theta$$
 (b) $\int_0^{2\pi} \frac{\sin 3\theta}{5+4\cos\theta} d\theta$

6. Evaluate the integrals using contour integration techniques

(a)
$$\int_0^\infty \frac{dx}{1+4x^2}$$
 (b) $\int_{-\infty}^\infty \frac{1+2x^2}{x^4+10x^2+9} dx$

7. Evaluate the following integrals:

(a)
$$\int_{-\infty}^{\infty} \frac{\cos ax}{b^2 + x^2} dx$$

[Hint: Consider $\cos ax$ to be the real part of e^{iaz} , then choose as your contour of integration the semicircle radius R in the upper-half plane (why?) centred on 0 with its base running along the real axis as shown.]

(b)
$$\int_0^\infty \frac{\sin x}{x} dx$$

[Hint: Remember $\sin x$ is the imaginary part of e^{iz} when z lies on the real axis. Use the contour from the previous integral, but with a small semicircular detour of radius r around the origin as shown.]

8. The function f(t) is a solution to the initial value problem

$$f'' - 4f' + 3f = 2t + 1,$$
 $f(0) = 0,$ $f'(0) = 1.$

Find the Laplace transform F(s) of f(t).

Using the inverse Laplace transform

$$f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{st} F(s) \, ds$$

find the solution f(t). What are the restrictions on the value of γ that you can choose? Verify that your solution satisfies the original differential equation and the initial conditions.