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Dynamical Systems The Lorenz Attractor
Earth’s magnetic field

Dynamical Systems

Dynamical systems theory has had a significant impact on applied
mathematics and models.

We will briefly look at two dynamical systems:
» Thermal convection — Lorenz system

» Earth’s magnetic field — Rikitake model
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Earth’s magnetic field

The Lorenz Attractor

Usually with 0 = 10 or 7, = 8/3 and with p varied.
Where did this come from?
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Earth’s magnetic field

Lorenz was originally studying a model of convection in the
atmosphere.
» He observed irregular behaviour — chaos.

» When he tried to reproduce the results by re-entering numbers
from a previous run he got behaviour that diverged —
sensitivity on initial conditions.
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Earth’s magnetic field

Convection in a layer of fluid

)’=DTL Ty
y=0 ; To+AT
0 1
A +u-Vu=—-—Vp+gaTy+vViu
ot Po
V-u=0
T
or +u-VT =ksV2T
ot

Here we make the Boussinesq approximation — density variations
neglected except in the buoyancy term.

Density given by
p=po(l —a(T — To))
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Earth’s magnetic field

The boundary conditions are

T=Tp, v=0 on y=D
T=Tg+AT, v=0 on y=0

In reality we should have no-slip boundary conditions u = 0 on
y =0 and y = D, but often stress-free boundary conditions are
used, which makes analysis easier (as we will do here).
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Earth’s magnetic field

Dimensional quantities

v 2T ke~ 2T g~ LT2
po ~ ML™3, AT ~ 0, a~607t D~ L.

Seven quantities involving in 4 basic quantities, so would have 3
non-dimensional equations. But observe that g only appears
multiplied by o we have another restriction that reduces things to
two quantities.
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Earth’s magnetic field

Non-dimensionalising the equations using scalings length ~ D,
time~ D?/k, temperature~ AT, speed~ /D,
pressure~ pokv/D?, we obtain

1
— [&J—I-U-Vu] = —Vp+RaTy + V?u

o | Ot

V-u=0

oT

— +u-VT =V2T

ot

where 3
ATD
Ra=£92"2 o="2

UK
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Earth’s magnetic field

These have the simple solution
u=0, T=1-y

— the conduction solution.
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Earth’s magnetic field

Instabilities

When the temperature difference is small this is the solution that is
observed. When sufficiently large convection starts — the fluid
starts moving.
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A classic experiment, and much reproduced photograph by

Koschmieder (1974) — but not really the problem under
consideration.
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It can be shown that between parallel plates the onset is usually in

the form of parallel convection rolls.
Look at a 2-dimensional version perpendicular to the roll axes.
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Earth’s magnetic field

If we use a streamfunction v such that

Oy’ Oy

and if we take T to be the deviation from the conduction solution
then the governing equations become (after taking the curl of the
momentum equation)

1 [oV?
LIV ) V2 — V20, | = Ra T, — v
o ot

oT

ot +wyTx_¢xTy+wx:V2T
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Earth’s magnetic field

Linear stability

Firstly we will look at the linear stability — we neglect the
nonlinear terms.
We can look for solutions of the form

¥ = (y)sin ax et T = T(y)cosax e,

If we use realistic boundary conditions we end up with an
eigenvalue problem involving a 4t"-order ODE for 1(y) and a
2"d_order ODE for T(y).
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Earth’s magnetic field

If we use stress-free boundary conditions we find both v and T
have a y-dependency of sinnmy, forn=1,2,...

The eigenvalue problem then becomes

[2 + (o + n27r2)] [)\ + (o + nzwz)] (@® + n*71?) = o’Ra.
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Earth’s magnetic field

If we use stress-free boundary conditions we find both v and T
have a y-dependency of sinnmy, forn=1,2,...

The eigenvalue problem then becomes
A
[ + (o® + n27r2)] [\ + (o + n*7?)] (@® + n*7?) = o’Ra.
o

For steady onset of convection (as opposed to oscillatory onset)
A =0 and
B (a2 + n27r2)3

Ra >

(0}
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Earth’s magnetic field

If we use stress-free boundary conditions we find both v and T
have a y-dependency of sinnmy, forn=1,2,...

The eigenvalue problem then becomes
A
[ + (o® + n27r2)] [\ + (o + n*7?)] (@® + n*7?) = o’Ra.
o

For steady onset of convection (as opposed to oscillatory onset)

A =0 and
B (a2+ n27r2)3

Ra >

(0}

This has a minimum when n=1, o« = 7r/\/§ and

277t

Ra 2
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Note:

> It can be shown by the use of Energy stability analysis that
any nonlinear disturbance will decay for values of Ra less than
the critical value found here (D.D. Joseph, 1965).
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Earth’s magnetic field

Note:

> It can be shown by the use of Energy stability analysis that
any nonlinear disturbance will decay for values of Ra less than
the critical value found here (D.D. Joseph, 1965).

» The original experiments had a free surface, and variations in
the temperature at the surface lead to variations in the
surface tension which drives the flows — Bénard-Marangoni
convection.
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Earth’s magnetic field

Weakly nonlinear analysis

We will not go into the details here. We look for solutions near
marginal stability where we expect solutions to be small. We pose
expansions
P = etho + €y + Sy + -+
T=eTo+ETi+ETo+ -
2774

Ra = T—l—eRal—i-e Ras + - -

We find Ra; =0 and Ra, > 0
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Earth’s magnetic field

Amplitude

: . . Ra ——=
In this analysis you find ¢y = 0 and T3  sin2my.
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Earth’s magnetic field

Dynamical Systems

Amplitude

: . . ) Ra ——=
In this analysis you find ¢y = 0 and T3  sin2my.
Convection tends to make interior of the fluid more evenly mixed,
thus reducing the effective temperature gradient and the effective

Rayleigh number.
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Earth’s magnetic field

Time dependent problem

You can look for the time variation of these problems to find out
how the system evolves in these situations. A simple way of
looking at this is assume

1 = a(t)sinaxsinmy,

T = b(t) cosaxsinmy + c(t)sin2my.

These are substituted into the governing equations. Where the
nonlinear terms generate other terms of a different spatial form
they are neglected.
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Earth’s magnetic field

This yields a set of equations

da V2Ra 372
— =0 b——a
dt 37 2
db_ a3, 7.
da 2 2 V2
dc 72
— = ——ab—4n’c
dt 2,2

where we use o = 7//2.
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Earth’s magnetic field

With some rescaling of t and the variables this reduces to the
Lorenz equations

d

d—i:a[b—a]
db

E:ra—b—ac
dc 8
o ap— =
a0 3¢

where r = Ra/(277%/4).
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Earth’s magnetic field

These equations are a rational model for the behaviour of
convection for small amplitudes, i.e., for r just over 1.

However when you put in large values such as r = 28 you get more
interesting behaviour....
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Stereogram — cross your eyes for a 3-D image
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r=28
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Earth’s magnetic field

Very pretty, but not a lot to do with thermal convection. But it
didn't stop people trying to investigate possible links between the
chaos found in the Lorenz attractor and real convection.
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Earth’s magnetic field

The same approach can be used to look at a reduced model for the
double-diffusive convection problem where a salinity gradient is
also applied across the fluid layer.

-

y=0 T0+AT So+AS

y=D Ty So
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Earth’s magnetic field

Da Costa, Knobloch & Weiss (1981) assumed the same form for
the temperature and salinity perturbation, and derived a 5™"-order
set of equations:

% =o(—a+rrb—rsd)
% =—-b+a(l—rc)
% = w(—c+ ab)
%:—Td—i-a(l—e)
% = w(—7e + ad)

With d and e removed these are equivalent to the Lorenz
equations previously seen.
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Here chaos was found for relatively small amplitude solutions, but
again reality got in the way. The initial instability was oscillatory.
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Earth’s magnetic field

Here chaos was found for relatively small amplitude solutions, but
again reality got in the way. The initial instability was oscillatory.

But
1
COs ax coswt = 3 (cos(ax — wt) + cos(ax + wt))

A standing wave is the sum of a right and left travelling wave.
Bretherton (1983) showed that if you do the weakly nonlinear
analysis to a higher order and allowed the left and right travelling
waves to have their separate amplitudes, then one wave would
grow and the other decay. No standing oscillatory solution will be
observed and instead only travelling waves will be seen (without
the rich structure of chaos).
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Earth’'s magnetic field

The previous problem had a sound theoretical background, but was
sometimes pushed a bit too far.

Here we will briefly look at an idealized model of a vastly more
complicated problem — the generation of the Earth's magnetic
field.
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Earth’s magnetic field

» The Earth's core is too hot for it to be a permanent magnet.

» The convection in the molten metallic core can generate
magnetic fields spontaneously...

> ... but it needs rotation etc.

» There has to be a strong toroidal element to the mean field in
the core (which we will not see on the surface), and a poloidal
part that comes of surface.

The convection generates the poloidal field from then toroidal
field, and the toroidal field from poloidal field.
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Earth’s magnetic field

> 400 times in the last 330,000,000 years the polarity of the
Earth’s magnetic field has reversed.

PALEDGENE NEDGENE
= 2 = B =
f f f f 1 T Age (Ma)
[ ] Polarity
CRETACEQUS PALEOGENE
_ T | |
= H " o -..4 o
T T T T T T Age (Ma)

IS BN W BRAEE 1§ oo

JURASSIC CRETACEQUS
- - - - - -
@ n 5 w =] =
= = = = = =)
| L | | | |

Age (Ma)

I N W TR Y (W RTANTITE U S -icrty

pasiEnal 0
|Euwou |

From “Fundamentals of Geophysics”, by William Lowrie (1997)
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Earth’s magnetic field

Rikitake (1958) proposed a model:

:l—_—/:?
1§
o Lley W )
| .
& %
(a) (b)

From “Magnetic field generation in electrically conducting fluids”, by H.K. Moffatt
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Earth’s magnetic field

Equations for current:

dl LI >Q s {0))
1
— 4+ Rl = MQ !
at + Rh 12 C
L— 4+ Rl = M5! 2
r + Rl 201 2

where L is the self-inductance 2w M is the mutual inductance
between the circuits, and R the resistance.
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Earth’s magnetic field

Equations for angular momentum:

dQ el Ao \_)QZ
CZ LRI =G — M

p + Rlh 112

dQ
cd—tz+R/1= G — Mkl I

where C is the moment of inertial for each disc.
— Ml I, represents the effect of the Lorentz force on the disc, and
M1, the voltage generated by the dynamo effect.
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These can be non-dimesionalised to give

dX
P X =27y
g TH

dy

Ly = 7X
g TH
dZ  dv
@ _9Y 1 _xy
dr  dt

Clearly
Z—V =const. = A
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Earth’s magnetic field

Steady state solutions exist where K is a constant such that
A= p(K? = K?)
then
X=4K, Y==K Z=pK? V=uK?

It can be shown (using a bit more than a linear analysis of the
steady solution ) that for K > 1 there is instability.
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uw=1 K=2
Stereogram — cross your eyes for a 3-D image
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Earth’s magnetic field

This model show the magnetic fields oscillating around +2, with
occasional flips between these values.
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Earth’s magnetic field

Not a very realistic model, but it does show that spontaneous field
reversal in a system that generates its own magnetic field is
possible.
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From Guinness to Rocks

The last model | will look at shows how very different fields can

have a direct influence on each other.

T e rer _— flow-top breccia
2 — flow-top vesicular

® zone

0g.c

>——domed vesicle

internal vesicular
zone

. «——isolated vesicle

micro-vesicular
laminae

= flow-bottom breccia

ain E e Bl en o e

From Manga (1996)
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From Guinness to Rocks

MANGA: WAVES OF BUBBLES IN MAGMATIC SYSTEMS 17,459

Figure 2. Bubbles in a glass of Guinness beer a few seconds a.fter the b==r was poured. The

bubbles are initially homogeneously distributed. Horizontal an ting layers of
bubbles develop. Secondary Rayleigh-Taylor instabilities form from the layers

From Manga (1996)
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks e

Flow past a bubble/droplet

Suppose we have two immiscible fluids with densities p; and p for
the densities of fluids inside and outside. Let their viscosities be
and po respectively.
(picture)
If the bubble/droplet is small, how fast will it rise/fall?
Small size and speed of bubbles implies Re < 1, so we have
Stokes's flow with

0=—Vp+uVu

V-u=0
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From Guinness to Rocks . V&

As the bubble/droplet is small surface tension will ensure it is
almost exactly spherical (what shape is a rain drop?)

We require the tangential stresses to be continuous across the
boundary, and no flow across the boundary.

Pressure can be discontinuous across the boundary with
adjustments being made by small deviations from the
bubble/droplet being spherical.
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From Guinness to Rocks

Following Batchelor (1967): Assume the droplet/bubble
instantaneously has its centre at the origin, and velocity U.
Because the problem is linear the pressure must be linearly
dependent on U, and since the operators in the equations are
independent of coordinate system the pressure deviation must be
of the form

p/ii=(U-x) x5 x F ()

where a is the radius of the droplet/bubble.
Since V2p = 0 the pressure will be of the form

CGU- X+DU «

p/pi =

Dr Oliver Kerr for the London Taught Course Centre Models 5



Porous media — Carman-Kozeny equation

From Guinness to Rocks

Clearly outside the droplet/bubble D; will be zero (decays to co)
and inside C; will be zero (no singularity at the origin).

We can also use a stream function 1, and use a spherical polar
coordinate system with the axis given by 8 = 0 pointing in the
direction of U. Then

Y = Usin® 0 f(r)
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Outside the droplet/bubble

P 2k G
dr? 2

and inside
d*f  2fi  Dyr?

a2 2~ 2

Boundary conditions
> fo/r> = 0as r — oo.
» U-x=0on r = a requires fj(a) = a%/2.
» No singularity at the origin.
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From Guinness to Rocks

These give

Cor a3 C,a?\ 1
fo=—24 (2 - -
) +<2 2 )

D,r* 1 Da?
"= +<_ I >r2

2 20

Continuity of stress and velocity give

c _a 20+ 3 D — 5 o
0*5 ’ I— " "o .
Mo"‘,ul a MO+:UfI
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From Guinness to Rocks

By calculating the resultant force exerted on the droplet/bubble
and balancing it with gravity enables one to calculate the speed of
fall /rise of the droplet/bubble. This speed is given by

V:_lm(m_1>m+m
3 o Po /Jo‘f‘%/ll
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From Guinness to Rocks

Limiting cases

1. Droplet/bubble very low viscosity: p;/po — 0

y_ _L12%pog (m _1>
3 o Po
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Porous media — Carman-Kozeny equation

From Guinness to Rocks

Limiting cases

1. Droplet/bubble very low viscosity: p;/po — 0

y_ _L12%pog (m _1>
3 o Po

2. Sphere rigid: p;/po — 00

9 po \po
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Porous media — Carman-Kozeny equation

From Guinness to Rocks

Limiting cases
1. Droplet/bubble very low viscosity: p;/po — 0

y_ _L12%pog (m _1>
3 o Po

2. Sphere rigid: p;/po — 00

9 po \po

3. Bubble: p;/po — 0

v 1 2°pog po+
3 o Mo+%ﬂ1
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From Guinness to Rocks

Or combining...
» Rigid bubble (y; — oo, p;r — 0):

v _ 2308
9 Mo

» Inviscid bubble (x; — 0, py — 0):

1 2
V== a“pof
3 Mo
For air rising in water we have yio ~ 10~3kgm™!s and

iy =~ 1.8 x 10~°kgm~'s, So which approximation should we take?
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From Guinness to Rocks

Despite having j;/po < 1 it is often appropriate to take the rigid
limit!
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Porous media — Carman-Kozeny equation

From Guinness to Rocks

Despite having j;/po < 1 it is often appropriate to take the rigid
limit!

Surfactants — molecules that accumulate at the interface between
the fluids — although low in overall concentration can have a
significant impact on the dynamics of the surface, and can
effectively stop it flowing.

For Guinness probably rigid spheres, for basaltic magmas probably
inviscid bubble.
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From Guinness to Rocks

The above law assumes fluid is at rest at co and sphere is isolated.
But as the bubbles go up in Guinness the surrounding fluid must
go down. If the bubble velocities are v, and the liquid velocity is u
then

2 a%pog

=9

But this will only be true for dilute bubble suspensions, where
bubble-bubble interactions are negligible. However, for the moment
we will just assume it holds for general ¢.

V—u
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From Guinness to Rocks

If the proportion of the bubbly liquid occupied by the bubbles is ¢,
then since there is no net up or down flow at any point

v+ (1—¢)u=0

or
v 14

V—u=v-+ =

l-¢ 1-9¢

Then the flux of gas upwards is

P(1 — ¢)32Pog

2
Q(¢) =¢v = 9 1o

Dr Oliver Kerr for the London Taught Course Centre Models 5



Porous media — Carman-Kozeny equation

From Guinness to Rocks

Conservation of bubble volume gives

dp 0Q 8¢>
E‘f‘@ +Q(¢)

From this we see ¢ is constant on characteristics given by

dz ,
% _ Q)

Since @ is non-negative and is zero at ¢ = 0 and ¢ = 1 it must
have a negative gradient for large enough ¢, and so the
characteristics point down. Waves in the bubble density will travel
downwards.
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From Guinness to Rocks

However, for bigger values of ¢ this model is not valid. Flow is
more like fluid passing through a porous medium — clearly the
case in the head on top.
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Porous media — Carman-Kozeny equation

Here we will look at how to model flow through a porous medium.
Assume that the flow inside is low Reynolds number Stokes flow.
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From Guinness to Rocks ¥ eq

The Kozeny model

D

L
Take a block of material of length L and cross-sectional area A.
Assume parallel circular tubes of diameter D, with total area of the
passages A’. The fraction of the volume occupied by the fluid is

€ =

A/
A
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From Guinness to Rocks ¥ eq

If the flow through the block is @, then we can define a flow speed
U=Q/A

Note: This is not the same as the fluid speed, or even the average
fluid speed.
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From Guinness to Rocks ¥ eq

If there is a pressure drop across the block of Ap, then we can find
the flow in each tube. If x is the distance along a tube, and r is
the distance from its axis then for steady parallel flow we have

3p_ 2 16 3u
ax VSR gy <a>

With the boundary condition u =0 on r = D/2, this gives

_op ((D/2)% - r?)
Ox 4u

and a flow down each tube of

__9p 7 (D"
9= “oxsu \ 2
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From Guinness to Rocks ¥ eq

The number of tubes is

A/
wD?/4
so the total flow is
op A'D?
=UA= ——F ——
Q Ox 32u

Or the pressure gradient is given by

dp  RpAU  32uU
ox  AD?2 D2
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From Guinness to Rocks ¥ eq

The Carman model
In the average porous medium the passages along which the fluid
flows are not parallel tubes. This has a couple of effects
» If [’ is the “average length” of the passages then the flow
down each tube would be reduced by a factor L/L'.
op  32uul’
dx  LeD?
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From Guinness to Rocks ¥ eq

The total volume is @, the volume of the tubes is Q’, and the
volume of the solid is Qs, then

QA =cQ, Q=(1-6Q.

_ €Qs
1—c¢

Q/
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

If we have n tubes, then the surface area of the tubes is
S = nrxDl’

Volume of tubes is
o — ntD?L’
4
So

o 4€Qs
b= S(1—¢)
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

Now assume we have m spherical particles of diameter d. Then

3
Qs:n'"%7 5:m7rd2
So
Q _d
S 6
and 26d
D=_—""—
3(1—¢)

Assume that we can use this, and

op _ 12pUL'(1 — €)?
ox Le3d?
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From Guinness to Rocks ¥ eq

Of course there is no clear definition of L'/L, so people rely on
experiments, and it turns out the equation works if L'/L & 2.5, so

dp  180uU(1 - ¢)?
ox €3d?

(and so L'/L becomes exactly 23!)
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From Guinness to Rocks ¥ eq

Note: Here the fluid volume fraction is €. For comparison with
previous results for bubbles and thinking of the fluid filtering
through the foam we would have e =1 — ¢.
Also, for vertical flows with z measuring upwards, the pressure
gradient term is replaced by

op

g*‘ﬂg

With the pressure gradient given by the hydrostatic pressure

op
5, = (1—9)rg
and so )
_ 180pUe
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

The average velocity of the fluid is U’ = U/e = U/(1 — ¢), and if
the average velocity of the bubbles is V', then

oV +(1—¢)U =0

So

v (1=9)U _ (1-9¢)'dp

¢ 180u¢3

The 1/180 factor is significantly smaller than either 1/3 or 2/9,
indicating that the bubble speed will drop significantly more than
our first estimate for higher bubble densities.
This means that we will get downward characteristics for lower ¢
too.
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

Maybe a hand-waving argument would have been better

° o

°°o ©°0° °  Bubbles rise slowly

o Bubbles rise quickly

o ° Bubbles rise slowly

°
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

Maybe a hand-waving argument would have been better

o ° o Bubbles rise slowly

o Bubbles rise quickly

0%0 % © ° o : ° Bubbles rise slowly

o oo R
o

» Bubbles close together rise slowly.
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

Maybe a hand-waving argument would have been better

o ° o Bubbles rise slowly

o Bubbles rise quickly

0 0 o 0 o
° o

° Bubbles rise slowly

oo o o

o oo R
o

» Bubbles close together rise slowly.

» Bubbles far apart rise quickly.
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

Maybe a hand-waving argument would have been better

o ° o Bubbles rise slowly

o Bubbles rise quickly

0%0 % © ° o : ° Bubbles rise slowly

o oo R
o

v

Bubbles close together rise slowly.

v

Bubbles far apart rise quickly.

v

Bubbles in gap catch up with bubble layers, and join on the
bottom.

v

Bubbles on top of the bubble layers can escape.
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

Maybe a hand-waving argument would have been better

° " 7 , Bubbles rise slowly

o Bubbles rise quickly

0 0 o 0 o
° o

° Bubbles rise slowly

oo o o

» Bubbles close together rise slowly.
» Bubbles far apart rise quickly.

» Bubbles in gap catch up with bubble layers, and join on the
bottom.

» Bubbles on top of the bubble layers can escape.

» Top of layer erodes, and bottom is replenished — layer moves
down.
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

There are other theories...
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ness to Rocks

> Glasses have sloping walls.
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> Glasses have sloping walls.

» Bubbles rise up, leaving
bubble free region near
wall.
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From Guinness to Rocks ¥ eq

> Glasses have sloping walls.

» Bubbles rise up, leaving
bubble free region near
wall.

» Bubble free region is
denser and sinks.
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq

> Glasses have sloping walls.

» Bubbles rise up, leaving
bubble free region near
wall.

» Bubble free region is
denser and sinks.

> Instabilities at the edge of
the bubble region will look
like they are going down.

Which is correct?
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. Porous media — Carman-Kozeny equation
From Guinness to Rocks ¥ eq
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