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Dynamical Systems

Dynamical systems theory has had a significant impact on applied
mathematics and models.

We will briefly look at two dynamical systems:

I Thermal convection — Lorenz system

I Earth’s magnetic field — Rikitake model
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The Lorenz Attractor

dx

dt
= σ(y − x)

dy

dt
= ρx − xz − y

dz

dt
= xy − βz

Usually with σ = 10 or 7, β = 8/3 and with ρ varied.
Where did this come from?
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Lorenz was originally studying a model of convection in the
atmosphere.

I He observed irregular behaviour — chaos.

I When he tried to reproduce the results by re-entering numbers
from a previous run he got behaviour that diverged —
sensitivity on initial conditions.

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

The Lorenz Attractor
Earth’s magnetic field

Convection in a layer of fluid

y
x

T

T0

0 + ∆ T

y=D

y=0

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p + gαT ŷ + ν∇2u

∇ · u = 0

∂T

∂t
+ u · ∇T = κ∇2T

Here we make the Boussinesq approximation — density variations
neglected except in the buoyancy term.
Density given by

ρ = ρ0(1− α(T − T0))
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The boundary conditions are

T = T0, v = 0 on y = D

T = T0 + ∆T , v = 0 on y = 0

In reality we should have no-slip boundary conditions u = 0 on
y = 0 and y = D, but often stress-free boundary conditions are
used, which makes analysis easier (as we will do here).
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Dimensional quantities

ν ∼ L2T−1, κ ∼ L2T−1, g ∼ LT−2,

ρ0 ∼ ML−3, ∆T ∼ θ, α ∼ θ−1, D ∼ L.

Seven quantities involving in 4 basic quantities, so would have 3
non-dimensional equations. But observe that g only appears
multiplied by α we have another restriction that reduces things to
two quantities.
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Non-dimensionalising the equations using scalings length ∼ D,
time∼ D2/κ, temperature∼ ∆T , speed∼ κ/D,
pressure∼ ρ0κν/D2, we obtain

1

σ

[
∂u

∂t
+ u · ∇u

]
= −∇p + RaT ŷ +∇2u

∇ · u = 0

∂T

∂t
+ u · ∇T = ∇2T

where

Ra =
gα∆TD3

νκ
σ =

ν

κ
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These have the simple solution

u = 0, T = 1− y

— the conduction solution.
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Instabilities

When the temperature difference is small this is the solution that is
observed. When sufficiently large convection starts — the fluid
starts moving.
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A classic experiment, and much reproduced photograph by
Koschmieder (1974) — but not really the problem under
consideration.
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It can be shown that between parallel plates the onset is usually in
the form of parallel convection rolls.
Look at a 2-dimensional version perpendicular to the roll axes.
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If we use a streamfunction ψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂y

and if we take T to be the deviation from the conduction solution
then the governing equations become (after taking the curl of the
momentum equation)

1

σ

[
∂∇2ψ

∂t
+ ψy∇2ψx − ψx∇2ψy

]
= RaTx −∇4ψ

∂T

∂t
+ ψyTx − ψxTy + ψx = ∇2T
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Linear stability

Firstly we will look at the linear stability — we neglect the
nonlinear terms.
We can look for solutions of the form

ψ = ψ(y) sinαx eλt , T = T (y) cosαx eλt .

If we use realistic boundary conditions we end up with an
eigenvalue problem involving a 4th-order ODE for ψ(y) and a
2nd-order ODE for T (y).
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If we use stress-free boundary conditions we find both ψ and T
have a y -dependency of sin nπy , for n = 1, 2, . . .

The eigenvalue problem then becomes[
λ

σ
+ (α2 + n2π2)

] [
λ+ (α2 + n2π2)

]
(α2 + n2π2) = α2Ra.

For steady onset of convection (as opposed to oscillatory onset)
λ = 0 and

Ra =
(α2 + n2π2)3

α2

This has a minimum when n = 1, α = π/
√

2 and

Ra =
27π4

4
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Note:

I It can be shown by the use of Energy stability analysis that
any nonlinear disturbance will decay for values of Ra less than
the critical value found here (D. D. Joseph, 1965).

I The original experiments had a free surface, and variations in
the temperature at the surface lead to variations in the
surface tension which drives the flows — Bénard-Marangoni
convection.
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Weakly nonlinear analysis

We will not go into the details here. We look for solutions near
marginal stability where we expect solutions to be small. We pose
expansions

ψ = εψ0 + ε2ψ1 + ε3ψ2 + · · ·

T = εT0 + ε2T1 + ε3T2 + · · ·

Ra =
27π4

4
+ εRa1 + ε2Ra2 + · · ·

We find Ra1 = 0 and Ra2 > 0
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Ra
Ra

Amplitude

c

In this analysis you find ψ1 = 0 and T1 ∝ sin 2πy .

Convection tends to make interior of the fluid more evenly mixed,
thus reducing the effective temperature gradient and the effective
Rayleigh number.
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Time dependent problem

You can look for the time variation of these problems to find out
how the system evolves in these situations. A simple way of
looking at this is assume

ψ = a(t) sinαx sinπy ,

T = b(t) cosαx sinπy + c(t) sin 2πy .

These are substituted into the governing equations. Where the
nonlinear terms generate other terms of a different spatial form
they are neglected.
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This yields a set of equations

da

dt
= σ

[√
2Ra

3π
b − 3π2

2
a

]

db

dt
=

π√
2
a− 3π2

2
b − π2√

2
ac

dc

dt
=

π2

2
√

2
ab − 4π2c

where we use α = π/
√

2.
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With some rescaling of t and the variables this reduces to the
Lorenz equations

da

dt
= σ [b − a]

db

dt
= ra− b − ac

dc

dt
= ab − 8

3
c

where r = Ra/(27π4/4).
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These equations are a rational model for the behaviour of
convection for small amplitudes, i.e., for r just over 1.

However when you put in large values such as r = 28 you get more
interesting behaviour....
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Stereogram — cross your eyes for a 3-D image
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r = 28
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Very pretty, but not a lot to do with thermal convection. But it
didn’t stop people trying to investigate possible links between the
chaos found in the Lorenz attractor and real convection.

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

The Lorenz Attractor
Earth’s magnetic field

The same approach can be used to look at a reduced model for the
double-diffusive convection problem where a salinity gradient is
also applied across the fluid layer.

y
x

T

T0

0 + ∆ T

y=D

y=0 S

S 0

0+ ∆ S
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Da Costa, Knobloch & Weiss (1981) assumed the same form for
the temperature and salinity perturbation, and derived a 5th-order
set of equations:

da

dt
= σ (−a + rTb − rSd)

db

dt
= −b + a(1− c)

dc

dt
= $(−c + ab)

dd

dt
= −τd + a(1− e)

de

dt
= $(−τe + ad)

With d and e removed these are equivalent to the Lorenz
equations previously seen.
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Here chaos was found for relatively small amplitude solutions, but
again reality got in the way. The initial instability was oscillatory.

But

cosαx cosωt =
1

2
(cos(αx − ωt) + cos(αx + ωt))

A standing wave is the sum of a right and left travelling wave.
Bretherton (1983) showed that if you do the weakly nonlinear
analysis to a higher order and allowed the left and right travelling
waves to have their separate amplitudes, then one wave would
grow and the other decay. No standing oscillatory solution will be
observed and instead only travelling waves will be seen (without
the rich structure of chaos).
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Earth’s magnetic field

The previous problem had a sound theoretical background, but was
sometimes pushed a bit too far.
Here we will briefly look at an idealized model of a vastly more
complicated problem — the generation of the Earth’s magnetic
field.
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I The Earth’s core is too hot for it to be a permanent magnet.

I The convection in the molten metallic core can generate
magnetic fields spontaneously...

I ... but it needs rotation etc.

I There has to be a strong toroidal element to the mean field in
the core (which we will not see on the surface), and a poloidal
part that comes of surface.
The convection generates the poloidal field from then toroidal
field, and the toroidal field from poloidal field.
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I 400 times in the last 330,000,000 years the polarity of the
Earth’s magnetic field has reversed.

From “Fundamentals of Geophysics”, by William Lowrie (1997)
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Rikitake (1958) proposed a model:

From “Magnetic field generation in electrically conducting fluids”, by H.K. Moffatt
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Equations for current:

L
dI1
dt

+ RI1 = MΩ1I2

L
dI2
dt

+ RI2 = MΩ2I1

where L is the self-inductance 2πM is the mutual inductance
between the circuits, and R the resistance.
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Equations for angular momentum:

C
dΩ1

dt
+ RI1 = G −MI1I2

C
dΩ2

dt
+ RI1 = G −MI1I2

where C is the moment of inertial for each disc.
−MI1I2 represents the effect of the Lorentz force on the disc, and
MΩ1I2 the voltage generated by the dynamo effect.
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These can be non-dimesionalised to give

dX

dt
+ µX = ZY

dY

dt
+ µY = ZX

dZ

dt
=

dV

dt
= 1− XY

Clearly
Z − V = const. = A
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Steady state solutions exist where K is a constant such that

A = µ(K 2 − K−2)

then

X = ±K , Y = ±K−1, Z = µK 2, V = µK−2

It can be shown (using a bit more than a linear analysis of the
steady solution ) that for K > 1 there is instability.
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µ = 1, K = 2.
Stereogram — cross your eyes for a 3-D image
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µ = 1, K = 2.
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This model show the magnetic fields oscillating around ±2, with
occasional flips between these values.
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Not a very realistic model, but it does show that spontaneous field
reversal in a system that generates its own magnetic field is
possible.
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From Guinness to Rocks

The last model I will look at shows how very different fields can
have a direct influence on each other.

From Manga (1996)
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From Manga (1996)
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Flow past a bubble/droplet

Suppose we have two immiscible fluids with densities ρI and ρO for
the densities of fluids inside and outside. Let their viscosities be µI

and µO respectively.
(picture)
If the bubble/droplet is small, how fast will it rise/fall?
Small size and speed of bubbles implies Re � 1, so we have
Stokes’s flow with

0 = −∇p + µi∇2u

∇ · u = 0
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As the bubble/droplet is small surface tension will ensure it is
almost exactly spherical (what shape is a rain drop?)
We require the tangential stresses to be continuous across the
boundary, and no flow across the boundary.
Pressure can be discontinuous across the boundary with
adjustments being made by small deviations from the
bubble/droplet being spherical.
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Following Batchelor (1967): Assume the droplet/bubble
instantaneously has its centre at the origin, and velocity U.
Because the problem is linear the pressure must be linearly
dependent on U, and since the operators in the equations are
independent of coordinate system the pressure deviation must be
of the form

p/µi = (U · x)× 1

a2
× F

(x · x
a2

)
where a is the radius of the droplet/bubble.
Since ∇2p = 0 the pressure will be of the form

p/µi =
CiU · x

r3
+ DiU · x
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Clearly outside the droplet/bubble Di will be zero (decays to ∞)
and inside Ci will be zero (no singularity at the origin).
We can also use a stream function ψ, and use a spherical polar
coordinate system with the axis given by θ = 0 pointing in the
direction of U. Then

ψ = U sin2 θ f (r)
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Outside the droplet/bubble

d2fO
dr2
− 2fO

r2
= −CO

r

and inside
d2fI
dr2
− 2fI

r2
=

DIr
2

2

Boundary conditions

I fO/r
2 → 0 as r →∞.

I U · x = 0 on r = a requires fi (a) = a2/2.

I No singularity at the origin.
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These give

fO =
COr

2
+

(
a3

2
− COa

2

2

)
1

r

fI =
DIr

4

20
+

(
1

2
− DIa

2

20

)
r2

Continuity of stress and velocity give

CO =
a

2

2µO + 3µI

µO + µI

, DI = − 5

a2
µO

µO + µI

.
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By calculating the resultant force exerted on the droplet/bubble
and balancing it with gravity enables one to calculate the speed of
fall/rise of the droplet/bubble. This speed is given by

V = −1

3

a2ρOg

µO

(
ρI

ρO

− 1

)
µO + µI

µO + 3
2µI
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Limiting cases

1. Droplet/bubble very low viscosity: µI/µO → 0

V = −1

3

a2ρOg

µO

(
ρI

ρO

− 1

)

2. Sphere rigid: µI/µO →∞

V = −2

9

a2ρOg

µO

(
ρI

ρO

− 1

)

3. Bubble: ρI/ρO → 0

V =
1

3

a2ρOg

µO

µO + µI

µO + 3
2µI
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Or combining...

I Rigid bubble (µI →∞, ρI → 0):

V =
2

9

a2ρOg

µO

I Inviscid bubble (µI → 0, ρI → 0):

V =
1

3

a2ρOg

µO

For air rising in water we have µO ≈ 10−3kgm−1s and
µI ≈ 1.8× 10−5kgm−1s, So which approximation should we take?
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Despite having µI/µO � 1 it is often appropriate to take the rigid
limit!

Surfactants — molecules that accumulate at the interface between
the fluids — although low in overall concentration can have a
significant impact on the dynamics of the surface, and can
effectively stop it flowing.
For Guinness probably rigid spheres, for basaltic magmas probably
inviscid bubble.
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The above law assumes fluid is at rest at ∞ and sphere is isolated.
But as the bubbles go up in Guinness the surrounding fluid must
go down. If the bubble velocities are v , and the liquid velocity is u
then

v − u =
2

9

a2ρOg

µO

But this will only be true for dilute bubble suspensions, where
bubble-bubble interactions are negligible. However, for the moment
we will just assume it holds for general φ.
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If the proportion of the bubbly liquid occupied by the bubbles is φ,
then since there is no net up or down flow at any point

φv + (1− φ)u = 0

or
v − u = v +

πv

1− φ
=

v

1− φ
Then the flux of gas upwards is

Q(φ) = φv =
2

9

φ(1− φ)a2ρOg

µO
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Conservation of bubble volume gives

∂φ

∂t
+
∂Q

∂z
=
∂φ

∂t
+ Q ′(φ)

∂φ

∂z
= 0

From this we see φ is constant on characteristics given by

dz

dt
= Q ′(φ)

Since Q is non-negative and is zero at φ = 0 and φ = 1 it must
have a negative gradient for large enough φ, and so the
characteristics point down. Waves in the bubble density will travel
downwards.
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However, for bigger values of φ this model is not valid. Flow is
more like fluid passing through a porous medium — clearly the
case in the head on top.
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Porous media — Carman-Kozeny equation

Here we will look at how to model flow through a porous medium.
Assume that the flow inside is low Reynolds number Stokes flow.
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The Kozeny model

D

L
Take a block of material of length L and cross-sectional area A.
Assume parallel circular tubes of diameter D, with total area of the
passages A′. The fraction of the volume occupied by the fluid is

ε =
A′

A

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

Porous media — Carman-Kozeny equation

If the flow through the block is Q, then we can define a flow speed

U = Q/A

Note: This is not the same as the fluid speed, or even the average
fluid speed.
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If there is a pressure drop across the block of ∆p, then we can find
the flow in each tube. If x is the distance along a tube, and r is
the distance from its axis then for steady parallel flow we have

∂p

∂x
= µ∇2u = µ

1

r

∂

∂r

(
r
∂u

∂r

)
With the boundary condition u = 0 on r = D/2, this gives

u = −∂p
∂x

(
(D/2)2 − r2

)
4µ

and a flow down each tube of

q = −∂p
∂x

π

8µ

(
D

2

)4
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The number of tubes is
A′

πD2/4

so the total flow is

Q = UA = −∂p
∂x

A′D2

32µ

Or the pressure gradient is given by

∂p

∂x
= −32µAU

A′D2
= −32µU

εD2
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The Carman model
In the average porous medium the passages along which the fluid
flows are not parallel tubes. This has a couple of effects

I If L′ is the “average length” of the passages then the flow
down each tube would be reduced by a factor L/L′.

∂p

∂x
= −32µUL′

LεD2
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The total volume is Q, the volume of the tubes is Q ′, and the
volume of the solid is Qs , then

Q ′ = εQ, Qs = (1− ε)Q.

Q ′ =
εQs

1− ε
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If we have n tubes, then the surface area of the tubes is

S = nπDL′

Volume of tubes is

Q ′ =
nπD2L′

4

So

D =
4εQs

S(1− ε)
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Now assume we have m spherical particles of diameter d . Then

Qs = m
πd3

6
, S = mπd2

So
Qs

S
=

d

6

and

D =
2φd

3(1− ε)
Assume that we can use this, and

∂p

∂x
= −72µUL′(1− ε)2

Lε3d2
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Of course there is no clear definition of L′/L, so people rely on
experiments, and it turns out the equation works if L′/L ≈ 2.5, so

∂p

∂x
= −180µU(1− ε)2

ε3d2

(and so L′/L becomes exactly 21
2 !)
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Note: Here the fluid volume fraction is ε. For comparison with
previous results for bubbles and thinking of the fluid filtering
through the foam we would have ε = 1− φ.
Also, for vertical flows with z measuring upwards, the pressure
gradient term is replaced by

∂p

∂z
+ ρg

With the pressure gradient given by the hydrostatic pressure

∂p

∂z
= −(1− φ)ρg

and so

φρg = − 180µUφ2

(1− φ)3d2
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The average velocity of the fluid is U ′ = U/ε = U/(1− φ), and if
the average velocity of the bubbles is V ′, then

φV ′ + (1− φ)U ′ = 0

So

V ′ = −(1− φ)U ′

φ
=

(1− φ)4d2gρ

180µφ3

The 1/180 factor is significantly smaller than either 1/3 or 2/9,
indicating that the bubble speed will drop significantly more than
our first estimate for higher bubble densities.
This means that we will get downward characteristics for lower φ
too.
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Maybe a hand-waving argument would have been better

Bubbles rise slowly

Bubbles rise slowly

Bubbles rise quickly

I Bubbles close together rise slowly.

I Bubbles far apart rise quickly.

I Bubbles in gap catch up with bubble layers, and join on the
bottom.

I Bubbles on top of the bubble layers can escape.

I Top of layer erodes, and bottom is replenished — layer moves
down.
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There are other theories...
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I Glasses have sloping walls.

I Bubbles rise up, leaving
bubble free region near
wall.

I Bubble free region is
denser and sinks.

I Instabilities at the edge of
the bubble region will look
like they are going down.

Which is correct?

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

Porous media — Carman-Kozeny equation

I Glasses have sloping walls.

I Bubbles rise up, leaving
bubble free region near
wall.

I Bubble free region is
denser and sinks.

I Instabilities at the edge of
the bubble region will look
like they are going down.

Which is correct?

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

Porous media — Carman-Kozeny equation

I Glasses have sloping walls.

I Bubbles rise up, leaving
bubble free region near
wall.

I Bubble free region is
denser and sinks.

I Instabilities at the edge of
the bubble region will look
like they are going down.

Which is correct?

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

Porous media — Carman-Kozeny equation

I Glasses have sloping walls.

I Bubbles rise up, leaving
bubble free region near
wall.

I Bubble free region is
denser and sinks.

I Instabilities at the edge of
the bubble region will look
like they are going down.

Which is correct?

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

Porous media — Carman-Kozeny equation

I Glasses have sloping walls.

I Bubbles rise up, leaving
bubble free region near
wall.

I Bubble free region is
denser and sinks.

I Instabilities at the edge of
the bubble region will look
like they are going down.

Which is correct?

Dr Oliver Kerr for the London Taught Course Centre Models 5



Dynamical Systems
From Guinness to Rocks

Porous media — Carman-Kozeny equation

References

Bretherton, C.S. (1983) “Double diffusion in a long box” Woods
Hole Oceanog. Inst. Tech. Rept. WHOI-81-102.
Da Costa, L.N., Knobloch, E. and Weiss, N.O. (1981) Oscillations
in double-diffusive convection. J. Fluid Mech. 109, 25–43.
Fowler, A.C. (1997) “Mathematical Models in the Applied
Sciences”, CUP.
Joseph, D.D. (1965) “On the stability of the Boussinesq
equations”, Arch. Rat. Mech. Anal. 20, 59–71.
Koschmieder, E.L. (1974) Adv. Chem. Phys. 26, 177–212.
Manga, M. (1996) Waves of bubbles in basaltic magmas and lavas.
J. Geophys. Res., 101, 17,457–17,465.
Rikitake, T. (1958) Oscillations of a system of disk dynamos.
Proc. Camb. Phil. Soc. 54, 89–105.

Dr Oliver Kerr for the London Taught Course Centre Models 5


	Dynamical Systems
	The Lorenz Attractor
	Earth's magnetic field

	From Guinness to Rocks
	Porous media — Carman-Kozeny equation


	fd@Lorenz: 
	mbtn@0: 
	fd@Dynamo: 
	mbtn@1: 
	fd@Guiness: 
	mbtn@2: 


