MATHEMATICAL METHODS: COMPLEX VARIABLES

LAURENT SERIES

If f(z) is analytic on the two concentric circles C_1 and C_2 with centre z_0 and in the region inbetween them, then f(z) can be represented by the <u>Laurent Series</u>

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

where the coefficients a_n and b_n are given by

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z')}{(z'-z_0)^{n+1}} dz'$$
 and $b_n = \frac{1}{2\pi i} \oint_C (z'-z_0)^{n-1} f(z') dz'$

where C is a contour circuiting z_0 in the annulus between C_1 and C_2 . PROOF

If z lies inside the annulus then from Cauchy's Integral theorem

$$f(z) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(z')}{z'-z} dz' - \frac{1}{2\pi i} \oint_{C_2} \frac{f(z')}{z'-z} dz'.$$

Since z lies inside C_1 then, using the same argument as for the Taylor series,

$$\frac{1}{2\pi i} \oint_{C_1} \frac{f(z')}{z'-z} \, dz' = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$

where

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z')}{(z'-z_0)^{n+1}} \, dz'.$$

<u>Note</u>: As f(z) may not be analytic inside C_2 we cannot use Cauchy's integral formula.

To find the second set of terms we proceed in a similar manner to the derivation in the Taylor series, but this time we note that on C_2

$$|z'-z_0| < |z-z_0|.$$

Hence

$$\frac{1}{z'-z} = \frac{1}{(z'-z_0) - (z-z_0)} = -\frac{1}{(z-z_0)\left(1 - \frac{z'-z_0}{z-z_0}\right)}$$
$$= -\frac{1}{z-z_0}\left(1 + \frac{z'-z_0}{z-z_0} + \left(\frac{z'-z_0}{z-z_0}\right)^2 + \dots + \left(\frac{z'-z_0}{z-z_0}\right)^n\right) - \frac{1}{z-z'}\left(\frac{z'-z_0}{z-z_0}\right)^{n+1}$$

Substituting into the integral and integrating gives

$$-\frac{1}{2\pi i} \oint_{C_2} \frac{f(z')}{z'-z} dz' = \frac{1}{2\pi i} \left(\frac{1}{z-z_0} \oint_{C_2} f(z') dz' + \frac{1}{(z-z_0)^2} \oint_{C_2} (z'-z_0) f(z') dz' + \cdots + \frac{1}{(z-z_0)^{n+1}} \oint_{C_2} (z'-z_0)^n f(z') dz' \right) + R_n(z).$$

As before we can show that $R_n(z) \to 0$ as $n \to \infty$ and so

_

$$-\frac{1}{2\pi i} \oint_{C_2} \frac{f(z')}{z'-z} \, dz' = \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

where

$$b_n = \frac{1}{2\pi i} \oint_C (z' - z_0)^{n-1} f(z') \, dz'$$

The integrals for a_n and b_n can both be deformed to the common contour C to obtain the original expression.

To show that the Laurent series converges in the annulus found by expanding C_1 until it reaches a singularity and decreasing C_2 until it reaches a singularity we split

$$f(z) = g(z) + h(z)$$

where

$$g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
$$h(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

Then g(z) is analytic inside C_1 and h(z) is analytic outside C_2 [Why?]. Hence the expansion for g(z) is valid up to the first singularity outside C_1 , where the expansion for h(z) is also valid, and so we can extend the region of validity of the expansion to the first singularity in f(z) which will also be the first singularity in g(z).

Similarly we can shrink C_2 until it encounters a singularity.