
Mathematical Methods: Complex Variables

Recall the question:

Especially for those that think they are very good at integration. Evaluate, without
using any complex variable theory,

∫ 2π

0

dθ

2 + sin θ
, (a)

∫ ∞
0

dx

x6 + 1
, (b)∫ ∞

0
sin x2 dx. (c)

Here is how to do these integrals using contour integration.

(a) Let z = eiθ then dz = ieiθdθ or dθ = −iz−1dz. Recall sin θ = 1
2i

(
eiθ − e−iθ

)
=

1
2i

(z − z−1). Then θ ranging from 0 to 2π corresponds to z moving around the circle of

radius 1 centred on the origin. We will denote this contour as C. Hence∫ 2π

0

dθ

2 + sin θ
=
∮

C

−iz−1dz

2 + 1
2i

(z − z−1)
=
∮

C

2 dz

z2 + 4iz − 1

= −
∮ i dz√

3(z + 2i−
√

3i)
+
∮ i dz√

3(z + 2i +
√

3i)
= 2πi× −i√

3
+ 2πi× 0 =

2π√
3
.

(b) Let C be the closed contour going along the real axis from 0 to R, then in a

semicircular arc in the upper half of the complex plane from R to −R, and then along

the real axis from −R to 0. Denote each of these sections C1, C2 and C3 respectively.

Then ∮
C

dz

z6 + 1
=
∮

C1

dz

z6 + 1
+
∮

C2

dz

z6 + 1
+
∮

C3

dz

z6 + 1
.

For R > 1 the integral around C consists of the contributions from the poles at z = e
π
6
i,

i and e
5π
6

i. These give

∮
C

dz

z6 + 1
= 2πi×

(
1

6
e

5πi
6 +

−i

6
+

1

6
e−

πi
6

)
=

πi

3

(
−
√

3

2
− i

2
− i +

√
3

2
− i

2

)
=

2π

3

But as R→∞ the contribution from C2 tends to 0, while the contributions from both

sections C1 and C3 tend towards the integral that we are seeking. Hence∫ ∞
0

dx

x6 + 1
=

π

3
.

(c) In this case we find both the integral given and
∫∞
0 cos x2 dx at the same time. We

note that eiz2
= cos z2 + i sin z2 and consider the contour of integration, C, made up



of three parts; C1 along the real axis from 0 to R, C2 the arc of the circle of radius R

centred on 0 going from R to Reiπ/4, and C3 the straight line from Reiπ/4 to 0. Note

that eiz2
is analytic for all z, and so the integral around this contour is 0.

If we look at the limit of these three integrals as R→∞ we see that∫
C1

eiz2

dz →
∫ ∞
0

cos x2 dx + i
∫ ∞
0

sin x2 dx

and ∫
C3

eiz2

dz →
∫ 0

∞
e−t2eiπ/4dt = −1 + i√

2

∫ ∞
0

e−t2 dt = −(1 + i)√
2

√
π

2
.

We have used here the substitution z = eiπ/4t.

Lastly we show that the contribution from the last part of the contour, C2, decays

to 0 as R→∞.∫
C2

eiz2

dz =
∫ π/4

0
exp

(
iR2e2iθ

)
iReiθ dθ =

∫ π/4

0
exp

(
iR2 (cos 2θ + i sin 2θ)

)
iReiθ dθ

=
∫ π/4

0
exp

(
iR2 cos 2θ + iθ

)
exp

(
−R2 sin 2θ

)
iR dθ.

Looking at the modulus of this∣∣∣∣∫
C2

eiz2

dz

∣∣∣∣ ≤ ∫ π/4

0

∣∣∣exp
(
iR2 cos 2θ + iθ

)
exp

(
−R2 sin 2θ

)
iR
∣∣∣ dθ

=
∫ π/4

0
exp

(
−R2 sin 2θ

)
R dθ.

But sin 2θ ≥ 4θ/π for 0 ≤ θ ≤ π/4, and so∣∣∣∣∫
C2

eiz2

dz

∣∣∣∣ ≤ ∫ π/4

0
exp

(
−R2 sin 2θ

)
R dθ

≤
∫ π/4

0
exp

(
−4R2θ/π

)
R dθ =

π

4R

(
1− e−R2

)
.

Hence we see that as R→∞ the contribution from this contour vanishes. This gives∮
C

eiz2

dz =
∫ ∞
0

cos x2 dx + i
∫ ∞
0

sin x2 dx− (1 + i)

2

√
π

2
= 0.

Finding real and imaginary parts gives the required result∫ ∞
0

cos x2 dx =
∫ ∞
0

sin x2 dx =
1

2

√
π

2
.


