MATHEMATICAL METHODS: COMPLEX VARIABLES

Recall the question:

Especially for those that think they are very good at integration. Evaluate, without
using any complex variable theory,
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Here is how to do these integrals using contour integration.
(a) Let z = € then dz = ie®df or df = —iz"'dz. Recall sinf = - (ew - e_ie) =
2%. (z — 2z71). Then 0 ranging from 0 to 27 corresponds to z moving around the circle of
radius 1 centred on the origin. We will denote this contour as C'. Hence
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(b) Let C be the closed contour going along the real axis from 0 to R, then in a
semicircular arc in the upper half of the complex plane from R to —R, and then along

the real axis from —R to 0. Denote each of these sections C}, Cy and C3 respectively.

Then
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For R > 1 the integral around C consists of the contributions from the poles at z = e®?,

1 and es’. These give
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But as R — oo the contribution from C5 tends to 0, while the contributions from both

sections ' and C3 tend towards the integral that we are seeking. Hence
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(¢) In this case we find both the integral given and [5° cosz?dx at the same time. We

note that e”** = cos 22 + isin 22 and consider the contour of integration, C, made up



of three parts; C; along the real axis from 0 to R, Cs the arc of the circle of radius R
centred on 0 going from R to Re'™*, and Cj the straight line from Re™/* to 0. Note
that e’ is analytic for all z, and so the integral around this contour is 0.

If we look at the limit of these three integrals as R — oo we see that
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We have used here the substitution z = e™/4¢.

Lastly we show that the contribution from the last part of the contour, C5, decays

to 0 as R — oo.
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= /(:/4 exp (iR2 cos 20 + zﬂ) exp (—R2 sin 20) 1R db.

Looking at the modulus of this
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But sin20 > 46/7 for 0 < 6 < /4, and so
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Hence we see that as R — oo the contribution from this contour vanishes. This gives
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Finding real and imaginary parts gives the required result
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