
Mathematical Methods: Complex Variables

Summation of infinite series

Here we will look at how we can use contour integration to sum infinite series.

The first thing we do is to consider

cot πz =
cos πz

sin πz

This has singularities when sin πz = 0, i.e., when z = 0,±1,±2,±3, . . .. The residue at each of

these points is

Res
z=n

cos πz

sin πz
=

cos πz

π cos πz

∣∣∣∣
z=n

=
1

π

If we have an analytic function f(z), then f(z) cot πz would have residues of f(n)/π at each of

these points provided f(z) was not singular at z = n. If we could do an integration around all

these points then we may be able to pick contributions of f(n)/π from each of these singularities

on the real axis. We cannot do a circular contour and let is radius increase as we have done before

because the contour would keep passing through singularities. Instead we will consider a contour

which increases in size in discrete steps.

Consider the following square contour, C:
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On the vertical lines of this square z will have real parts ±(N + 1/2), as do the imaginary

parts of z on the horizontal lines. If we integrate around this contour we will clearly pick up all



the residues from the integers from −N to N , and also all the residues of the poles, ×, of f(z)

(provided N is large enough for C to include them all). If we can show that as N →∞∮
C

f(z) cot πz dz → 0

then the sum of all these residues will also be 0.

First we will examine cot πz on this contour. We will consider the contour in two different

parts. If z = x + iy, the first part will be for |y| > 1/2.

| cot πz| =
∣∣∣∣cos πz

sin πz

∣∣∣∣ =

∣∣∣∣∣eiπz + e−iπz

eiπz − e−iπz

∣∣∣∣∣
=

∣∣∣∣∣eiπ(x+iy) + e−iπ(x+iy)

eiπ(x+iy) − e−iπ(x+iy)

∣∣∣∣∣ =

∣∣∣∣∣eiπx−πy + e−iπx+πy

eiπx−πy − e−iπx+πy

∣∣∣∣∣
Next we use

|a + b| ≤ |a|+ |b|

and so

| cot πz| ≤ |eiπx−πy|+ |e−iπx+πy|
|eiπx−πy − e−iπx+πy|

.

To deal with the terms on the bottom will use

|a| − |b| ≤ |a− b|

From this we can deduce that if |a| > |b| then

1

|a− b|
≤ 1

|a| − |b|
.

and if |b| > |a| then
1

|a− b|
≤ 1

|b| − |a|
.

These can be combined to give
1

|a− b|
≤ 1

||a| − |b||
provided |a| 6= |b|, hence

| cot πz| ≤ |eiπx−πy|+ |e−iπx+πy|
||eiπx−πy| − |e−iπx+πy||

But |ex+iy| = ex so

| cot πz| ≤ e−πy + eπy

|e−πy − eπy|
For y > 1/2

| cot πz| ≤ e−πy + eπy

eπy − e−πy
=

1 + e−2πy

1− e−2πy
≤ 1 + e−π

1− e−π



Similarly, for y < −1/2

| cot πz| ≤ e−πy + eπy

e−πy − eπy
=

1 + e2πy

1− e2πy
≤ 1 + e−π

1− e−π

So the magnitude of cot πz is bounded away from the region around the real axis.

Now we look at the region −1/2 ≤ y ≤ 1/2. We have to take into account the real part of

z here since we know it is in this region that we have singularities here. We consider the case

z = N + 1/2 + iy where N is an integer,

| cot πz| =
∣∣∣∣∣eiπx−πy + e−iπx+πy

eiπx−πy − e−iπx+πy

∣∣∣∣∣ =

∣∣∣∣∣eiπ(N+1/2)−πy + e−iπ(N+1/2)+πy

eiπ(N+1/2)−πy − e−iπ(N+1/2)+πy

∣∣∣∣∣
=

∣∣∣∣∣eiπ(2N+1)−πy + eπy

eiπ(2N+1)−πy − eπy

∣∣∣∣∣ =

∣∣∣∣∣eiπ(2N+1)e−πy + eπy

eiπ(2N+1)e−πy − eπy

∣∣∣∣∣
But eiπ(2N+1) = −1, so

| cot πz| =
∣∣∣∣∣−e−πy + eπy

−e−πy − eπy

∣∣∣∣∣ =

∣∣∣∣∣eπy − e−πy

eπy + e−πy

∣∣∣∣∣ = | tanh πy| < 1

Combining these results gives

| cot πz| < 1 + e−π

1− e−π

for all points on the contour.

Returning to our integral, provided f(z) decays fast enough, all we require is that we can find

M and k > 1 such that |f(z)| < M/Rk where R = |z| > R0. The length of the contour is 8N + 4∣∣∣∣∮
C

f(z) cot πz dz

∣∣∣∣ ≤ Length×maximum of |f(z) cot πz| on C

∣∣∣∣∮
C

f(z) cot πz dz

∣∣∣∣ ≤ (8N + 4)× M

(N + 1/2)k
→ 0 as N →∞.

And so, taking the limit N →∞ we find

∮
C

f(z) cot πz dz = 2πi

 ∞∑
n=−∞

Res
z=n

f(z) cot πz +
∑
j

Res
z=zj

f(z) cot πz

 = 0

where the second summation is over all the singularities of f(z), excluding those that are on

integer values as these have already been counted in the first summation.

Example: Find
∞∑

n=1

1

n2

Let f(z) = 1/z2. Then we have a pole of order 3 at z = 0. The contributions from z = −n and

z = n are the same, so

2
∞∑

n=1

Res
z=n

cot πz

z2
+ Res

z=0

cot πz

z2
= 0,



2

π

∞∑
n=1

1

n2
+ Res

z=0

cot πz

z2
= 0.

But

cot πz =
1

πz
− πz

3
− π3z3

45
− 2π5z5

945
− · · ·

so the residue of cot πz/z2 is −π/3. Hence

∞∑
n=1

1

n2
=

π2

6

We can also see, using f(z) = 1/z4 and f(z) = 1/z6 respectively, that

∞∑
n=1

1

n4
=

π4

90
,

∞∑
n=1

1

n6
=

π6

945


