
1. (i) Find the area of the parallelogram whose vertices are

(4, 5), (6, 9), (7, 10), (9, 14)

(ii) Find the volume of the parallelepiped whose vertices are

(1, 1, 2), (2, 1, 2), (2, 2, 2), (1, 2, 3), (3, 2, 2), (2, 2, 3), (2, 3, 3), (3, 3, 3)

(iii) Define the Laplacian of a scalar function φ.

(iv) Evaluate the Laplacian of z sin(xy2).

(v) Find the value of a such that there is a vector field F which satisfies

curl(F) = (1 − x2, z3, axz − exp(y))

(vi) Find a scalar field φ such that

grad(φ) = (2x cos(z2), 3y2 cos(z2),−2z(x2 + y3) sin(z2))

(vii) Let S be the surface parametrised by

(r, θ) 7→ (r sin θ, r cos θ, r3)

Find a normal vector to S at the point (0, 2, 8).

2. Let F be the vector field (x2y, xz+y, (x2+y2)−3). Evaluate the line integral∫
C

F.ds along each of the following curves C from (0, 0, 0) to (2, 4, 0)

(i) C is the curve parametrised by t 7→ (t, t2, 0) for 0 ≤ t ≤ 2.

(ii) C is the curve parametrised by t 7→ (2t, t2 + 3t, 0) for 0 ≤ t ≤ 1.

Let T be the part of the surface x+2y +2z = 2 in the first octant, x ≥ 0,
y ≥ 0, z ≥ 0.

(iii) Give a parametrisation of each of the three sides of the triangle T .

(iv) Give a parametrisation of the triangular surface T .

Turn over . . .



3. State Stokes’ theorem.

Let S be the parametrised surface given by

(r, θ) 7→ (r sin θ, r cos θ, r2)

for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

(a) Give a parametrisation of the boundary of S.

(b) Verify Stokes’ theorem for the surface S and the vector field F defined
by F = (z2,−3xy, xy3)

4. (i) State the divergence theorem.

(ii) Using the divergence theorem give the co-ordinate free definition of
the value of the divergence of a vector field F at a point x.

(iii) Let S be the surface of the cube −1 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 2.
Let F be the vector field (sin(yz), exp(x2z), z). Use the divergence
theorem to evaluate the flux integral

∫
S

F.dA

(iv) Let S be the surface parametrised by

(r, θ) 7→ (ar sin θ, br cos θ, 0)

where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Find the area of S in terms of the
constants a and b.

Turn over . . .



5. Use contour integration techniques to evaluate the following integrals, stat-
ing clearly the contour used:

(i) ∫
2π

0

cos 2θ

5 − 4 cos θ
dθ,

(ii) ∫
∞

−∞

1

(x4 + 4x2 + 3)
dx.

6. (a) Show that the singularities of cosec πz are located at z = 0,±1,±2, . . .
and find their residues. Describe how you can use an integral of the
form ∮

C

f(z) cosec πz dz

to obtain the sum of the series

∞∑
n=1

(−1)n+1f(n)

for suitable f(z). You should state the contour, C, to be used and
give without proof the value of the above integral in the appropriate
limit.

Use this result to show that

∞∑
n=1

(−1)n+1

n2
=

π2

12
.

You may quote the result that near z = 0

cosec z =
1

z
+

z

6
+

7z3

360
+

31z5

15120
+ · · ·

(b) Identify the poles of

f(z) =
z

z2 − 1
.

This function has two different Taylor/Laurent series centred on z =
0 with different regions of validity. From the locations of the poles
or otherwise identify what these two regions will be.

Find the Taylor/Laurent series for f(z) in each of the two regions,
showing terms involving zn for −5 ≤ n ≤ 5.

Turn over . . .



7. Show that if f(z) = u(x, y) + iv(x, y) is an analytic function then the
Cauchy-Riemann equations linking the derivatives of u(x, y) and v(x, y)
are satisfied.

What test can be used to determine whether a function u(x, y) could be
the real part of an analytic function? Apply this test to the following two
functions:

(i) u(x, y) = x4 − 4x2y2 + y4 + tan−1(y/x),

(ii) u(x, y) = x3y − xy3 + tan−1(x/y).

For the function that could be the real part of an analytic function, find
the corresponding conjugate harmonic function v(x, y), and hence find the
analytic function f(z) = u(x, y)+ iv(x, y) in terms of the complex variable
z only.

8. A function f(x) is periodic with period p. Write down its general Fourier
expansion along with integral expressions for the coefficients a0, an and bn

with n ≥ 1.

The periodic function f(x) has period 2. It is defined in the interval
0 ≤ x ≤ 1 by

f(x) = 4x(1 − x).

Sketch this function on the interval −2 ≤ x ≤ 4 for the two cases (i) f(x)
is an odd function, and (ii) f(x) is an even function. What can be deduced
about the Fourier coefficients in these two cases?

Given that f(x) is an odd periodic function, by using integration by parts
when required, calculate the Fourier coefficients for the function f(x).
Hence write down its Fourier expansion.

Deduce from this expansion that

∞∑
n=1

(−1)n+1

(2n − 1)3
=

π3

32
.
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