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Abstract

This paper discusses how Gabbay’s fibring methodology - origi-
nally aimed at combining logics - can be applied also to combine sub-
symbolic structures such as Bayesian networks or neural networks. I
start by commenting on the paper Recursive Causality in Bayesian
Networks and Self-Fibring Networks by J. Williamson and D. Gab-
bay, which shows how Bayesian networks can be fibred. I then discuss
how neural networks can be fibred in the same spirit, compare the
Bayesian and neural approaches, and illustrate the fibring of Bayesian
and neural networks by applying it to value-based argumentation in
legal reasoning. I conclude by offering a first account of how symbolic
and sub-symbolic systems such as logics and networks can be fibred
together.

1 Introduction

Fibring is a methodology for combining logics by breaking, manipulating
and rearranging them into simple components. Briefly, the languages and
inference rules of each logic may appear in the combined system, while the
semantics of the fibring needs to be carefully compiled as a combination of
the classes of models of the logics. For example, in the case of the fibring of
a propositional temporal logic with a propositional linear space logic, each
model of the fibring will contain a time line and a space line [14].

In addition to its appeal from a purely logical point of view, fibring has
a number of applications in mathematics and computer science. It has im-
portant implications to knowledge representation and artificial intelligence -



where, for example, the combination of temporal and deontic logics may be
necessary - and to formal methods and software engineering, where one may
need to work with declarative specifications and procedural ones. Putting
together artificial intelligence and software engineering, in robotics, for in-
stance, a robot’s visual system may require one logical representation, while
its planning system may require another [8]. Moving even further, some
of the robot’s systems may not be a logical (symbolic) system, but a con-
nectionist (sub-symbolic) one, as in the case of neural networks systems
very successfully used for visual information processing, or Bayesian net-
works also successfully used to model uncertainty. The concept of fibring,
therefore, needs to be extended to cater for hybrid systems. It may, how-
ever, continue to have logic as its underlying mechanism with the help of
neural-symbolic learning systems [3], as we shall exemplify in the sequel.
In what follows, we discuss how Bayesian networks may be self-fibred.
We then discuss how Neural Networks are fibred, and exemplify the fibring of
Bayesian and neural networks using an argumentation framework example in
law. We conclude by discussing how neural-symbolic learning systems may
serve as the underlying framework for the fibring of logics and networks.

2 Fibring Bayesian Networks

The idea of fibring Bayesian networks emerged from the observation that
causal relations may themselves take part in causal relations. This has been
simply and effectively exemplified in the very first section of Williamson and
Gabbay’s Recursive Causality in Bayesian Networks and Self-Fibring Net-
works [15]. The example states that the fact that smoking causes cancer, for
instance, causes the government to restrict tobacco advertising. Such a re-
cursive definition of causal relations was then used to define what Williamson
and Gabbay call a recursive Bayesian network, a Bayesian network in which
certain nodes may be Bayesian networks in their own right. This is de-
fined with the help of the concept of network variables, which are variables
that may take Bayesian networks as values. Thus, a network variable SC
may be used to represent the fact that smoking causes cancer, and then SC
causes A, where A stands for restricting advertising. This may be written
as SC — A where SC = S — C, or simply as (S — C) — A.

A recursive network can be interpreted as a non-recursive network if
one treats network variables SC' as simple variables SC’. In addition, a
recursive network can be flattened into its non-recursive counterpart, given
a consistent assignment of values v to the domain V' of the recursive net-



work. Consistency of assignments is, therefore, a requirement for the use
of standard Bayesian networks algorithms by recursive Bayesian networks.
This is why Williamson and Gabbay devote an entire section of their paper
to the issue of consistency. They identify three forms of consistency between
networks: causal consistency (w.r.t. causal relations), Markov consistency
(w.r.t. implied probabilistic independencies), and probabilistic consistency
(w.r.t. probability functions).

Note that variables are allowed to occur more than once in a recursive
network, e.g., (A — B) — A. If we are not careful, its flattened coun-
terpart network may have cycles, what would prevent the use of standard
Bayesian inference algorithms. Williamson and Gabbay concentrate, as a
result, on consistent acyclic assignments. It is worth noting also that there
exists no straightforward flattening of a recursive Bayesian network into a
Bayesian network when no values v are given, i.e. flatenings are relative to
an assignment v on the domain V.

Once the flattening of recursive Bayesian networks is fully defined (allow-
ing for the use of a standard Bayesian network to determine the probability
distributions), Williamson and Gabbay investigate the more general con-
cept of allowing graphs inside graphs, referred to as self-fibring of networks.
They present a generalisation of recursive Bayesian networks in the form
of an important definition of fibred networks in terms of a fibring function,
which is general enough to comprise the fibring of neural networks as well
[10], as discussed in the following section. This definition is obtained by
looking at the arrows in directed graphs as different types of implications
in logic such as substructural or intuitionistic implication, Dempster-Shafer
or causal Bayesian implication. In this general setting, the fibring func-
tion is responsible for providing the different interpretations; in the case of
Bayesian networks, the fibring function depends on a table of conditional
probabilities.

The general case problem of self-fibring of networks can be defined as
follows: Let B(X) be a network containing a node X. Let A be a network.
Find C=B(X/A), a new network which is the result of substituting A for
X in B. The power of fibring, however, lies in the fact that this substitu-
tion is not only performed on the syntactical level, but takes the form of a
semantic insertion, which makes use of the fibring function as follows. The
substitution of A takes into account the meaning of B. For example, if B is
a Bayesian network in which X may take two values, say {0,1}, then if X is
0 we substitute Ag, and if X is 1 we substitute A;. We write C= f,(A,B),
where f is our fibring function.

It is the concept of semantic insertion that makes fibring a powerful



mechanism. For example, consider the network of Figure 1. The output
of fibring function f is allowed to modify the fibring function ¢ itself. In
the case of Bayesian networks, where f and g are probability matrices, one
could decide to modify g by, say, multiplying it by f. The resulting network
would be: a—f(b—y 4¢).

a —> b—>c)
f g

Figure 1: A recursive network a — X where X =b — c.

In the case of neural networks, where f and g are weight vectors, the
idea of multiplying f by ¢ is quite natural since this is already what non-
recursive neural networks do. We shall see in the sequel that applying the
concept of semantic insertion to neural networks results in recursive networks
being strictly more expressive than non-recursive ones, in the sense that they
cannot be flattened into equivalent non-recursive networks, even when the
straightforward multiplication rule is used for fibring.

3 Fibring Neural Networks

The goal of Neural-Symbolic integration [2, 3] is to benefit from the com-
bination of the symbolic and the connectionist paradigms of Artificial In-
telligence. To this end, we know that a fundamental aspect of symbolic
computation lies in the ability to perform recursion. Recursion in neural
networks, then, is the idea of allowing networks to be composed not only
of interconnected neurons but also of other networks (called embedded net-
works). But the idea is not simply to organise networks as a number of
sub-networks. Borrowing the concept of semantic insertion from fibring, the
function computed by an embedded network may depend on the function
computed by the embedding network.

A neural network consists of interconnected neurons (or processing units)
that compute a simple function according to the weights (real numbers)
associated to the connections. Learning in this setting is the incremental
adaptation of the weights. The interesting characteristics of neural networks
do not arise from the simple functionality of each neuron, but from their
collective behaviour. In the case of recursive neural networks, introduced in
[4], we see fibring as learning, where the change of the weights of a neural
network implies the change of the function computed by it. So, we simply



use the weights of the embedding network to change the weights of the
embedded network. When running the network a— ¢(b—4c), we obtain the
network a— ¢(b— y.4¢), where a, b and c are neurons, and f and g are weights.
In other words, one network is being used to train the other, as the following
example illustrates.

Example 1 Consider the networks A and B of Figure 2, each with inputs
i1 and i2, and output 01. Let network B be embedded into the output neuron
of network A, as shown in the figure. This indicates that the state of A’s
output neuron (s) will influence the weights of B (W8, WB WEB), according
to a fibring function (p). Using the simple multiplication rule for ¢, let us
take WB, = s- WB_. Notice how network B is being trained (when
changes its weights) at the same time that network A is running.
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Figure 2: Fibring two simple networks

Fibred neural networks can be trained from examples in the same way



that standard feedforward networks are (for example, with the use of Back-
propagation [13]). Networks A and B of Figure 2, for example, could have
been trained separately before being fibred. Network A could have been
trained, e.g., with a robot’s visual system, while network B would have
been trained with its planning system. For now, we assume that, once de-
fined, the fibring function itself remains unchanged. Future extensions of
fibring neural networks could, however, consider the task of learning fibring
functions as well.

In addition to using different fibring functions, networks can be fibred in
a number of different ways as far as their architectures are concerned. The
networks of Figure 2, for example, could have been fibred by embedding
Network B into an input neuron of Network A (say, the one with input
i1), thus changing the value of s (to the state of this input neuron) used to
calculate the new set of weights of B, and thus also changing the function
computed by B.

The recursive network of Figure 2 is capable of computing, with the use
of the multiplication rule for fibring, an output n? for n € R given as in-
put. In other words, recursive networks are capable of performing the exact
computation of the square of their input for any input in ®. This indicates
that recursive networks approximate functions in an unbounded domain
[11, 12], as opposed to non-recursive feedforward networks. In fact, in addi-
tion to being universal approximators, recursive networks can approximate
any polynomial function, and thus are more expressive than non-recursive
feedforward neural networks. The proofs are given in [4].

Finally, note that many networks can be embedded into a single net-
work, and that networks can be nested so that network B is embedded into
network A, network C is embedded into network B, and so on. In addition
to the existing multitude of fibring functions, there is a multitude of net-
work architectures for fibring that might be interesting investigating. The
choice of fibring function and architecture is domain dependent, and an em-
pirical evaluation of recursive networks in comparison with standard neural
networks would also be required. Another interesting open question is that
of which logics could be represented by recursive networks. The extra ex-
pressiveness of such networks contributes to the development of the research
on Neural-Symbolic integration, where neural networks need to be used to
perform complex symbolic computation.

Remark 1 In summary, both recursive Bayesian networks and recursive
neural networks share the more general principles and definitions of Gab-
bay’s fibring methodology. However, each technique has very specific char-



acteristics and algorithms to deal with uncertainty (in the case of Bayesian
networks) and learning and generalisation capabilities (in the case of neural
networks). Both recursive Bayesian and neural networks are strictly more
expressive than their standard versions, not only because of the idea of al-
lowing networks inside networks, but also because of the general concept of
semantic insertion from fibring. As we have seen, recursive Bayesian net-
works when flattened may produce networks with cycles instead of standard
Bayesian networks, while recursive neural networks are capable of comput-
ing unbounded functions exactly, as opposed to standard networks. Standard
Bayesian networks algorithms can be applied directly to the component net-
works of a recursive Bayesian network, and under certain conditions to the
recursive network itself. Similarly, standard neural networks learning al-
gorithms may be applied directly to each of the component networks of a
recursive neural network. Finally, both types of networks may have coun-
terpart symbolic representations with the help of Labelled Deductive Systems
[7] and Neural-Symbolic Learning Systems [3], and these logical representa-
tions may be helpful in guiding the development of the research on fibring
networks.

4 Fibring Applied to Argumentation

An interesting application of fibring is in the area of legal reasoning and
argumentation [5, 9]. In [9], for example, Gabbay and Woods argue for
the combined use of Labelled Deductive Systems and Bayesian networks to
support legal evidence reasoning under uncertainty. In addition, they argue
that neural networks, as learning systems, could play a role in this process
by being used to update/revise degrees of belief and the rules of the system
whenever a new evidence is presented. The three different representations all
expand a value-based argumentation framework outlined in [1], in which ar-
gumentation networks are used to model arguments and counter-arguments.
A typical example in the area is the following moral debate example.

Hal, a diabetic, loses his insulin in an accident through no fault
of his own. Before collapsing into a coma, he rushes to the house
of Carla, another diabetic. She is not at home, but Hal breaks
into her house and uses some of her insulin.. Was Hal justified?
Does Carla have a right to compensation?

The following are some of the arguments involved as presented in [1].

A: Hal is justified, he was trying to save his life;



B: It is wrong to infringe the property rights of another;
C: Hal compensates Carla;

D: Hal is endangering Carla’s life; and

E: Carla has abundant insulin..

In [1], arguments and counter-arguments are arranged in an argumenta-
tion network, as in Figure 3, where an arrow from argument X to argument
Y indicates that X attacks Y. For example, the fact that it is wrong to
infringe Carla’s right of property (B) attacks Hal’s justification (A).

C—»B—»

\/
—

Figure 3: Part of the argumentation network for the moral debate example

E

Some aspects of the argumentation network of Figure 3 are probabilis-
tic. For example, the question of whether Carla has abundant insulin (E)
depends on the time and is a matter of probability. The question of whether
Hal will be able to compensate Carla with replacement insulin in time (C) is
also a matter of probability. If Carla has abundant insulin, the chances that
Hal will be able to compensate her are higher. The probability matrices of
this Bayesian network (E—C) influence whether Hal is endangering Carla’s
life by stealing some of her insulin (D). In the same argumentation network,
some other aspects may change as the debate progresses and actions are
taken; the strength of one argument in attacking another may change in
time. This is a learning process that can be implemented using a neural
network in which the weights record the strength of the arguments. The
neural network for the set of arguments {A, B, D} is depicted in Figure 4.

The neural network of Figure 4 is an auto-associative single hidden layer
network with input (A,B,D), output (A,B,D) and hidden layer (h1,h2,h3).
Solid arrows represent positive weights and dotted arrows represent nega-
tive weights. Arguments are supported by positive weights and attacked by
negative ones. Argument A (input neuron A), for example, supports itself
(output neuron A) with the use of hidden neuron hl. Similarly, B supports



A B D

Figure 4: A neural network for arguments {A,B,D}

itself (via h2), and so does C (via h3). From the argumentation network,
B attacks A, and D attacks A. The attacks are implemented in the neural
network by the negative weights (see dotted lines in Figure 4) with the use
of h2 and h3.! The network of Figure 4 is a standard feedforward neural
network that can be trained, e.g., with the use of the standard Backprop-
agation learning algorithm [13]. Training would change the initial weights
of the network (the initial belief on the strength of arguments and counter-
arguments, which could be random), according to examples of input/output
patterns, i.e. examples of the relationship between arguments A, B and D.
Roughly speaking, if then the absolute value of the weight from neuron hl
to output neuron A is greater than the sum of the absolute values of the
weights from neurons h2 and h3 to A, one can say that argument A prevails
(in which case output neuron A should be activated in the neural network).

The key to running the network properly is to connect output neurons
to their corresponding input neurons using weights fixed at 1, so that the
activation of output neuron A, for example, is fed into the activation of input
neuron A the next time round. This implements chains such as A attacks B,
B attacks C, C attacks D, and so on, by propagating activations around the
network. The following example illustrates the dynamics of argumentation
neural networks (see [5] for details).

Example 2 Tuke the case in which an argument A attacks an argument B,
and B attacks an argument C, which in turn attacks A in a cycle. In order

!The hidden neurons are used in the network to provide a greater flexibility as to what
can be learned as combinations of the input neurons.



to implement this in a neural network, we need three hidden neurons (hi1, h2,
h3), positive weights to explicitly represent the fact that A supports itself (via
h1), B supports itself (via h2), and so does C (via h3). In addition, we need
negative weights from h1 to B, from h2 to C and from h8 to A to implement
attacks. If all the weights are the same in absolute terms, no argument wins,
as one would expect, and the network stabilises with none of output neurons
{A,B,C} activated. If, however, the value of argument A (i.e. the weight
from h1 to A) is stronger than the value of argument C (the weight from h3
to C, which is expected to be the same in absolute terms as the weight from
h3 to A), C cannot attack and defeat A. As a result, A is activated. Since
A and B have the same value, B is not activated, since the weights from
h1 and h2 to B will both have the same absolute value. Finally, if B is not
activated then C will be activated, and a stable state {A,C} will be reached
in the network. In Bench-Capon’s model [1], this is precisely the case in
which colour blue is assigned to A and B, and colour red is assigned to C
with blue being stronger than red. Note that the order in which we reason
does not affect the final result (the stable state reached). For example, if we
started from B successfully attacking C, C would not be able to attack A, but
then A would successfully attack B, which would this time round not be able
to successfully attack C, which in turn would be activated in the final stable
state {A,C}. This indicates that a neural implementation of this reasoning
process may, in fact, be advantageous from a purely computational point of
view due to neural networks’ parallel nature.

Now that we have two more concrete models of the arguments involved
in the moral debate example - a probabilistic model and a learning/action
model - we can reason about the problem at hand in a more realistic way.
We just need to put the two models together with the use of the fibring
methodology for networks. The (more abstract) argumentation network of
Figure 3 can be used to tell us how the networks (Bayesian and neural) are
to be fibred. From Figure 3, one can see that both arguments C' and E
attack argument D directly. As a result, we would like the probabilities in
our Bayesian network £ — C' to influence the activation of neuron D in the
neural network. Thus, network £ — C needs to be embedded into node
D. Again from the argumentation network (Figure 3), one can see that
argument C' also attacks argument B directly. As a result, we would like
the probabilities associated with C' to influence the activation of neuron B.
As before, this can be done by embedding Bayesian network C' into neuron
B. This produces the recursive network of Figure 5.
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P2

Figure 5: Fibring of Bayesian and neural networks applied to value-based

argumentation

Let us consider again the embedding of E—C into D. We have seen
that the embedding is guided by the arrow in the original argumentation
network. The arrow in an argumentation network indicates an attack. As a
result, the higher the probability P(C/E) in P2 is, the lower the activation
value of neuron D should be. Similarly, the higher the probability P(C) in
P1, the lower the value of B should be. Thus, we take o1 :sB =B —
P(C) and ¢2 : sP = sD — P(C/E), where P(X) [0,1] and s € (0,1).
This definition of the fibring functions completes the fibring.

In this case study, we have seen that the fibring of networks can be used
to combine different systems, yet maintaining their individual characteristics
and using their algorithms for learning and reasoning. In the combined
system, the new state of output neuron D (s2,) will then be fed into input
neuron D and affect the new state of A (through hidden neuron h3 and the
negative weight from h3 to A), such that the higher the value of D the lower
the value of A. The same will happen through B according to the dynamics
of the embedding and embedded networks, and this will allow the reasoning

as to whether Hal is justified or not to proceed.
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5 Conclusion

We have seen that the general methodology of fibring logical systems can be
applied also to sub-symbolic systems such as Bayesian and neural networks.
As in symbolic systems, where for example the fibring of two logics without
embedded implication may result in a logic with embedded implication, the
fibring of networks may result in embedded networks such as (A — B) — C,
which are strictly more expressive than standard networks (i.e.: do not have
a flattened counterpart network). This indicates, now from the point of view
of neural-symbolic integration, that fibring may be used to produce simple
neural network architectures (an important requirement for effective neural
networks learning) that represent powerful logics such as modal, temporal,
first order and higher order logics.

As an example, consider the network structure of Figure 6. The small
networks inside each agent may contain an intricate architecture used to
represent the knowledge of the agent at a time point. These networks may
relate to each other in a metalevel network where, in the horizontal axis, the
knowledge of the different agents at a time point is presented, and in the ver-
tical axis, the evolution of the agents’ knowledge through time is presented.
This yields a distributed, massively parallel, multi-agent system, created out
of recursive networks, in which space and time logics are incorporated (see
[6] for details). This illustrates how the general fibring methodology can be
applied to the integration of symbolic and sub-symbolic systems.

Neural-Symbolic Learning Systems [3], therefore, by providing transla-
tion algorithms and proofs of the correctness of such translations between
different neural networks and different logics, may serve as the underlying
framework for the progress of the study of fibring between networks and
logics, and of the self-fibring of networks. In this setting, an appropriate fib-
ring of two networks A and B, for example, would be one in which the logic
extracted from the fibred network is the same as the logic obtained from
fibring the logics extracted from networks A and B, respectively. There are
many avenues of research on the self-fibring of networks and, more generally,
on the integration of logics and networks. In this paper, I hope to have con-
vinced the reader that a way forward to develop the research on Artificial
Intelligence is to study hybrid systems in conjunction with Gabbay’s fibring
methodology.
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Figure 6: Fibring of knowledge and time in neural networks
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