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Abstract

As society contemplates AI’s impact on everyday life and work, the
opacity surrounding AI development since the release of ChatGPT con-
tributes to fears of existential risk and fuels claims of an upcoming AI
bubble burst. In this article, I argue that the emerging field of neu-
rosymbolic AI can address the lack of reliability of current AI. Instead
of ever increasing compute power, use of chain-of-thought prompting and
performing alignment via reinforcement learning, neurosymbolic AI pro-
motes model compression, symbolic knowledge reuse and alignment via
knowledge sharing. I discuss how the persisting problem of reliability can
be addressed by neurosymbolic AI with the use of formal reasoning, causal
inference and extrapolation towards artificial general intelligence.
Keywords: Neurosymbolic AI, Machine Learning, Logical Reasoning,
Generative AI.

1 Introduction

Neurosymbolic AI can be defined pragmatically as the application of the neu-
rosymbolic cycle, that is, the change of representation between what is com-
monly known as a neural network and what is commonly called a symbolic sys-
tem in AI. In neurosymbolic AI, given a symbolic system as input, a translation
algorithm will produce a corresponding neural network as output; an extrac-
tion algorithm will produce a symbolic description as output given a trained
neural network as input. Studying the various forms of symbolic and neural
representation and how they map to each other helps organize the field with
the derivation of expressiveness results and evaluations of the various existing
AI models within a domain of application.

Generally speaking, symbolic systems are defined around a formalization of
knowledge representation as required for formal reasoning. Neural networks,
by contrast, excel at learning from data as an efficient computational model.
As a result, neurosymbolic AI is well-placed to address the current question
of reasoning in neural networks, particularly Large Language Models (LLMs),
to produce AI systems that combine in a principled way statistical learning
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and formal reasoning with data and knowledge. Whether to improve system
performance, check for safety properties, increase fairness and trust or reduce
data and energy requirements, neurosymbolic AI approaches have been proposed
in recent years, obtaining promising results in each of these areas [14, 15]. Some
of these approaches seek to integrate formal reasoning into neural networks
[24]. Others make use of a hybrid system having a symbolic component and a
neural network component, such as a knowledge graph that communicates with
a transformer or graph neural network or an LLM whose outputs are checked by
a symbolic proof assistant [16]. In what follows, I will discuss and explore the
reach of both possibilities: neurosymbolic integration and neurosymbolic hybrid
systems.

2 Scaling Neurosymbolic AI

The value of neurosymbolic AI has been illustrated with the use of discrete
search at test time (e.g. Google’s AlphaGeometry system [30]) and the use of
model compression when distillation is combined with LLMs, e.g. DeepSeek
[11]. Despite its promise, neurosymbolic AI has not been adopted as main-
stream by the AI industry leaders. I will argue that the time is right to scale up
neurosymbolic AI as a decentralized alternative approach to current AI. Scaling
in neurosymbolic AI is very different from scaling up neural networks. The so-
called scale is all you need approach of neural networks requires unimaginable
amounts of data to satisfy an ever-increasing number of network parameters. It
brings with it very high energy costs and pressing questions around copyright
violation. Scaling in neurosymbolic AI is about increasing the number of times
that the neurosymbolic cycle is repeated. In this setting, a successful com-
bined application of data and knowledge should enable network compression by
knowledge reuse, instead of the ever increasing number of parameters required
by scale- is all you need. When the neurosymbolic cycle is applied successfully
to multiple tasks, it should require fewer data to produce the same results as
neural networks [9].

Starting from a trained network, the application of the neurosymbolic cycle
requires effective extraction of symbolic knowledge from the network, typically
using the network as an oracle to produce a simpler network (sometimes called a
student network [13]) or a decision tree (known to be equivalent to propositional
logic statements in disjunctive normal form) [22], a graph [19] or computer
program [5], or by querying (probing) the network to derive symbolic knowledge
or logic programs [32]. Any symbolic representation to be extracted should
be measured using a standard metric known as the fidelity of the symbolic
description with respect to the trained network [24], as discussed next.

2.1 The Knowledge Extraction Problem

Extraction of knowledge with precise semantics from neural networks is a major
challenge and the main bottleneck in the application of the neurosymbolic cycle

2



at scale. Knowledge extraction from large networks such as LLMs is a daunting
task, if not impossible, due to the sheer scale of current models. Approaches
seeking to extract knowledge from multimodal networks, combining for example
learning from text and images, seem to be more viable. That is because one
modality can help ground the explanation of the other modality, although this
too continues to be a major challenge [3].

An alternative to the task of explaining LLMs is offered by the application
of the neurosymbolic cycle. Knowledge can be extracted from small parts of the
network as they are being trained followed by reasoning about what has been
learned based on partial knowledge, followed by further training as more data
become available including in other related tasks (multitask learning). This
process permits measuring how well a symbolic description may approximate
parts of the neural network (fidelity), it is amenable to the presence of potentially
incorrect background knowledge that can be revised through learning, and it
allows domain experts to ask what-if questions and data scientists to intervene
during the process based on sound reasoning results [23].

2.2 Scale is not all we need

The neurosymbolic cycle uses network probing, knowledge extraction, manipu-
lation and distillation to obtain more compact networks with associated knowl-
edge, the opposite of scaling by increasing network size. Instead of scaling in the
traditional sense, scaling the neurosymbolic cycle is about applying this recipe:
learn a little, reason a little, repeat. Extraction of knowledge opens the possi-
bility of knowledge reuse and sharing across application domains. Knowledge
reuse reduces the training data requirements over time.

As a concrete simple example of knowledge sharing, consider the learning
of the transitive relation greater-than in computer vision, as used in [28]. Two
toy application domains are considered: a blocks world scenario where a tower
of blocks is taller than another, and a relational version of the MNIST data
set where two handwritten digits are provided as input and the goal is to learn
whether a digit is larger than the other. In both scenarios, the relation learned
is transitive: if one tower (or digit) is greater than another tower (or digit) and
this other tower (or digit) is greater than yet another tower (or digit) then the
first tower (or digit) must be greater than the last tower (or digit). Whether
the learned relation is called taller-than in the case of towers, larger-than in
the case of digits, or simply greater-than, irrespective of whether it applies to
images of blocks or digits, the general rule structure to be learned is the same:
given any three objects (X,Y, Z) of the same object type, if X is greater than
Y and Y is greater than Z then X is greater than Z.1

Differently from the towers of blocks where it can be inferred from the images
whether a tower is taller than another, nothing in the MNIST data set indicates
when a digit is greater than another. The greater-than relation is said to be at
a higher-level of abstraction. As with children who may benefit from learning

1In logic, ∀X,Y, Z((GreaterThan(X,Y ) ∧GreaterThan(Y, Z) → GreaterThan(X,Z)).
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arithmetic using blocks before moving to more abstract descriptions of digits
and digit manipulation, here too a neurosymbolic system capable of learning the
general rule should benefit from its application across domains. Interestingly,
and of great relevance to exemplifying the distinction between deep learning and
neurosymbolic AI, once a description can be obtained in symbolic logic given
a trained neural network, reasoning that is provably correct (as in the case of
the greater-than relation) is guaranteed for any number of objects, regardless
of the sizes of the towers or the magnitudes of the numbers being compared.
Knowledge reuse here should enable extrapolation beyond the observed data,
both within application domain and across domains having different abstraction
levels (as in the case of blocks and digits). Reasoning that makes use of the
symbolic descriptions extracted will be correct by design, learned from data but
richer than reasoning by similarity, as discussed next.

3 Causality and Extrapolation

In [25], Pearl argues that neural networks are only capable of handling the first
layer of his proposed three-layers of causal hierarchy: association (what is),
intervention (what if ), counterfactuals (why). This interpretation aligns with
John McCarthy’s earlier account of the capabilities of neural networks, which
McCarthy referred to as the propositional fixation of neural networks [20] in
response to Paul Smolensky’s neurosymbolic treatment of connectionism [27].

Even if neural networks were only capable of learning correlations, as argued
by Pearl and McCarthy, knowledge extraction offers an additional possibility of
model intervention by user interaction with the AI system. This includes even
counterfactual reasoning as illustrated in the next paragraph. Knowledge ex-
traction here only seeks to make sense of the network, not to represent the
real world, which is a much harder task. By iterating the neurosymbolic cy-
cle, measuring the results and providing feedback, one hopes to obtain better
approximations of the real world over time, but there are no guarantees. This
is why scaling up and validating the application of the neurosymbolic cycle is
so important. This way, the data-driven network learning is evaluated contin-
uously, with formal reasoning informing the network alignment process ahead
of further training with data. An example of how this is done was provided in
[32], combining Logic Tensor Networks [2] with Testing with Concept Activation
Vectors [18] used as a network probing technique for knowledge extraction.

Assume, for the sake of argument, that neural networks are only capable of
association, that is, neural networks are learners of correlations. Given a trained
network as input, suppose that a knowledge extraction algorithm produces the
following symbolic propositional knowledge as output: A → B (the activation of
a set of neurons denoted by A implies the activation of a set of neurons denoted
by B). With this knowledge extraction, it is clear that interventions become
possible. Given A → B, a data scientist or domain expert may ask the questions
What if B was false (¬B)? What is the minimal change I need to make to A
that would make the probability of B go below 0.5? Is B true only if A is

4



true (B → A)? (see [22] for a concrete application in medical diagnosis). Such
manipulations enable the extraction of counterfactual explanations from neural
networks, even if the networks themselves were just association learners (see
[34]). The symbolic descriptions A → B,¬B,B → A, ... denote the behavior
of the network up to fidelity error. The main argument here is that a rich
and compact extracted symbolic description can augment the capabilities of the
trained neural network from which it is extracted, as well as our understanding
of the network’s computations. In the first-order logic2 case, the provision of a
symbolic description allows for extrapolation of the data-driven model to infinite
domains. A first-order rule extracted from a trained network, e.g. ∀xP (x),
despite being obtained from the finite set of observed values of x, applies to any
value of variable x.3

There is something particularly relevant about the above change of repre-
sentation from distributed (combinations of partial functions) to localist (exe-
cutable symbolic descriptions) [32]. In this cycle of representation change, the
building over time of relevant abstract descriptions derives from learning with
data followed by reasoning about what has been learned. Done successfully,
this should produce compact representations with an ability to extrapolate to
new cases for which there is a shortage of data, as in the case where a recursive
definition is learned that is applicable in general (e.g. the well-known Tower of
Hanoi puzzle in AI whose learned description should be applicable to towers of
any height). In neurosymbolic AI, the symbolic descriptions are expected to be
obtained following the application of an efficient neural learning algorithm such
as gradient descent. Furthermore, user-validated or consolidated knowledge
from multiple experiments must be instilled back into an efficient and ideally
compact distributed network representation.

2John McCarthy coined the term propositional fixation of neural networks [20] to refer to
the challenge of first-order logic computation by neural networks. The computational efficiency
that we observe in neural networks may well be due to the possibility that this propositional
fixation is a theoretical limit of networks that are always grounded on data and would be,
therefore, incapable of representing first or higher-order logic.

3The neural networks that we are referring to are implemented e.g. in Python on a com-
puter simulating a Turing machine. Implementation in a given programming language does
not make the system neurosymbolic. Similarly, the fact that LLMs have symbols as input and
output does not make LLMs neurosymbolic. For this reason, our definition and analysis of
neurosymbolic AI takes place at the level of the common definitions of artificial neural net-
works and logical systems. First-order logic descriptions with logical variables, relations and
quantification represent infinite domains (e.g. ∀xP (x), x ∈ N). Such descriptions are typically
grounded onto propositional instances (e.g. enumerating the values of x) for the sake of effi-
cient learning. Generation of a computer program by an LLM that learned a partial recursive
function from data is a case-in-point. The network is grounded on the data, but the symbolic
output allows symbol manipulation to take place (and code to be executed, as part of what
became known as agentic AI ). Put together with symbolic manipulation, agentic AI becomes
neurosymbolic. The justified safety concerns around agentic AI stem from the unknown, un-
intended consequences of code execution without a formal semantics. Neurosymbolic AI seeks
to address this problem by offering a semantics to deep learning [24].
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4 Formal Reasoning with Neural Networks

Theoretical results about the reasoning capabilities of neural networks have
shown that various forms of reasoning can be carried out within neural networks
[8]. This is typically achieved by proving that the stable states of a network
correspond to a fixed-point semantics of a given logic formalism. It is very
different from the approach that became known as Chain-of-Thought (CoT)
reasoning [33]. Reasoning in LLMs with CoT prompting generates synthetic
data at run-time using the underlying transformer network itself in a chain that
breaks down a prompt into sub-prompts. It is reasonable to expect this increase
in test-time compute to improve reasoning performance because reasoning tasks
are typically solved by breaking down a problem into sub-problems. These LLM
models were claimed to “think before they answer”, when in fact very little is
known about how such systems improved on reasoning and code generation
benchmarks. Let’s assume that such LLMs are a kind of “GPT-Go” system,
a generative pre-trained transformer to which a tree search is incorporated in
the style of Google DeepMind’s earlier Alpha-Go system. The tree search uses
CoT prompting to break down the prompts into sub-prompts. The system’s
“thinking” time is presumably needed to build the tree for the CoT. Leaving
aside the practical question of how long users will be happy to wait for an
answer, by itself CoT offers a trial-and-error approach to reasoning. Without
some form of control of the learned function, small changes made to the input
can produce diverging results, therefore inconsistencies. When LLMs produce
such inconsistencies and make stuff up such as referring to non-existing articles
on the internet, they are said to hallucinate. The problem is two-fold: a lack
of reliability of the synthetic data generation, known as the curse of recursion
[26], and the combinatorial nature of the CoT input, best described as infinite
uses of finite means (a finite dictionary giving rise to infinite possible texts).
Small changes in input may produce diverging results due to the inevitable
accumulation of errors in the calculations of the neural network. As a result,
CoT will solve one reasoning task today, only to fail at a very similar reasoning
task tomorrow. This is best illustrated by the examples provided in [21] showing
that a mere change in naming convention can affect reasoning performance
dramatically.

By contrast with CoT, neurosymbolic integration seeks to control the archi-
tecture or the loss function of the network, instead of adjusting the input, in
order to learn to reason. Based on symbolic descriptions that are either learned
or already known, the combination of data and knowledge is expected to in-
crease reliability. Sound and approximate reasoning can be achieved in a neural
network either by engineering the network architecture in modular fashion or
by regularizing the loss function with respect to a formal language and intended
semantics [8]. Following a long tradition of combining neural networks with
symbolic knowledge, the task at hand is to ascribe meaning to neural computa-
tion by offering a formal semantics to neural networks.

Neurosymbolic hybrid systems have also shown improvement in reasoning
performance when learning is combined with search-based reasoning. In [22],
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knowledge distillation is used to build a decision tree from a trained neural
network, with the corresponding propositional logic descriptions of the tree used
to carry out formal reasoning at test time. The goal is to combine learning
and reasoning to make model development parsimonious by: (1) extracting
symbolic descriptions as learning progresses, (2) reasoning formally about what
has been learned, and (3) compressing the network as knowledge is instilled
back in the network. Measuring the capabilities of the neural network w.r.t.
formally-defined provably-sound reasoning offers a much needed measure of the
accumulation of errors within the network, as discussed below.

Consider again the above example of learning a transitive relation and query-
ing a trained network to extract first-order knowledge [2, 32]. This creates a
symbolic description derived from the data-driven trained network, but this de-
scription enables extrapolation to infinite domains. Once a first-order logic rule
such as ∀X,Y P (X,Y ) is extracted from a network, this rule is applicable to
any of the values that variables X and Y can take. Even though the rule might
have been learned in-distribution from a finite number of examples, it also ap-
plies out-of-distribution as in the case of the transitivity of towers of blocks and
MNIST digits seen earlier. Of course, this extrapolation requires a measure of
how well the rules approximate the neural network, the above fidelity measure,
which has been applied in practice e.g. in [34, 35].

4.1 Controlling the accumulation of errors

We have seen that knowledge extraction is a challenge and the bottleneck of
neurosymbolic integration. The above problem of the accumulation of errors in
a learning system was identified by Leslie Valiant in [31]. Auto-regressive mod-
els compound approximation errors as the calculations iterate. Left unchecked,
this causes the overall learning system to diverge rather than converge to the
intended stable states with well-defined semantics. The same problem is seen in
graph neural networks where addressing the so-called multi-hop reasoning prob-
lem - information retrieval requiring multiple reasoning steps, possibly across
different data sources - proved to be very difficult to solve. The prototypical
example of the multi-hop problem is the retrieval of the name of the mother of
the singer of Superstition, requiring a reasoning step (one hop) to conclude that
Stevie Wonder is the singer of Superstition, before another hop may retrieve
the name of Stevie Wonder’s mother. Reasoning over qualitative statements
described symbolically in a chain of rules such as A → B,B → C,C → D, ...
applies consistently across any number of steps (hops) in the chain. The prob-
lem is solved by avoiding the accumulation of errors seen in continuous space
that is required for efficient learning with gradient descent, with a mapping of
the neural network onto a discrete space of qualitative rules (the above chain)
where sound reasoning applies easily. This is what Leslie Valiant ultimately
referred to as reconciling the statistical (continuous) nature of learning and the
logical (discrete) nature of reasoning in [31]. In other words, the availability
of an approximate symbolic description for a trained network eliminates the
accumulation of errors typically seen in the numerical or probabilistic network.
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The symbolic rules are a qualitative approximation of the learned probabilistic
model. Symbolic computation controls the accumulation of errors by making
the application of the rules precise for the purpose of reasoning. Probability
distributions can be learned efficiently inside the networks, but don’t have to be
expressed symbolically in every case. Uncertainty can be expressed qualitatively
through rules with confidence values, e.g. in [29], or preference relations among
the rules that represent the underlying probabilistic learning model.

4.2 Integrating Reasoning and Learning towards AGI

We have seen increasing attention devoted in recent years to the question of rea-
soning in neural networks. The principled integration of reasoning and learning
in neural networks is a main objective of the field of neurosymbolic AI. When in
neurosymbolic AI an algorithm is used to translate a form of symbolic knowledge
into the architecture and initial set of weights of a neural network, the inten-
tion is to prove that the network is a massively-parallel model of computation
for exactly that knowledge. Trained with data on top of that knowledge, the
network is expected to produce better learning and generalization performance
(faster training and higher accuracy) than if it were trained from scratch with
data. Symbolic knowledge is provided to the network in the form of general
rules which are believed to be true in a domain, or rules which are expected to
be true across application domains. When rules are not available to start with,
they can be extracted from a trained network. When rules are contradicted
by data, they can be revised by learning and can’t be assumed to be always
true. This has been shown to offer a flexible framework with knowledge and
data combined, expected to lead in the long run to a better understanding of
the capabilities of complex networks used for learning and reasoning [10, 4, 12].

Although LLMs are a great engineering achievement, impressive at text sum-
marization, code generation and language translation, three years on from the
release of ChatGPT, it is clear that network hallucinations are not going away.
Fixing LLM’s reliability issues case-by-case with Reinforcement Learning with
Human Feedback (RLHF) has proved to be too costly, both financially and in
terms of human costs when bad mistakes are made. Far too many exceptions
exist in the data and a single bad hallucination is sufficient to destroy trust.
Consider LLMs’ ability to produce code in agentic AI mode, where the LLM
isn’t deployed as a stand-alone computer program, but in a loop where code is
executed and data is collected for further training, therefore blurring the distinc-
tion that currently exists between model training and run-time decision making
(a useful separation of concerns in the engineering of current large AI models).
One can see immediately how such self-improving LLM with agency without
guardrails may pose a serious risk to computational systems worldwide. Recent
experiments indicated that system self-impairing, rather than self-improving,
may actually take place, producing a degradation in performance over time.
There must be a better way, other than very costly, post-hoc RLHF of instilling
reliability into LLMs, a better way of achieving AI that can offer certain logical
guarantees to network training models.
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AI has been associated with the idea of an autonomous self-improving sys-
tem. This idea, in turn, has been associate with the term Artificial General
Intelligence (AGI) when applied across multiple complex tasks. LLMs may be
seen to be such a general purpose system because they will provide an answer
to any question. They do this by predicting the probability of the next word
(token) in a sentence. Having made a choice of the next word, LLMs will apply
the same calculations again, recursively, to predict the probability of the next
token, and so on. For this reason, LLMs are called auto-regressive models: the
learned function f is applied recursively to the input sequence to choose the
token at the next time point (xt+1) such that xt+1 = f(xt). Artificial General
Intelligence, however, is best measured by the ability to adapt to novelty from
only a few examples. It requires creativity, abstract reasoning and intuition to
identify the best choices among various alternatives, as when spotting the most
beautiful mathematical derivations among a number of all functionally correct
options. As such, AGI will require effective learning from fewer data than LLMs,
the ability to reason reliably about the knowledge that has been learned, the
extraction of compact (beautiful) descriptions from trained networks and the
consolidation of knowledge learned from multiple tasks, using analogy to enable
extrapolation to new situations at an adequate level of abstraction. Despite the
vast financial investment, scaling up of LLMs didn’t produce AGI as was hoped.
It is fair to say that the “scale is all you need” approach has failed.

An important distinction needs to be made between AGI and domain-specific
AI systems that already exist and can exhibit intelligence at the level of hu-
mans or higher. These domain-specific systems exhibit intelligence in special-
ized tasks: targeted medical diagnoses, protein folding, various closed-world
two-player strategy games, and offer huge potential value, discussed next in the
context of a brief historical perspective on the development of AI.

5 Neurosymbolic AI: The third wave of AI

The first wave of AI goes back to the 1980s and was said to be knowledge-based
and well-founded, but the systems of the time - expert systems - were inefficient
by comparison with deep learning. The second wave of AI from the 2010s used
data-driven and efficient deep neural networks. Based on distributed learning,
these networks were unsound if compared with knowledge-bases. Today, it is
clear that neural networks are a main component of AI, but the problems with
deep learning have been stubbornly difficult to fix. Next, I discuss how solving
these problems require the use of symbolic AI alongside neural networks, known
as the third wave of AI: neurosymbolic AI [7].

In order to understand the achievements and limitations of AI, it is helpful
to consider the AGI debate4 with its focus on what is missing from current AI
systems, i.e. the technological innovation that may bring about reliable general
purpose AI or even AGI. Simply put, such innovation may be described as the
ability to apply knowledge learned by a neural network from one task to a novel

4https://www.youtube.com/watch?v=JGiLz_Jx9uI.
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task without requiring too much data. With AI experts John Hopfield and
Geoff Hinton awarded the 2024 Nobel Prize for Physics, and AI expert Demis
Hassabis awarded the 2024 Nobel Prize for Chemistry (with David Baker and
John Jumper), it can be said that the era of computation as the language of
science has begun. Hassabis led the team at Google DeepMind that created Al-
phaFold, an AI model capable of predicting with high accuracy the 3D structure
of proteins given their amino acid sequence. AlphaFold is arguably the greatest
achievement of AI to date. It is squarely an application specific (also called
narrow) AI system, not general purpose AI. From particle physics to drug dis-
covery, energy efficiency and novel materials, AI is being adopted as the process
by which scientific research is carried out, with vast potential for very relevant
targeted breakthroughs to take place in the near future. However, the lack of
a description or an explanation capable of conveying a deeper understanding of
the solutions being offered by AI is very unsatisfactory. Computer scientists in
a great feat of engineering will solve to a high degree of accuracy very challeng-
ing problems in science without necessarily improving our understanding of the
solutions being discovered. That will be the case if those solutions are provided
by very large neural networks, trained on vast amounts of data, that are not
humanly possible to inspect. This unsatisfactory lack of explainability of gener-
ative AI coupled with the risks of agentic AI confirm the need for neurosymbolic
AI. As discussed, neurosymbolic AI uses the technology of knowledge extraction
to interpret, ask what-if questions and if necessary intervene in the AI system,
controlling learning in ways that can offer correctness or fairness guarantees
and, with this process, producing a more compact and data efficient system. In
2025, we start to see a shift towards such explainable neurosymbolic AI systems
being deployed in domain-specific AI solutions [30, 6].

The history of neurosymbolic AI goes back more than 20 years5. Already
around the turn of the century, the importance of artificial neural networks as
an efficient computational model for learning and reasoning was obvious to a
small group of researchers [1]. The value of symbol manipulation and abstract
reasoning afforded by symbolic logic was also clear to that group of people.
Many others before the turn of the century contributed to the development of
neurosymbolic AI, even if not specifically within the field. In fact, it could be
argued that neurosymbolic AI starts together with connectionism itself, judging
from the title of the 1943 paper by McCulloch and Pitts, A Logical Calculus of
the Ideas Immanent in Nervous Activity, and with the work of John von Neu-
mann that led to his 1952 Lectures on Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components. Their work indicate that the
gap between neural network’s continuous representation and logic’s discreteness
was not seen as a large gulf that later separated AI into symbolic and sub-
symbolic AI. Even Alan Turing’s 1948 Intelligent Machinery introduced a type
of neural network called a B-type machine. All of this, of course, before the term
Artificial Intelligence was coined ahead of the now famous Dartmouth Work-
shop in 1956. After Dartmouth the field separated in two: symbolic AI (with

5See www.nesy-ai.org
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its expert systems becoming very successful in the 1980’s) and connectionism
(which led to the exceptional success of deep networks since 2015). This very
unfortunate separation of the field in two has slowed down progress as the re-
search community went their separate ways with different conferences, journals
and associations.

I argue that the time is now right for revisiting the approaches of the founding
fathers of computer science and developing neurosymbolic AI that is fit for the
21st century. As a concrete step in this direction, I refer the reader to [29] which
takes a variation of the neural networks for which the Nobel Prize in Physics
was awarded in 2024 and provides a constructive proof of the correspondence
between such networks and propositional logic.

6 Conclusion

Agentic AI will require guardrails once it is allowed to take action on anyone’s
behalf, even if that action is something as simple as organizing a holiday, paying
for the air tickets and deciding on the sightseeing tour schedule. Three years
from the release of ChatGPT, LLMs continue to hallucinate even with skyrock-
eting costs of post-hoc model alignment. AI will require systems that never
hallucinate, that reason reliably, that can handle novelty and treat exceptions
requiring less data.

Neurosymbolic AI integrates learning and reasoning as part of model devel-
opment by following a development cycle known as the neurosymbolic cycle:
(i) extract symbolic knowledge descriptions from partially trained networks, (ii)
reason formally about what has been learned, (iii) compress the network by
instilling consolidated knowledge back into the network, closing the cycle ahead
of further training with data. Reasoning in neurosymbolic AI follows the tra-
dition of knowledge representation founded on logic and formal definitions of a
semantics for deep learning [24], rather than based on informal evaluations of
reasoning capabilities using benchmark data. Evaluating neural networks with
respect to formally-defined, sound or approximate reasoning allows for a much
needed controlling of the accumulation of errors within the network.

The use of distillation is a step in the direction of neurosymbolic AI in that
distillation is a form of knowledge extraction to obtain network compression
(see steps (i) and (iii) of the neurosymbolic cycle). The use of test-time com-
pute is also a step in the direction of neurosymbolic AI because reasoning is, in
essence, implemented in a computer by means of a search process (step (ii) of the
neurosymbolic cycle). However, there are many forms of knowledge representa-
tion and reasoning to be mapped onto networks (analogy, modal, epistemic and
higher-order logic, temporal, normative, abductive, abstract reasoning). Dis-
tillation without explicit knowledge, that is, without semantic description, is
limited in what it can offer to reliability, explanation, knowledge reuse, transfer
and curriculum learning.

Broadly speaking, neurosymbolic AI is tasked with the theory, algorithms
and tools capable of establishing a principled understanding of the correspon-
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dence that exists between neural and symbolic representations. Ultimately, the
outcome of neurosymbolic AI has to include achieving safety via verifiable de-
scriptions of network modules, energy efficiency via parsimonious learning from
data and knowledge, fairness by imposing requirements specified in logic, and
trust by empowering users of AI with the help of explainability and improved
system interaction.

AI will soon require systems that adapt to novelty from only a few examples,
that check their understanding, that can multi-task and reuse knowledge to
improve data efficiency and that can reason in sophisticated ways using first-
order and higher-order logic. Adapting to novelty requires an ability to create
abstract, simple representations (whether in the brain or the mind) but also to
change representations from time to time as the need arises [17]. Change of
representation allows looking at a problem from a different angle to obtain new
insight and handle analogous situations. An explicit description is one that can
be manipulated by asking the question what might happen if I were to make
this change?, without making the change. Hence, a description is required to
be amenable to symbolic manipulation as much as a neural network is required
to handle data efficiently.

Finally, AI is not only changing the world of employment, but also educa-
tion. Learning at schools and universities will need to change in order to instill
a culture of critical and creative thinking from the start, of learning from the
history of science to cultivate the values of scientific inquiry, reasoning under
uncertainty and skeptical interrogation. AI will soon be taught at schools with
the goal of creating a more discerning and informed society. Leaders, decision
makers and domain experts should probably also learn the basics of AI. Learn-
ing whether or not to trust the output of LLMs is hard and will require the
help of technological advancements such as explainable and neurosymbolic AI,
but also a new economic and social contract, empowering local democracy, ac-
countability, requiring fast policy decisions in a very fast-changing world. The
next decade of research in neurosymbolic AI should make key strides towards
addressing these era-defining challenges.
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