
Fibring Neural Networks

Artur S. d’Avila Garcezδ and Dov M. Gabbayγ

δDept. of Computing, City University London, EC1V 0HB, UK aag@soi.city.ac.uk
γDept. of Computer Science, King’s College London, WC2R 2LS, UK dg@dcs.kcl.ac.uk

Abstract

Neural-symbolic systems are hybrid systems that in-
tegrate symbolic logic and neural networks. The goal
of neural-symbolic integration is to benefit from the
combination of features of the symbolic and connec-
tionist paradigms of artificial intelligence. This pa-
per introduces a new neural network architecture based
on the idea of fibring logical systems. Fibring allows
one to combine different logical systems in a principled
way. Fibred neural networks may be composed not
only of interconnected neurons but also of other net-
works, forming a recursive architecture. A fibring func-
tion then defines how this recursive architecture must
behave by defining how the networks in the ensemble
relate to each other, typically by allowing the activation
of neurons in one network (A) to influence the change
of weights in another network (B). Intuitively, this can
be seen as training network B at the same time that
one runs network A. We show that, in addition to be-
ing universal approximators like standard feedforward
networks, fibred neural networks can approximate any
polynomial function to any desired degree of accuracy,
thus being more expressive than standard feedforward
networks. Keywords: Neural-Symbolic Integration,
Fibring Systems, Recursion.

Introduction
Neural-Symbolic integration concerns the use of sym-
bolic knowledge in the neurocomputing paradigm of Ar-
tificial Intelligence (AI) (d’Avila Garcez, Broda, & Gab-
bay 2002; 2001). Its goal is to benefit from the integra-
tion of the symbolic and connectionist paradigms of AI,
by providing either a logical characterisation of a con-
nectionist system, a connectionist, massively parallel
implementation of a logic, or a hybrid system bringing
together features from neural networks and symbolic
AI (Cloete & Zurada 2000; d’Avila Garcez, Broda, &
Gabbay 2002; Holldobler, Kalinke, & Storr 1999). To-
wards this end, efficient, parallel and distributed rea-
soning and learning capabilities should be at the core
of any Neural-Symbolic system and, one may argue, of
any AI system. Ultimately, our goal should be to pro-
duce an effective AI system with added reasoning and
Copyright c© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

learning capabilities, as recently pointed out by Valiant
(Valiant 2003) as a key challenge for computer science.

Neural-Symbolic systems that use simple neural net-
works, such as single hidden layer feedforward or re-
current networks (Haykin 1999), typically only man-
age to represent and reason about propositional sym-
bolic knowledge or if then else rules (Boutsinas & Vra-
hatis 2001; d’Avila Garcez, Broda, & Gabbay 2002;
Fu 1994; Pinkas 1995; Towell & Shavlik 1994). On
the other hand, Neural-Symbolic systems that are ca-
pable of representing and reasoning about more ex-
pressive symbolic knowledge, such as modal logic and
first order logic, normally are less capable of learning
new concepts efficiently (Holldobler, Kalinke, & Storr
1999; Sun & Alexandre 1997; Shastri 1999; Kijsirikul,
Sinthupinyo, & Chongkasemwongse 2001). There is
clearly a need to strike a balance between the reason-
ing and learning capabilities of Neural-Symbolic sys-
tems. Either the simple networks to which, for exam-
ple, the efficient backpropagation learning algorithm is
applicable to (Rumelhart, Hinton, & Williams 1986;
Werbos 1990) must be shown to represent languages
more expressive than propositional logic, or the com-
plex connectionist systems that are capable of repre-
senting first order and higher order logics, such as for
example CHCL (Holldobler & Kurfess 1992), must have
efficient learning algorithms developed for them. This is
necessary because real-world applications such as fail-
ure diagnosis, engineering and bioinformatics applica-
tions, will require the use of languages more expressive
than propositional logic. Bioinformatics, in particular,
very much requires the ability to represent and reason
about relations as used in first order logic (Angelopou-
los & Muggleton 2002).

In this paper, we adopt the approach of extend-
ing simple networks that use backpropagation in or-
der to allow for higher expressive power. We do
so by following Gabbay’s Fibring methodology (Gab-
bay 1999), in which several different systems such as
logical systems of space and time, neural networks
and Bayesian networks (Williamson & Gabbay 2004;
d’Avila Garcez 2004; d’Avila Garcez & Lamb 2004),
may be put to work together in a co-ordinated man-

ner to solve a particular problem.1 To this end, we
know that a fundamental aspect of symbolic computa-
tion lies in the ability to implement recursion. As a
result, to make neural networks behave like logic, we
need to add recursion to it by allowing networks to be
composed not only of interconnected neurons but also
of other networks. Figure 1 exemplifies how a network
(B) can be embedded recursively into another network
(A). Of course, the idea of fibring is not only to organ-
ise networks as a number of sub-networks (A, B, etc).
In Figure 1, for example, hidden neuron X of Network
A is expected to be a neural network (Network B) in
its own right. The input, weights and output of Net-
work B may depend on the activation state of neuron
X, according to what is known as a fibring function ϕ.
One such function may be to multiply the weights of
Network B by the input potential of neuron X.

.

.

.

.

.

.

.

.

.

.

.

.

Network A

Network B

X

Figure 1: Fibring Neural Networks

Most of the work on how to implement recursion
in neural networks has concentrated on the use of re-
current auto-associative networks and symmetric net-
works to represent formal grammars (Elman 1990;
Touretzky & Hinton 1988; Smolensky 1990; 2000; Pol-
lack 1990). In general, the networks learn how to sim-
ulate a number of recursive rules by similarity with a
set of examples, and the question of how such rules are
represented in the network is treated as secondary. In
this paper, we give a different treatment to the sub-
ject, looking at it from a Neural-Symbolic integration
perspective (d’Avila Garcez, Broda, & Gabbay 2002).
The idea is to be able to represent and learn expres-
sive symbolic rules, such as rules containing embedded
implication of the form (a → b) → c, where (a → b)

1For example, a robot’s motion control system may re-
quire a logic of space, a logic of time, and a visual pattern
recognition, neural networks-based system.

would be encoded into network B, and then X → c,
with X = (a → b), would be encoded into network A
so that the fibred network represents (a → b) → c.

In what follows, we introduce and define fibred neu-
ral networks (fNNs), and show that, in addition to be-
ing universal approximators2, fNNs can approximate
any polynomial function in an unbounded domain, thus
being more expressive than standard feedforward net-
works. Briefly, this can be shown by noting that fibred
neural networks compute, e.g., the function f(x) = x2

exactly for any given input x in R, as opposed to
feedforward networks which are restricted to compact
(i.e. closed and bounded) domains (Cybenco 1989;
Hornik, Stinchcombe, & White 1989). Intuitively, fib-
ring neural networks can be seen as the running and
training of neural networks at the same time. In Figure
1, for example, at the same time that we run network
A, we perform a kind of learning in network B because
we allow the weights of B to change according to the
fibring function. In other words, object-level network
running and meta-level network training are occurring
simultaneously in the same system, and this is respon-
sible for the added expressiveness of the system.

This paper is organised as follows. Firstly, we intro-
duce and exemplify fibred neural networks. Then, we
define the architecture and dynamics of fibred networks
precisely, and show that fibred networks approximate
polynomials. Finally, we conclude and discuss direc-
tions for future work.

Examples of Fibring

The main idea behind fibring neural networks is to al-
low single neurons to behave like entire embedded net-
works according to a fibring function ϕ. This function
qualifies the function computed by the embedded net-
work so that the embedded network’s output depends
on ϕ. For example, consider Network A and its em-
bedded network (Network B) in Figure 1. Let WA and
WB be the set of weights of Network A and Network
B, respectively. Let fWA

(iA) be the function computed
by Network A, and gWB

(iB) be the function computed
by Network B, where iA and iB are the input vectors
of Networks A and B, respectively. If Network B is em-
bedded into neuron X of Network A with fibring func-
tion ϕ, the function computed by Network B becomes
gW′

B
(iB), where W′

B = ϕ(WB), and then the output
of neuron X becomes the output of Network B, as the
following example illustrates.

Consider the two simple networks (C and D) of Fig-
ure 2. Let us assume, without loss of generality, that in-
put and output neurons have the identity as activation
function, while hidden neurons have h(x) = tanh(x)
as activation function (Hornik, Stinchcombe, & White
1989). We use bipolar inputs ij ∈ {−1, 1}, Wjk ∈ R,
and outputs ok ∈ (−1, 1). The output of Network C

2Universal approximators, such as feedforward neural
networks, can approximate any (Borel) measurable function
in a compact domain to any desired degree of accuracy.

is oC = W3C .h(W1C .i1C + W2C .i2C), and the output
of Network D is oD = W3D.h(W1D.i1D + W2D.i2D).
Now, let Network D be embedded into Network C as
shown in Figure 2. This indicates that the input po-
tential of neuron Y will influence D according to fibring
function ϕ. Let us refer to the input potential of Y
as I(Y).3 In addition, this indicates that the output
of D (oD) will influence C (in this example, only the
output of C). Suppose ϕ(WD) = I(Y) · WD, where
WD = [W1D,W2D,W3D], i.e. ϕ multiplies the weights
of D by the input potential of Y. Let us use oC and
oD to denote the outputs of networks C and D, respec-
tively, after they are fibred. oD is obtained by applying
ϕ to WD and calculating the output of such a network,
as follows: oD = (I(Y).W3D) · h((I(Y).W1D).i1D +
(I(Y).W2D).i2D). oC is obtaining by taking oD as the
output of neuron Y. In this example, oC = oD. No-
tice how network D is being trained (as ϕ changes its
weights) at the same time that network C is running.

Clearly, fibred networks can be trained from exam-
ples in the same way that standard feedforward net-
works are (for example, with the use of backpropagation
(Rumelhart, Hinton, & Williams 1986)). Networks C
and D of Figure 2, for example, could have been trained
separately before being fibred. Network C could have
been trained, e.g., with a robot’s visual system, while
network D would have been trained with its planning
system. For simplicity, we assume for now that, once
defined, the fibring function itself should remain un-
changed. Future extensions of fibring neural networks
could, however, consider the task of learning fibring
functions as well.

Notice that, in addition to using different fibring
functions, networks can be fibred in a number of dif-
ferent ways as far as their architectures are concerned.
The networks of Figure 2, for example, could have
been fibred by embedding Network D into an input
neuron of Network C (say, the one with input i1C).
In this case, outputs oD and oC would have been
oD = ϕ(W3D) · h(ϕ(W1D).i1D + ϕ(W2D).i2D), where
ϕ is a function of WD (say, ϕ(WD) = i1C · WD), and
then oC = W3C .h(W1C .oD + W2C .i2C).

Let us now consider an even simpler example that,
nevertheless, illustrates the power of fibring neural net-
works. Consider two networks A and B, both with a
single input neuron (iA and iB , respectively), a single
hidden neuron, and a single output neuron (oA and oB ,
respectively). Let all the weights in both networks have
value 1, and let the identity (f(x) = x) be the activation
function of all the neurons (including the hidden neu-
rons). As a result, we simply have oA = f(W2A ·f(W1A ·
f(iA))) = iA and oB = f(W2B · f(W1B · f(iB))) = iB ,
where W1A and W2A are the weights of network A, and
W1B and W2B are the weights of network B. Now, as-
sume we embed network B into the input neuron of

3Note that, in this particular example, I(Y) = oC due to
the use of the identity as activation function in the output
layer.

Network C

i1C

i2C

W1C

W2C

W3C OC

i1D

i2D

W1D

W2D

W3D OD

ϕ

Network D

Y

Figure 2: Fibring two simple networks

network A. We obtain oB = f(ϕ(W2B) · f(ϕ(W1B) ·
f(iB))), and then oA = f(W2A · f(W1A · oB)). Since
f(x) = x, we have oB = ϕ(W2B) · ϕ(W1B) · iB and
oA = W2A · W1A · oB . Now, let our fibring function be
ϕ(WA, iA,WB) = iA ·WB , where WB = [W1B ,W2B].
Since W1A,W2A,W1B and W2B are all equal to 1, we
obtain oB = iA · iA · iB and oA = oB . This means that
if we fix iB = 1, the output of network A (fibred with
network B) will be the square of its input. As a result,
if the following sequence is given as input to A (fibred
with B): n, 1/n, n + 1, 1/(n + 1), n + 2, 1/(n + 2), ... for
n ∈ R, the corresponding output sequence of A will be:
n2, 1, (n+1)2, 1, (n+2)2, 1, ... Note that, input n changes
the weights of B from 1 to n, input 1/n changes the
weights of B back to 1, input n+1 changes the weights
of B from 1 to n+1, input 1/(n+1) changes the weights
of B back to 1, and so on.4 The interest in this sequence
lies in the fact that, for alternating inputs, the square of
the input is computed exactly by the network for any in-
put in R. This illustrates an important feature of fibred
neural networks, namely, their ability to approximate
functions in an unbounded domain (Henderson 2002;
Hines 1996). This results from the recursive charac-
teristic of fibred networks as indicated by the fibring
function, and will be discussed in more detail in the
following section. Note that, in practice, the fibring
function ϕ is to be defined according to the problem
domain.

Fibred Neural Networks
In this section, we define fibred neural networks (fNNs)
precisely, we define the dynamics of fNNs, and we show

4Since the fibring function changes the weights of the em-
bedded network, we use 1/n, 1/n+1, 1/n+2... to reset the
weights back to 1 during the computation of the sequence.

that fNNs can approximate unbounded functions.

Fibring Definition
For the sake of simplicity, we restrict the definition of
fibred networks to feedforward networks with a single
output neuron. We also concentrate on networks with
linear input and linear output activation functions, and
either linear or sigmoid hidden layer activation function.
We believe, however, that the principles of fibring could
be applied to any artificial neural network model.5 In
what follows, we allow not only two networks, but any
number of embedded networks to be nested into a fibred
network. We also allow for an unlimited number of
hidden layers per network.
Definition 1 (Fibring Function) Let A and B be two
neural networks. A function ϕn : I → W is called a
fibring function from A to B if I is the input potential
of a neuron n in A and W is the set of weights of B.
Definition 2 (Fibred Neural Networks) Let A and B
be two neural networks. We say that B is embedded into
A if ϕn is a fibring function from A to B, and the output
of neuron n in A is given by the output of network B.
The resulting network, composed of networks A and B,
is said to be a fibred neural network.

Note that many networks can be embedded into a sin-
gle network, and that networks can be nested so that
network B is embedded into network A, network C is
embedded into network B, and so on. The resulting fi-
bred network can be constructed by applying Definition
2 recursively, e.g., first to embed C into B and then to
embed the resulting network into A.
Example 3 Consider three identical network architec-
tures (A, B and C), each containing a single linear in-
put neuron, a single linear hidden neuron, and a single
linear output neuron, as depicted in Figure 3. Let us
denote the weight from the input neuron to the hidden
neuron of network N , N ∈ {A,B,C}, by Wh

N , and the
weight from the hidden neuron to the output neuron of
N by W o

N . Assume we embed network C into the out-
put neuron (Y) of network B, and embed the resulting
network into the output neuron (X) of network A (ac-
cording to Definition 2), as shown in the figure. Let
ϕB denote the fibring function from A to B, and ϕC

denote the fibring function from B to C. As usual, let
us define ϕB = I(X) ·WB and ϕC = I(Y) ·WC , where
I(X) is the input potential of neuron X, I(Y) is the in-
put potential of neuron Y, WB denotes the weight vec-
tor [Wh

B ,W o
B] of B, and WC denotes the weight vector

[Wh
C ,W o

C] of C. Initially, let Wh
A =

√
a, where a ∈ R

+,
and W o

A = Wh
B = W o

B = Wh
C = W o

C = 1. As a re-
sult, given input x to A, we have I(X) = x

√
a. Then,

ϕB will be used to update the weights of network B to
Wh

B = x
√

a and W o
B = x

√
a. If we had only networks A

and B fibred, input y = 1, for example, would then pro-
duce an output oB = ax2 for network B, and the same

5Particularly interesting would be to consider fibring re-
current networks (i.e. networks with feedback connections).

(oA = ax2) for network A. Since network C is also
embedded into the system, given input y to network B,
fibring function ϕC will be used to update the weights of
network C, using I(Y) as a parameter. Thus, if y = 1,
we have I(Y) = ax2, and the weights of network C will
be changed to Wh

C = ax2 and W o
C = ax2. Finally, if

z = 1, the output of network C (and then of networks B
and A as well) will be a2x4. This illustrates the compu-
tation of polynomials in fNNs. The computation of odd
degree polynomials and of negative coefficients can be
achieved by adding more hidden layers to the networks,
as we will see in the sequel.

A

x
W
h

OA

ϕB

W
o

B

y
W
h

OB

ϕC

W
o

C

z
W
h

OC
W
o

X

Y

Figure 3: Nesting Fibred Networks

Fibring Dynamics
Example 3 also illustrates the dynamics of fibred net-
works. Let us now define such a dynamics precisely.

Definition 4 (Nested fNNs) Let N1, N2,..., Nn be
neural networks. N1, N2,..., Nn form a nested fibred
network if Ni is embedded into a neuron of Ni−1 with
a fibring function ϕi for any 2 ≤ i ≤ n. We say that
j − 1 (1 ≤ j ≤ n) is the level of network Nj.

Definition 5 (fNNs Dynamics) Let N1, N2, ..., Nn be
a nested fibred network. Let ϕi be the fibring function
from Ni−1 to Ni for 2 ≤ i ≤ n. Let ij denote an input
vector to network Nj, Wj the current weight vector of
Nj , In(ij) the input potential of Nj’s neuron nj into
which Nj+1 is embedded given input vector ij ,Onj

the
output of neuron nj, and fWj

(ij) the function computed
by network Nj given Wj and ij as in the standard way
for feedforward networks. The output oj of network Nj

(1 ≤ j ≤ n − 1) is defined recursively in terms of the
output oj+1 of network Nj+1, as follows:

Wj+1 := ϕj+1(I(ij),Wj+1), 1 ≤ j ≤ n − 1

on = fWn
(in)

oj = fWj
(ij ,Onj

:= oj+1)

where fWj
(ij ,Onj

:= oj+1) denotes the function com-
puted by Nj by substituting the output of its neuron nj

by the output of network Nj+1.

Fibring Expressiveness
Now that fNNs have been defined, we proceed to show
that, in addition to being universal approximators,
fNNs can approximate any polynomial function, and
thus are more expressive than standard feedforward
neural networks.

Proposition 6 Fibred neural networks can approxi-
mate any (Borel) measurable function in a compact do-
main to any desired degree of accuracy (i.e. fNNs are
universal approximators).
proof: This follows directly from the proof that single
hidden layer feedforward neural networks are universal
approximators (Hornik, Stinchcombe, & White 1989),
together with the observation that level zero networks
are a generalisation of single hidden layer feedforward
networks. �
Proposition 7 Fibred neural networks can approxi-
mate any polynomial function to any desired degree of
accuracy.6
proof: Consider the level zero network N of Figure 4.
Let n + 1 (n ∈ N) be the number of input neurons of
N, 0 ≤ i ≤ n, ai ∈ R. Now, embed n − 1 networks into
the input neurons of N, all at level 1, as indicated in
Figure 4 for networks A, B and C, such that network
A is embedded into neuron A of network N, network
B is embedded into neuron B of N, and network C is
embedded into neuron C of N. Each of the n−1 embed-
ded networks will be used to represent x2, x3, ..., xn. In
Figure 4, A represents x2, B represents x3, and C rep-
resents xn. In the ensemble, all networks, including N,
contain linear neurons. A network Nj that represents
xj (2 ≤ j ≤ n) contains two input neurons (to allow
the representation of aj ∈ R), j − 1 hidden layers, each
layer containing a single hidden neuron (let us number
these h1, h2, ..., hj−1), and a single output neuron. In
addition, let aj/2 be the weight from each input neuron
to h1, and let 1 be the weight of any other connection
in Nj. We need to show that Nj computes ajx

j. From
Definition 5, given input x to N and ϕj = x · Wj, the
weights of Nj are multiplied by x. Then, given input
(1, 1) to Nj, neuron h1 will produce output ajx, neuron
h2 will produce output ajx

2, and so on. Neuron hj−1

will produce output ajx
j−1, and the output neuron will

produce ajx
j. Finally, by Definition 2, the neuron in N

6Recall that, differently from functions in a compact do-
main, polynomial functions are not bounded.

into which Nj is embedded will present activation ajx
j,

and the output of N will be
∑

j ajx
j . The addition of

a1x and a0 is straightforward (see network N in Figure
4), completing the proof that fNNs compute

∑
i aix

i. �

1

x

a0

a1

A
x 1

B
x

1

C
x

1.
.
.

A
1

1

a2/2
1

a2x
2

a2/2
ϕA = x.WA

B
1

1

a3/2

1
a3x

3

a3/2
ϕB = x.WB

C

anx
n

1

1

an/2

an/2
ϕC = x.WC

1

…

Level 0

Level 1

Level 1

Level 1

h1

h1 h2

hn-1
1

h1

N

Σi(aix
i)

Figure 4: Computing polynomials in fibred networks

Conclusion and Future Work
This paper has introduced a new neural network ar-
chitecture named fibred neural networks (fNNs), which
combines a number of standard feedforward neural net-
works (that can be trained using backpropagation) with
the use of a fibring function. We have shown that, in
addition to being universal approximators, fNNs can
approximate any polynomial function, therefore being
more expressive than standard feedforward neural net-
works.

The question of which logics could be represented in
fNNs is an interesting open question. Our next step
is to use the recursive, more expressive architecture of
fNNs to perform symbolic computation, giving fNNs
a Neural-Symbolic characterisation. We expect to be

able to use fNNs to represent variables and to learn
and reason about relational knowledge.

Another interesting work to pursue would be to define
how recurrent neural networks could be fibred. Recur-
rent networks already possess a limited ability to com-
pute unbounded functions (Henderson 2002). A com-
parison of the computational capabilities of these two
architectures would be highly desirable.

Finally, the questions of how different networks
should be fibred and which fibring functions should be
used is a very important one when it comes to practical
applications of fNNs. This is clearly domain dependent,
and an empirical evaluation of fNNs in comparison with
standard neural networks would also be required.

Acknowledgments
We are grateful to Stefan Rueger for very useful discus-
sions. Artur Garcez is partly supported by the Nuffield
Foundation.

References
Angelopoulos, N., and Muggleton, S. H. 2002. Machine
learning metabolic pathway descriptions using a proba-
bilistic relational representation. Electronic Transactions
in Artificial Intelligence 6. MI-19.

Boutsinas, B., and Vrahatis, M. N. 2001. Artificial non-
monotonic neural networks. Artificial Intelligence 132:1–
38.

Cloete, I., and Zurada, J. M., eds. 2000. Knowledge-Based
Neurocomputing. The MIT Press.

Cybenco, G. 1989. Approximation by superposition of
sigmoidal functions. In Mathematics of Control, Signals
and Systems 2. 303–314.

d’Avila Garcez, A. S., and Lamb, L. C. 2004. Reason-
ing about time and knowledge in neural-symbolic learn-
ing systems. In Thrun, S.; Saul, L.; and Schoelkopf, B.,
eds., Advances in Neural Information Processing Systems
16, Proceedings of the NIPS 2003 Conference. Vancouver,
Canada: MIT Press.

d’Avila Garcez, A. S.; Broda, K.; and Gabbay, D. M. 2001.
Symbolic knowledge extraction from trained neural net-
works: A sound approach. Artificial Intelligence 125:155–
207.

d’Avila Garcez, A. S.; Broda, K.; and Gabbay, D. M. 2002.
Neural-Symbolic Learning Systems: Foundations and Ap-
plications. Perspectives in Neural Computing. Springer-
Verlag.

d’Avila Garcez, A. S. 2004. On Gabbay’s fibring methodol-
ogy for bayesian and neural networks. In Laws and Models
in Science, European Science Foundation (ESF). King’s
College London.

Elman, J. L. 1990. Finding structure in time. Cognitive
Science 14(2):179–211.

Fu, L. M. 1994. Neural Networks in Computer Intelligence.
McGraw Hill.

Gabbay, D. M. 1999. Fibring Logics. Oxford Univesity
Press.

Haykin, S. 1999. Neural Networks: A Comprehensive
Foundation. Prentice Hall.

Henderson, J. 2002. Estimating probabilities of unbounded
categorization problems. In Proceedings of European Sym-
posium on Artificial Neural Networks, 383–388.

Hines, J. W. 1996. A logarithmic neural network architec-
ture for unbounded non-linear function approximation. In
Proceedings of IEEE International Conference on Neural
Networks.

Holldobler, S., and Kurfess, F. 1992. CHCL: A connec-
tionist inference system. In Fronhofer, B., and Wright-
son, G., eds., Parallelization in Inference Systems, 318–
342. Springer.

Holldobler, S.; Kalinke, Y.; and Storr, H. P. 1999. Approx-
imating the semantics of logic programs by recurrent neu-
ral networks. Applied Intelligence Journal, Special Issue on
Neural Networks and Structured Knowledge 11(1):45–58.

Hornik, K.; Stinchcombe, M.; and White, H. 1989. Mul-
tilayer feedforward networks are universal approximators.
Neural Networks 2:359–366.

Kijsirikul, B.; Sinthupinyo, S.; and Chongkasemwongse, K.
2001. Approximate match of rules using backpropagation
neural networks. Machine Learning 43(3):273–299.

Pinkas, G. 1995. Reasoning, nonmonotonicity and learn-
ing in connectionist networks that capture propositional
knowledge. Artificial Intelligence 77:203–247.

Pollack, J. B. 1990. Recursive distributed representations.
Artificial Intelligence 46(1):77–105.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning internal representations by error propagation. In
Rumelhart, D. E., and McClelland, J. L., eds., Parallel
Distributed Processing: Explorations in the Microstructure
of Cognition, volume 1. MIT Press. 318–362.

Shastri, L. 1999. Advances in SHRUTI: a neurally mo-
tivated model of relational knowledge representation and
rapid inference using temporal synchrony. Applied In-
telligence Journal, Special Issue on Neural Networks and
Structured Knowledge 11:79–108.

Smolensky, P. 1990. Tensor product variable binding and
the representation of symbolic structures in connectionist
networks. Artificial Intelligence 46:159–216.

Smolensky, P. 2000. Grammar-based connectionist ap-
proaches to language. Cognitive Science 23:589–613.

Sun, R., and Alexandre, F. 1997. Connectionist Symbolic
Integration. Lawrence Erlbaum Associates.

Touretzky, D., and Hinton, G. 1988. A distributed con-
nectionist production system. Cognitive Science 12(3):423–
466.

Towell, G. G., and Shavlik, J. W. 1994. Knowledge-based
artificial neural networks. Artificial Intelligence 70(1):119–
165.

Valiant, L. G. 2003. Three problems in computer science.
Journal of the ACM 50(1):96–99.

Werbos, P. J. 1990. Backpropagation through time: what
does it mean and how to do it. In Proceedings of the IEEE,
volume 78, 1550–1560.

Williamson, J., and Gabbay, D. 2004. Recursive causality
in bayesian networks and self-fibring networks. In Laws and
Models in Science, European Science Foundation (ESF).
King’s College London.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF0065006d006200650064006400650064002000740079007000650020006f006e006500200066006f006e007400730020002b002000680069006700680020007200650073006f006c007500740069006f006e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

