
A Connectionist Cognitive Model for Temporal Synchronisation and Learning∗

Luı́s C. Lamb and Rafael V. Borges
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, RS, 91501-970, Brazil

LuisLamb@acm.org; rvborges@inf.ufrgs.br

Artur S. d’Avila Garcez
Department of Computing

City University London
London EC1V 0HB, UK

aag@soi.city.ac.uk

Abstract

The importance of the efforts towards integrating the sym-
bolic and connectionist paradigms of artificial intelligence
has been widely recognised. Integration may lead to more
effective and richer cognitive computational models, and to a
better understanding of the processes of artificial intelligence
across the field. This paper presents a new model for the
representation, computation, and learning of temporal logic
in connectionist systems. The model allows for the encod-
ing of past and future temporal logic operators in neural net-
works, through a neural-symbolic translation algorithms in-
troduced in the paper. The networks are relatively simple
and can be used for reasoning about time and for learning
by examples with the use of standard neural learning algo-
rithms. We validate the model in a well-known application
dealing with temporal synchronisation in distributed knowl-
edge systems. This opens several interesting research paths
in cognitive modelling, with potential applications in agent
technology, learning and reasoning.

Introduction
The construction of rich computational cognitive models has
recently been pointed out as a key research question for com-
puter science and cognitive computation (Valiant 2003). To
cope with the requirements of constructing a rich intelli-
gent behaviour model one should integrate expressive rea-
soning and robust learning in a sound way. However, learn-
ing, which has been studied typically under experimental,
statistical approaches would then have to be integrated with
the reasoning component of intelligent systems, which has
mostly been studied using logic-based formalisms. In or-
der to respond to this, we seek to incorporate in a single
model the two fundamental aspects of intelligent behaviour,
namely reasoning and learning. Although challenging, the
construction of such computational cognitive models would
meet the requirements for a long standing problem in arti-
ficial intelligence: the integration of the connectionist and
the symbolic paradigms of artificial intelligence, which has
long been recognised as a standing research issue in the
field (Page 2000; Smolensky & Legendre 2006; Sun 1995;
Touretzky & Hinton 1985; Valiant 2000). Integration may

∗Research supported by the Brazilian Research Council CNPq.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lead to more effective and richer cognitive computational
models, and to a better understanding of the processes of
artificial intelligence across the field.

Several efforts have been made in this direction. However,
most of them deal with knowledge expressed as production
rules or logic programming (d’Avila Garcez, Broda, & Gab-
bay 2002; Shastri 1999; Towell & Shavlik 1994). This work
deals with dynamic knowledge, which evolves in time. We
present a model for representing, computing, and learning
temporal logic in connectionist systems. The model allows
for the encoding of past and future temporal logic opera-
tors in neural networks, through a translation algorithm in-
troduced in the paper. The networks are relatively simple
and can be used for reasoning about time and learning by ex-
amples with the use of standard neural learning algorithms.
We apply the model in a number of experiments, dealing
with learning, reasoning and synchronisation in a distributed
knowledge environment.

Temporal logic has been amply successful in computer
science. It has been used in the formalisation of several com-
putational properties and concepts including verification,
specification and derivation of computing systems. More
recently, such techniques have been successfully used in ar-
tificial intelligence, in particular, for modelling several di-
mensions of multi-agent systems, including model checking,
coordination, evolution and cooperation (Fisher, Gabbay, &
Vila 2005). This work contributes towards the representa-
tion of such expressive, highly successful logical languages
in a connectionist system.

We will show that, as pointed out in (Smolensky &
Legendre 2006), cognitive models based on neural-symbolic
integration can benefit from their complementary nature.
Human-inspired inference models may lead to more effec-
tive reasoning systems, as it is known that neural networks
are fault-tolerant and generalize robustly (Browne & Sun
2001). We will take advantage of a connectionist architec-
ture to learn symbolic temporal knowledge based on infer-
ence mechanisms from logic, which is also used as back-
ground knowledge in the learning process. Our experi-
ments suggest that the proposed model is rich enough to deal
with temporal reasoning and learning in distributed environ-
ments, meeting two requirements put forward in (Valiant
2003): learning and reasoning are integrated in the same
model and are tractable.



Next, we introduce the basics of connectionist and tem-
poral models used in the paper. We then present a repre-
sentation of temporal formalisms in connectionist systems.
An algorithm that translates temporal theories including past
and future operators into neural networks is introduced and
we prove that the translation and the computation of tempo-
ral knowledge in our model is sound. We then validate the
approach with experiments using well-known testbeds for
temporal knowledge synchronisation in distributed systems,
and show that empirical learning benefits from using tempo-
ral background knowledge. Finally, we conclude and point
out directions for future research.

Preliminaries
This section introduces the basics of connectionist models
and symbolic temporal reasoning used in the paper. We
assume familiarity with neural networks models and only
summarise used concepts. A neural network can be seen
as a massively parallel distributed processor that stores ex-
periential knowledge (Haykin 1999). A multilayer percep-
tron (MLP) is composed of several layers of simple process-
ing units, the artificial neurons. There are several methods
for representing time and symbolic knowledge in MLPs.
d’Avila Garcez & Lamb (2006) consider a parallel repre-
sentation of time, using an ensemble of MLPs, where each
network represents a specific timepoint. Elman (1990) de-
scribes the use of recurrent links and delay units to propagate
values through time. Nonlinear Auto Regressive with eX-
ogenous inputs (NARX) networks (Siegelmann, Horne, &
Giles 1995) are based on a recurrent multi-layer architecture
where recurrent links are allowed only from output to input
neurons. In such models, each timepoint is considered as
the application of an input pattern and the subsequent prop-
agation of values through the network. Each recurrent link
implies in a delay on the propagated value i.e., the activation
value of an output neuron N at time t is applied to an input
neuron N at t + 1. Also, delay units can be inserted before
the input neurons in order to allow a greater delay for both
input and recurrent values.

In order to represent rich symbolic knowledge in con-
nectionist models, such as modal and temporal knowledge
(which have been shown adequate in modelling multi-agent
cognition (Fisher, Gabbay, & Vila 2005)), one typically
makes use of a hybrid approach, translating symbolic knowl-
edge into a neural network, e.g. (d’Avila Garcez, Broda, &
Gabbay 2002; d’Avila Garcez & Lamb 2006). The temporal
knowledge representation language that we will use is based
on an extension of logic programming clauses. Thus, the
following logic definitions will be useful.

Definition 1 An atom A is a propositional variable; a literal
L is an atom A or a negation of an atom (∼ A). A clause is an
implication of the form A← L1, L2, ..., Ln with n ≥ 0, where
A is an atom and Li, 1 ≤ i ≤ n, are literals. A program
P is a set of clauses. An interpretation of a program P is
a mapping from each atom of a program to a truth value
true or false. The Immediate Consequence Operator TP of
a program P is a mapping from an interpretation I

P
of P

to another interpretation, and is defined as: TP(I
P

)(A) is

true if and only if there is a clause in P of the form A ←
L1, L2, ..., Ln and

∧n
i=1 I

P
(Li) is true.

Temporal Reasoning
We start by defining a language that extends (propositional)
logic programs with a unary temporal operator � that repre-
sent the immediately previous timepoint. �α denotes that α
is true at the previous timepoint. The syntax of �-based pro-
grams can be defined as a set of clauses α ← λ1, λ2, ..., λn,
where α is an (temporal) atom and λi, for 1 ≤ i ≤ n and
n ≥ 0, are literals. An atom is defined as any expression
�mA, where �m is a chain of m previous time operators, with
m ≥ 0, and A is a propositional variable. A literal is an atom
or the negation of an atom. We characterize the semantics
of a �-based program through the use of a fixed point defini-
tion. We define the immediate consequence operator �TP of
a �-based program P as a mapping between interpretations
It
P

at timepoint t.

Definition 2 �TP(It
P

)(α) is true if and only if one of the
following holds: (i) there is a clause in P of the form
α← λ1, λ2, ..., λn where It

P
(
∧n

i=1 λi) is true; (ii) α is an atom
of the form �β, and F t−1

P
(β) is true, where F t

P
is the fixed

point of P at time t, i.e., TP(F t
P

)(α) = F t
P

(α).
Following (Gelfond & Lifschitz 1988), we can show that

the �TP operator converges to a unique stable state for a
large class of propositional logic programs. Such stable state
represents the fixed point semantics of the program. The ap-
proach used in (d’Avila Garcez, Broda, & Gabbay 2002) to
compute the semantics of a logic program P consists in gen-
erating an input neuron to represent each atom inP, a hidden
neuron for each clause C of P (computing the conjunction
of the body literals in C), and an output neuron for each
atom α, computing the disjunction of all the clauses where
α is the head. To recursively compute the TP operator, re-
current links are set up from the output to the input neuron
representing the same atom, in such a way that the resulting
interpretation of one computation of TP is applied as input
for the next one.

In order to build a connectionist computational architec-
ture for representing �-based programs, we will add recur-
rent links from output units representing an atom α to the
input neuron representing �nα, with a chain of n delay units.
These units simulate short term memory, holding the activa-
tion value of a neuron, relative to a time t − n, during the
computation relative to the time t. If an atom α does not
appear as the head of any clause, we insert a chain of de-
lay units directly on the input connection, and therefore the
input value applied to the neuron will present the required
delay. Algorithm 1 computes the translation of �-based pro-
grams into a neural network. A �-based logic program P
is input to the algorithm and it outputs a neural network ar-
chitecture that computes the (fixed point) semantics of P.
In Algorithm 1 the following notation is used: maxP(k, µ)
is the largest between the number of literals in a clause and
the number of clauses with the same head in the program P;
k is the number of literals in the body of a clause, µ is the
number of clauses with the same head; Amin is the minimum
activation value for a neuron to be active (or true). Neurons



in the input layer are labelled inα; neurons in the output layer
are labelled outα where α is the atom represented by these
neurons. hi are hidden neurons representing each clause of
P. AddLink(N , source, target,W) denotes the insertion of a
link from a neuron source to a neuron target in a network
N , with weight W. Algorithm 1 is used together with Algo-
rithm 2 (introduced in the sequel) so as to render temporal
reasoning in our model.

Algorithm 1: �-based connectionist computation

�-based Translation(P)
Define maxP(k,µ)−1

maxP(k,µ)+1 ≤ Amin < 1;

Define W ≥ ln(1+Amin)−ln(1−Amin)
maxP(k,µ)(Amin−1)+Amin+1 ·

2
β
;

for each Cl ∈ Clauses(P) do
AddHiddenNeuron(N , hl);
for each α ∈ body(Cl) do

if inα < Neurons(N) then
AddInputNeuron(N , inα);
ActivationFunction(inα) := g(x);

AddLink(N , inα, hl,W);
end
for each ∼ α ∈ body(Cl) do

if inα < Neurons(N) then
AddInputNeuron(N , inα);
ActivationFunction(inα) := g(x);

AddLink(N , inα, hl,−W);
end
α := head(Cl);
if outα < Neurons(N) then
AddOutputNeuron(N , outα);
AddLink(N , hl, outα,W);
Threshold(hl) := (1+Amin)(kl−1)

2 W;
Threshold(outα) := (1+Amin)(1−µl)

2 W;
ActivationFunction(hl) := h(x);
ActivationFunction(outα) := h(x);

end
for each α ∈ atoms(P) do

if (inα ∈ neurons(N))and(outα ∈ neurons(N)) then
AddLink(N , outα, inα, 1)

end
for each inα ∈ neurons(N) do

if (α = �nβ) then
if ∃i < ns.t.out�iβ ∈ neurons(N) then

j := maximum(i);
AddDelayedLink(N , n − j, out� jβ, inα);

else AddInputDelay(N , n, inα)

end
return N ;

end

A Cognitive Model for Temporal Reasoning
In this section we define the temporal language we use for
knowledge representation and the algorithm that will allow
integrated connectionist temporal reasoning and learning in
the cognitive model. The language used here represents lin-
ear temporal knowledge dealing with both past and future.
Therefore, we need to extend the syntax of the �-based for-
malisation and characterise a fixed point semantics for these

extended programs. The unary past operators �, � and �
are respectively defined as previous time, always in the past
and sometime in the past. Future time operators �, � and ♦
are also defined. The binary S and Z operators (since and
“zince”) denote that a proposition has been true since the
occurrence of another, but αZβ also allows the case where α
has always occurred. TheU (until) andW (unless) operators
are defined mirroring S and Z, in the future time.
Definition 3 (Extended Temporal Formulas) An atom is in-
ductively defined as follows: (i) If p is a propositional vari-
able, then p is an atom; (ii) If α and β are atoms, then �α,
�α, �α, αSβ and αZβ are also atoms; (iii) If α and β are
atoms, then �α, �α, ♦α, αUβ and αWβ are also atoms.
Our model makes use of a declarative sequential approach,
based on temporal sequence of events, i.e. the consequence
relations are of the form past time antecedent → future time
consequent (see e.g. (Fisher, Gabbay, & Vila 2005)). How-
ever, this is an imperative approach where the antecedent is
used to infer the actions that an agent must perform in the
future. We will then define a declarative approach where
past operators are used to represent information that has
been propagated through time, and the future operators de-
note commitments of an agent, abstracting away imperative
steps needed to compute such commitments, as suggested in
intentional models of agency (cf., (Georgeff & Rao 1995)).
Each past time operator is defined recursively with respect
to the present and the immediately previous timepoint.
Definition 4 The application of the immediate consequence
operator TP for an interpretation It

P
of a program P at time

t with respect to past operators is defined as:
(i) TP(It

P
)(�α) is true if F t−1

P
(α) is true;

(ii) TP(It
P

)(�α) is true if F t−1
P

(�α) is true and It
P

(α) is true;
(iii) TP(It

P
)(�α) is true if F t−1

P
(�α) is true or It

P
(α) is true;

(iv) TP(It
P

)(αSβ) (resp. TP(It
P

)(αZβ)) is true if It
P

(β) is true or both
F t−1
P

(αSβ) (resp. F t−1
P

(αZβ)) and It
P

(α) are true.

For a discrete linear time flow beginning at t = 1, we arbi-
trarily define the values of F 0

P
(�α), F 0

P
(�α) and F 0

P
(αSβ) as

false, and the values of F 0
P

(�α) and F 0
P

(αZβ) as true. Com-
mitments are newly inferred formulas based on the mem-
ory of present and past intentions. For an atom �α at t, the
model must guarantee that α will be true at t + 1. The re-
maining (future) operators can also be defined with respect
to the present and the next timepoint. The formula �α can
be written as α∧��α. Therefore, we must ensure that, if �α
is true at t, α must also be true at t and �α must be true at
time t + 1. The remaining operators are defined as follows:
(i) ♦α ≡ α ∨ �♦α;
(ii) αUβ ≡ β ∨ (α ∧ �(αUβ)) ≡ (β ∨ α) ∧ (β ∨ �(αUβ));
(iii) αWβ ≡ β ∨ (α ∧ �(αWβ)) ≡ (β ∨ α) ∧ (β ∨ �(αWβ)).
To define ♦, U and W, the use of disjunctions is necessary,
so an individual analysis of each case (i, ii, iii) must be done
in order to define how to assign values to a specific disjunct.
We avoid the case where both disjuncts are false for formu-
las (i)− (iii) above by using→ and ¬ instead of ∨, e.g. using
¬p→ q with q true by default (i.e. unless p is true), instead
of p ∨ q. In order to define the antecedent in the above im-
plication, information about previous timepoints is used to
infer subsequent ones. For instance, ♦α can be represented



as ¬α→ �♦α. The only case where the choice is somewhat
involved is for the disjunction α ∨ β used to represent αUβ
and αWβ. In such cases, for αUβ, β is considered as the de-
fault (¬α → β); for αWβ, α is the default (¬β → α). This
choice is due to the definition of the operators, since αUβ
requires that a sequence of α must be ended by β, and αWβ
holds for infinite sequences of α. Based on these definitions,
we can now consider the following rules to define the imme-
diate consequence operator, thus extending the semantics of
the programs to allow the representation of commitments.

Definition 5 The immediate consequence operator TP, for
an interpretation It

P
of a program P at a time t with respect

to future temporal operators is defined as:
(i) TP(It

P
)(α) is true if F t−1

P
(�α) is true;

(ii) TP(It
P

)(α) is true if It
P

(�α) is true;
(iii) TP(It

P
)(�α) is true if F t−1

P
(�α) is true;

(iv) TP(It
P

)(♦α) is true if F t−1
P

(♦α) is true and F t−1
P

(α) is false;
(v) TP(It

P
)(β) is true if It

P
(αUβ) is true and It

P
(α) is false;

(vi) TP(It
P

)(αUβ) is true if F t−1
P

(αUβ) is true and F t−1
P

(β) is false;
(vii) TP(It

P
)(α) is true if It

P
(αWβ) is true and It

P
(β) is false;

(viii) TP(It
P

)(αWβ) is true if F t−1
P

(αWβ) is true and F t−1
P

(β) is false.

In the sequel we define an algorithm that translates tem-
poral logic programs (containing future and past opera-
tors) into semantically equivalent �-based ones. For in-
stance, in order to represent the rule for the � operator in
Def. 4, we must consider the relation from F t−1

P
(�α) and

It
P

(α) to TP(It
P

)(�α). By definition, if F t−1
P

(�α) holds, then
��α holds at t, so we can represent such rule as a clause
�α ← α,��α. The remaining rules can be translated simi-
larly (Fisher, Gabbay, & Vila 2005). This is shown in Algo-
rithm 2. The following results guarantee that the algorithms
are sound, in the sense that the connectionist model correctly
represents and computes temporal knowledge.

Lemma 6 LetQ be a program obtained by Algorithm 2 from
an input program P. For every atom α in P, and every in-
terpretation It

P
, �TQ(It

P
)(α) holds.

Proof: Note that the translation computed by the algorithm
only outputs clauses representing exactly the semantic rules
of temporal operators added to the program. (←) Assume
that TP(It

P
)(α) holds. Therefore, either �TP(It

P
)(α) is true,

and the addition of clauses does not change its value, or α is
defined with respect to the semantic rules of the operators.
In this case, the algorithm computes a clause for each rule,
such that the body of the clause is defined such that α holds.
Thus, by definition of �TP, we have that �TQ(It

P
)(α) holds.

(→) If TP(It
P

)(α) is false, then newly inserted clauses do not
change either the value of α, or of �TP. Since all rules for
the temporal operators are represented by new clauses, none
of such rules assigns true to α and then to �TQ(It

P
)(α). �

Theorem 7 Let N be a network obtained by the applica-
tion of algorithms 1 and 2 on a temporal logic program P.
Therefore, N computes the fixed point semantics of P.

Proof: By Lemma 6, the computation of �TP with respect
to the program extended with the temporal operators is suf-
ficient for the computation of TP. Inserting delay units as
done in Algorithm 1 is sufficient to provide the network with

Algorithm 2: Temporal Logic Knowledge Translation

Logic Conversion(P)
foreach α ∈ atoms(P) do

if α = �β then AddClause(�β← β,��β);
if α = �β then

AddClause(�β← β);
AddClause(�β← ��β);

if α = βSγ then
AddClause(βSγ ← γ);
AddClause(βSγ ← β,�(βSγ));

if α = βZγ then
AddClause(βZγ ← γ);
AddClause(βZγ ← β,�(βZγ));

if α = �β then AddClause(β← � � β);
if α = �β then

AddClause(β← �β);
AddClause(�β← ��β);

if α = ♦β then AddClause(♦β← �♦β,∼ �β);
if α = βUγ then

AddClause(γ ← βUγ,∼ β);
AddClause(βUγ ← �(βUγ),∼ �γ);

if α = βWγ then
AddClause(β← βWγ,∼ γ);
AddClause(βWγ ← �(βWγ),∼ �γ);

end
end

information about the past, since a chain of n delay units in-
serted before an input neuron will provide the neuron with
information from timepoint t−n. Given the soundness of the
translation of logic programs into neural networks (d’Avila
Garcez & Lamb 2006), the network extended with delay
units will correctly represent the semantics of formulas of
type �nα, and hence of program P. �

Empirical Learning and Synchronisation
In this section we validate our approach. We apply the model
to a classical problem of synchronisation in distributed envi-
ronments, namely, the Dining Philosophers Problem, orig-
inally from (Dijkstra 1971): n philosophers sit at a table,
spending their time thinking and eating. In the centre of the
table there is a plate of noodles, and a philosopher needs two
forks to eat it. The number of forks on the table is the same
as the number of philosophers. One fork is placed between
each pair of philosophers and they will only use the forks to
their immediate right and left. They never talk to each other,
which creates the possibility of deadlock and starvation.

We represent the knowledge of each philosopher (agent)
using temporal logic programs, and compute their behav-
iour in our model. An agent’s policy will model the follow-
ing behaviour: from the moment that information hungryi
is known to agent i, she must start trying to get forks (say,
from the left) until all forks are in use. When an agent has
two forks, she may eat until she is sated (i.e. an external in-
put satedi is applied). An agent can communicate with the
environment through five distinct actions: eati, dropLi and
dropRi, representing that the agent is returning a fork (left
or right) to the table, and pickLi, pickRi, in which the agent
tries to allocate the left and the right forks. Since a fork
may not be available when an agent tries to pick it, the en-



pickL1WgotL1 ← hungry1; pickR1WgotR1 ← gotL1
eat1Wsated1 ← gotR1; dropL1 ← sated1

dropR1 ← f ul f ill1; sated1 ← sated∗1
GotL1 ← GotL∗1
GotR1 ← GotR∗1

pickL1WgotL1 ← �(pickL1Wgot1,A),∼ �gotL1
pickL1 ← pickL1WgotL1,∼ gotL1

pickR1WgotR1 ← �(pickR1WgotR1),∼ �gotR1
pickR1 ← pickR1WgotR1,∼ gotR1

eat1Wsated1 ← �(eat1Wsated1),∼ �sated1
eat1 ← eat1Wsated1,∼ sated1

Table 1: An agent’s temporal knowledge representation

vironment responds to agent i through the information gotLi
and gotRi, denoting that agent i was successfully allocated a
fork. The environment randomly sends signals hungry and
sated to the agents, and responds to actions performed by
the agents, allowing only one agent to be allocated a partic-
ular fork at each time. Agents do not receive any informa-
tion about their state (being hungry, holding forks, etc); they
only receive information about individual events and inter-
nally represent their states with respect to these events.

Table 1 illustrates the logic program that represents an
agent’s behaviour. The upper half of the table describes
the original knowledge and the lower half describes knowl-
edge translated by Algorithm 2. In order to analyse the
learning capacity of the networks representing each agent,
we extend our environment to give each agent the neces-
sary information so that a supervised learning algorithm can
be used. Such information is the action the agent executes
at each timepoint, according to the default policy, and the
agent’s state of affairs (such state is stored in the environ-
ment). Three different configurations are used in our exper-
iments. The behaviour of fully knowledgeable (FK) agents
is represented in a network generated by the translation of
all rules in Table 1. This generates a network with layers
containing, respectively, thirteen, fourteen, and eleven neu-
rons. Partial knowledge (PK) agents are represented by net-
works generated from the lower part of Table 1, and inserting
eight additional hidden neurons to allow for learning of the
other rules with the same number of neurons in the hidden
layer (fourteen). All the connections to and from these new
neurons are randomly initialized. Finally, the no knowledge
(NK) agents have all connections randomly set.

Two learning approaches were considered. First, offline
learning was implemented, where the agent only receives
information from the environment, and her actions do not
change the environment. Figure 1 depicts the evolution of
error for the three agents (FK, PK and NK) in time, using
backpropagation (Rumelhart, Hinton, & Williams 1986). It
shows the Root Mean Squared Error (RMSE) based on the
difference between the networks’ output values and the ex-
pected values calculated by the environment. For these ex-
periments, we have used 500 epochs, each epoch consist-
ing of 200 consecutive patterns for training, and the next
200 patterns for testing. In Table 2, the first two lines indi-
cate how many epochs were needed for an agent to achieve
RMSE below 0.2 and 0.1, respectively, averaged over eight

runs of the offline learning process. The next two lines
show, respectively, the averaged smallest error obtained dur-
ing learning, and the averaged error after 500 epochs.

FK HK NK
RMSE ≤ 0.2 0 73 137.88
RMSE ≤ 0.1 0 80 155.63

Smallest Error 0.032 0.016 0.082
Final Error 0.032 0.07 0.79

Table 2: Offline Learning Results

Figure 1: Offline Learning Error in Time

Figure 2: Online Error in Time

Next, we have carried out online learning, with an agent act-
ing over the environment during the learning experiments.
We have used an environment with three agents, where two
of them are fully knowledgeable. We have run three different
experiments, varying the knowledge level of the remaining
agent. We have run the experiments for 100,000 timepoints.
Figure 2 shows the averaged error of each agent during the
first 500 epochs. It illustrates how the different networks
converge to the desired behaviour. In this experiment, we
have also analysed the behaviour of the system as a whole,
measuring the allocation of forks to agents as the relation be-
tween the number of agents eating and the number of agents



Figure 3: Resource allocation in time

wishing to eat at each timepoint, as depicted in Fig. 3. When
compared with Fig. 2, it is clear that the decrease in the error
is directly related to the agents’ synchronisation, and there-
fore the proper use of resources. An indication of this behav-
iour is seen in the region between timepoints 260 and 265 for
the NK agent. In such interval, the NK agent got hold of re-
sources, preventing other agents from eating and therefore
reducing the resource allocation rate. These results indicate
that the use of symbolic background knowledge in the form
of temporal logic rules may lead to more effective learning
performance. Other temporal sequence experiments we have
performed using the XOR problem as well as synthetic data
(Borges, Lamb, & d’Avila Garcez 2007) corroborate the im-
portance of exploiting any available background knowledge.
We argue this is relevant in the case of temporal reasoning
and dynamic memory models.

Conclusions and Future Work
This work has presented a cognitive computational model
for integrated temporal learning and reasoning. It has shown
that temporal knowledge can be successfully represented,
computed and learned by connectionist models, and it has
illustrated the capabilities of the model’s learning dimen-
sion. In particular, the learning experiments corroborate
the benefits of using symbolic background knowledge in the
form of temporal logic rules. Further, the model has been
shown effective in representing an agent’s internal states in
dynamic environments, incorporating the robust learning ca-
pabilities of neural networks and sound reasoning from tem-
poral logic. It was shown that such integrated model can
be used both to model an external agent (offline learning)
and an agent immersed in the environment (online learn-
ing). In summary, this work contributes to the development
of rich cognitive models, as seen as a challenge for com-
puter science in (Valiant 2003), building upon the hypoth-
esis defended in (Smolensky & Legendre 2006) that artifi-
cial intelligence may benefit from integrating the strengths
of its symbolic and connectionist paradigms. A number of
research paths remain open such as the integration of other
symbolic logic systems within the neural computation par-
adigm, including branching time temporal logics and inten-
tional cognitive models, with possible applications in dis-
tributed multi-agent systems.

References
Borges, R.; Lamb, L.; and d’Avila Garcez, A. 2007. Rea-
soning and learning about past temporal knowledge in con-
nectionist models. In Proc. of IJCNN 2007. to appear.
Browne, A., and Sun, R. 2001. Connectionist inference
models. Neural Networks 14:1331–1355.
d’Avila Garcez, A., and Lamb, L. 2006. A connectionist
computational model for epistemic and temporal reason-
ing. Neural Computation 18(7):1711–1738.
d’Avila Garcez, A.; Broda, K.; and Gabbay, D. 2002.
Neural-Symbolic Learning Systems: Foundations and Ap-
plications. Springer.
Dijkstra, E. 1971. Hierarchical ordering of sequential
processes. Acta Inf. 1:115–138.
Elman, J. 1990. Finding structure in time. Cognitive Sci-
ence 14(2):179–211.
Fisher, M.; Gabbay, D.; and Vila, L., eds. 2005. Handbook
of Temporal Reasoning in Artificial Intelligence. Elsevier.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. of the Fifth Logic
Programming Symposium, 1070–1080. MIT Press.
Georgeff, M., and Rao, A. 1995. The semantics of intention
maintenance for rational agents. In Proc. of IJCAI-95, 704–
710.
Haykin, S. 1999. Neural Networks: A Comprehensive
Foundation. Prentice Hall.
Page, M. 2000. Connectionist modelling in psychology: A
localist manifesto. Behavioral and Brain Sciences 23:443–
467.
Rumelhart, D.; Hinton, G.; and Williams, R. 1986. Learn-
ing internal representations by error propagation. In Paral-
lel Distributed Processing, volume 1. MIT Press. 318–362.
Shastri, L. 1999. Advances in SHRUTI: a neurally mo-
tivated model of relational knowledge representation and
rapid inference using temporal synchrony. Applied Intelli-
gence 11:79–108.
Siegelmann, H.; Horne, B.; and Giles, C. L. 1995. Com-
putational capabilities of recurrent NARX neural networks.
Technical report, U. of Maryland, UMIACS-TR-95-12.
Smolensky, P., and Legendre, G. 2006. The Harmonic
Mind: From Neural Computation to Optimality-Theoretic
Grammar. MIT Press.
Sun, R. 1995. Robust reasoning: integrating rule-
based and similarity-based reasoning. Artificial Intelli-
gence 75(2):241–296.
Touretzky, D., and Hinton, G. 1985. Symbols among neu-
rons. In Proc. of IJCAI-85, 238–243.
Towell, G., and Shavlik, J. 1994. Knowledge-based artifi-
cial neural networks. Artificial Intelligence 70(1):119–165.
Valiant, L. 2000. A neuroidal architecture for cognitive
computation. Journal of the ACM 47(5):854–882.
Valiant, L. 2003. Three problems in computer science.
Journal of the ACM 50(1):96–99.


