
Computing First-Order Logic Programs
by Fibring Artificial Neural Networks

Sebastian Bader∗
Department of Computer Science
Dresden University of Technology

Germany

Artur S. d’Avila Garcez†
Department of Computing
City University London

UK

Pascal Hitzler‡
Institute AIFB

University of Karlsruhe
Germany

Abstract

The integration of symbolic and neural-network-based
artificial intelligence paradigms constitutes a very chal-
lenging area of research. The overall aim is to merge
these two very different major approaches to intelli-
gent systems engineering while retaining their respec-
tive strengths. For symbolic paradigms that use the syn-
tax of some first-order language this appears to be par-
ticularly difficult. In this paper, we will extend on an
idea proposed by Garcez and Gabbay (2004) and show
how first-order logic programs can be represented by
fibred neural networks. The idea is to use a neural net-
work to iterate a global counter n. For each clause Ci

in the logic program, this counter is combined (fibred)
with another neural network, which determines whether
Ci outputs an atom of level n for a given interpretation
I . As a result, the fibred network computes the single-
step operator TP of the logic program, thus capturing
the semantics of the program.

Introduction
Intelligent systems based on artificial neural networks dif-
fer substantially from those based on symbolic knowledge
processing like logic programming. Neural networks are
trainable from raw data and are robust, but practically im-
possible to read declaratively. Logic programs can be imple-
mented from problem specifications and can be highly recur-
sive, while lacking good training methods and robustness,
particularly when data are noisy (Thrun & others 1991). It
is obvious that an integration of both paradigms into single
systems would be very beneficiary if the respective strengths
could be retained.

There exists a notable body of work investigating the in-
tegration of neural networks with propositional — or simi-
larly finitistic — logic. We refer to (Browne & Sun 2001;
d’Avila Garcez, Broda, & Gabbay 2002) for overviews. For
first-order logic, however, it is much less clear how a rea-

∗Sebastian Bader is supported by the GK334 of the German
Research Foundation.

†Artur Garcez is partly supported by The Nuffield Foundation.
‡Pascal Hitzler is supported by the German Federal Ministry of

Education and Research under the SmartWeb project.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

sonable integration can be achieved, and there are system-
atic difficulties which slow down recent research efforts, as
spelled out in (Bader, Hitzler, & Hölldobler 2004). Dif-
ferent techniques for overcoming these obstacles are cur-
rently under investigation, including the use of metric spaces
and topology, and of iterated function systems (Hitzler,
Hölldobler, & Seda 2004; Bader & Hitzler 2004).

At the heart of these integration efforts is the question
of how first-order knowledge can be represented by neural
network architectures. In this paper, we present a novel
approach using fibring neural networks as proposed by
(d’Avila Garcez & Gabbay 2004). For each clause Ci of
a logic program, a neural network that iterates a counter n
is combined (fibred) with another neural network, which de-
termines whether Ci outputs an atom of level n for a given
interpretation I . Fibring offers a modular way of perform-
ing complex functions by using relatively simple networks
(modules) in an ensemble.

The paper is organized as follows. In the next section we
briefly review fibring neural networks and logic programs.
We then present the fundamental ideas underlying our rep-
resentation results, before giving the details of our imple-
mentation and a worked example. We conclude with some
discussions.

Preliminaries
We introduce standard terminology for artificial neural net-
works, fibring neural networks, and logic programs. We re-
fer the reader to (Bishop 1995; d’Avila Garcez & Gabbay
2004; Lloyd 1988), respectively, for further background.

Artificial Neural Networks
Artificial neural networks consist of simple computational
units (neurons), which receive real numbers as inputs via
weighted connections and perform simple operations: the
weighted inputs are added and simple functions like thresh-
old, sigmoidal, identity or truncate are applied to the sum.

The neurons are usually organised in layers. Neurons
which do not receive input from other neuraons are called
input neurons, and those without outgoing connections to
other neurons are output neurons. So a network computes
a function from R

n to R
m, where n and m are the number

of input, respectively, output units. A key to the success of
neural network architectures rests on the fact that they can

x3[t]

x2[t]

xn[t]

x1[t]

x[t+1]w3

wn

w2

w1

θ w1

w4

w3

w2

Φ

Figure 1: An artificial neuron (left) and a simple fibring net-
work (right)

be trained effectively using training samples in the form of
input-output pairs.

For convenience, we make the following assumptions for
the networks depicted in this paper: The layers are updated
sequentially from left to right and within a layer the neurons
are updated from top to bottom.

Recently, (d’Avila Garcez & Gabbay 2004) introduced a
new model of neural networks, namely fibring neural net-
works. Briefly, the activation of a certain unit may influence
the behaviour of other units by changing their weights. Our
particular architecture is a slight variant of the original pro-
posal, which appears to be more natural for our purposes.

Definition 1 A fibring function Φi associated with neuron i
maps some weights w of the network to new values, depend-
ing on w and the input x of neuron i.

Fibring functions can be understood as modelling presy-
naptic weights, which play an important role in biological
neural networks. Certainly, a necessary requirement for bi-
ological plausibility is that fibring functions compute either
simple functions or tasks which can in turn be performed by
neural networks. We will return to this point later.

Throughout this paper we will use dashed lines, as in Fig-
ure 1, to indicate the weights which may be changed by
some fibring function. As described above, we will use an
update dynamics from left to right, and top to bottom. And,
as soon as the activation of a fibring neuron is (re)calculated,
the corresponding fibring function is applied and the respec-
tive weights are modified.

Example 2 A simple fibring network for squaring numbers.
Each node computes the weighted sum of its inputs and per-
forms the operation identity on it. The fibring function takes
input x and multiplies it by W . If W = 1, the output will be
y = x2:

w

Φ

x y
= = Φi : (w, x) �→ x

Example 3 A simple fibring network implementing a gate-
like behaviour. Nodes behave as in Example 2:

w

Φ

x

z y

=

= =

Φi : (w, x) �→
{

1 if x > 0
0 otherwise

The question of plausible types of fibring functions, as
well as the computational power of those networks, will be
studied seperately and are touched here only slightly. We
will start with very general fibring functions, but later we
restrict ourselves to simple ones only, e.g. the fibred weight
is simply multiplied by the activation.

Sometimes we will use the output of a neuron instead of
the activation, or apply linear transformations to it, and it
is clear that such modifications could also be achieved by
adding another neuron to the network and use this for the
fibring. Therefore these modifications can be understood as
abreviations to keep the networks simple.

Logic Programs

A logic program is a finite set of clauses H ← L1∧· · ·∧Ln,
where n ∈ N may differ for each clause, H is an atom in a
first order language L and L1, . . . , Ln are literals, that is,
atoms or negated atoms, in L. The clauses of a program are
understood as being universally quantified. H is called the
head of the clause, each Li is called a body literal and their
conjunction L1 ∧ · · · ∧ Ln is called the body of the clause.
We allow n = 0, by an abuse of notation, which indicates
that the body is empty; in this case the clause is called a unit
clause or a fact.

An atom is said to be ground if it does not contain vari-
ables, and the Herbrand base underlying a given program P
is defined as the set of all ground instances of atoms, denoted
BP . Example 4 shows a logic program and its correspond-
ing Herbrand base. Subsets of the Herbrand base are called
(Herbrand) interpretations of P , and we can think of such a
set as containing those atoms which are true under the inter-
pretation. The set IP of all interpretations of a program P
can thus be identified with the power set of BP .

Example 4 The natural numbers program P , the underly-
ing language L and the corresponding Herbrand base BP .
The intended meaning of s is the successor function:

P :
nat(0).
nat(s(X))← nat(X).

L :
constants: C = {0}
functions: F= {s/1}
relations: R= {nat/1}

BP : nat(0), nat(s(0)), nat(s(s(0))), . . .

Logic programs are accepted as a convenient tool for
knowledge representation in logical form. Furthermore, the
knowledge represented by a logic program P can essen-
tially be captured by the immediate consequence or single-
step operator TP , which is defined as a mapping on IP
where for any I ∈ IP we have that TP(I) is the set of
all H ∈ BP for which there exists a ground instance
H ← A1 ∧ · · · ∧ Am ∧ ¬B1 ∧ · · · ∧ ¬Bn of a clause in
P such that for all i we have Ai ∈ I and for all j we have
Bj �∈ I . Fixed points of TP are called supported models

of P , which can be understood to represent the declarative
semantics of P .

In the sequel of this paper we will often need to enumerate
the Herbrand base, which is done via level mappings:

Definition 5 Given a logic program P , a level mapping is
a function | · | : BP → N

+, where N
+ denotes the set of

positive integers excluding zero.

Level mappings — in slightly more general form — are
commonly used for controlling recursive dependencies be-
tween atoms, and the most prominent notion is probably the
following.

Definition 6 Let P be a logic program and | · | be a level
mapping. If for all clauses A ← L1 ∧ L2 ∧ . . . ∧ Ln ∈
ground(P) and all 1 ≤ i ≤ n we have that |A| > |Li|, then
P is called acyclic with respect to | · |. A program is called
acyclic, if there exists such a level mapping.

Acyclic programs are known to have unique supported
models (Cavedon 1991). The programs from Examples 4
and 7 below are acyclic.

Example 7 The “even and odd numbers” program and a
level mapping:

P :
even(0).
even(s(X))← ¬even(X).
odd(s(X))← even(X).

| · | : |A| =
{

2 · n + 1 if A = even(sn(0))
2 · n + 2 if A = odd(sn(0))

Throughout this paper we will assume that level mappings
are bijective, i.e. for each n ∈ N

+ there is exactly one A ∈
BP , such that |A| = n. Thus, for the purposes of our paper,
a level mapping is simply an enumeration of the Herbrand
base. Since level mappings induce an order on the atoms, we
can use them to define a prefix-function on interpretations,
returning only the first n atoms:

Definition 8 The prefix of length n of a given interpretation
I is defined as

pref : IP × N
+ → IP

(I, n) �→ {A|A ∈ I and |A| ≤ n}.
We will write prefn(I) for pref(I, n).

For acyclic programs, it follows that to decide whether
the atom with level n + 1 must be included in TP(I), it is
sufficient to consider prefn(I) only.

From Logic Programs to Fibring Networks
We will show how to represent acyclic logic programs by
means of fibring neural networks. We follow up on the basic
idea from (Hölldobler & Kalinke 1994; Hölldobler, Kalinke,
& Störr 1999), and further developed in (Hitzler, Hölldobler,
& Seda 2004; Bader & Hitzler 2004), to represent the single-
step operator TP by a network, instead of the program P
itself. This is a reasonable thing to do since, as mentioned
before, the single-step operator essentially captures the se-
mantics of the program it is associated with.

In order to represent TP by the input-output mapping of a
network, we also need an encoding of IP as a suitable subset
of the real numbers. We also use an idea from (Hölldobler,
Kalinke, & Störr 1999) for this purpose. Let B > 2 be some
integer, and let | · | be a bijective level mapping. Define

R : IP → R : I �→
∑
A∈I

B−|A|.

We exclude B = 2, because in this case R would not be
injective. It will be convenient to assume B = 3 throughout
the paper, but our results do not depend on this. We denote
the range of R by DR.

There are systematic resons why this way of embedding
IP into the reals is reasonable, and they can be found in
(Hitzler, Hölldobler, & Seda 2004; Bader & Hitzler 2004),
but will not concern us here. Using R, the prefix operation
can be expressed naturally on the reals.

Proposition 9 For I ∈ IP and x ∈ DR we have

pref(I, n) = R−1

(
trunc(R(I) ·Bn)

Bn

)
and

R(pref(R−1(x), n)) =
trunc(x ·Bn)

Bn
.

For convenience, we overload pref and set pref(x, n) =
R(pref(R−1(x), n)) and prefn(x) = pref(x, n).

We will now turn to the construction of fibring networks
which approximate given programs. We will first describe
our approach in general terms, and spell it out in a more
formal and detailed way later on. The goal is to con-
struct a neural network, which will compute R(TP)(x) =
R(TP(R−1(x))) for a given x ∈ DR. The network is
designed in such a way that it successively approximates
R (TP) (x) while running.

So there will be a main loop iterating a global counter n.
This counter fibres the kernel, which will evaluate whether
the atom of level n is contained in TP(I) or not, i.e. the
kernel will output B−n if the atom is contained, and 0 oth-
erwise. Furthermore, there will be an input subnetwork pro-
viding R(I) all the time, and the output subnetwork which
will accumulate the outputs of the kernel, and hence con-
verge to R(TP(I)).

For each clause Ci there is a subnetwork, which deter-
mines whether Ci outputs the atom of level n for the given
interpretation I , or not. This is done by fibring the sub-
network such that it computes the corresponding ground in-
stance C

(n)
i , with head of level n, if existent. If there is no

such ground instance, this subnetwork will output 0, other-
wise it will determine whether the body is true under the
interpretation I . A detailed description of these clause net-
works will be given in the next section. Note that this con-
struction is only possible for programs which are covered.
This means that they do not have any local variables, i.e. ev-
ery variable occuring in some body also occurs in the corre-
sponding head. Obviously, programs which are acyclic with
respect to a bijective level mapping are always covered.

Clause1

Clause2

Clausex

TP(I)

Φ

+1

n

I

Figure 2: General architecture

If P is acyclic we can compute the unique supported
model of the program directly, by connecting the output and
the input region of the network as shown in Figure 3. This is
simply due to the above mentioned fact: If we want to decide
whether the atom of level n should be included in TP(I), it
is sufficient to look at the atoms A ∈ I with level < n. We
also have the following result.

Proposition 10 Let P be a program which is acyclic with
respect to an injective level mapping | · |, let A ∈ BP with
|A| = n. Then for each I ∈ IP we have that A ∈ Tn

P (I) iff
A is true with respect to the unique supported model of P .

Proof This is an immediate result from the application of
the Banach contraction mapping principle to the semantic
analysis of acyclic programs, see (Hitzler & Seda 2003). �

So, for acyclic programs, we can start with the empty (or
any other) interpretation and let the (recurrent) network run.

Implementing Clauses
In order to complete the construction from the previous sec-
tion, we give an implementation of the clauses. For a clause
C of the form H ← L1 ∧ L2 ∧ . . . ∧ Lk, let C(n) denote
the ground instance of C for which the head has level n, as-
suming it exists. The idea of the following construction is
to create a network which implements C, and will be fibred
by the counter n such that it implements C(n). In case that
there is no ground instance of C with head of level n, the
network will output 0, otherwise it will output 1 if the body
is true with respect to the interpretation I , and 0 if it is not.

Clause1

Clause2

Clausex

Φ

+1

TP(I)I

n

Figure 3: Recurrent architecture for acyclic programs

Filter for L1

Filter for L2

Filter for Lk

I

I

I

Gate

n

Φ

Figure 4: Implementing clauses

The idea, as shown in Figure 4, is that each subnetwork
implementing a clause C : H ← L1 ∧ . . .∧Lk with k body
literals, consists of k + 1 parts — one gate and k filters.
The gate will output 1, if the clause C has a ground instance
C(n) where the level of the head is n. Furthermore there
is a filter for each body literal Li, which outputs 1, if the
corresponding ground literal Li is true under I . If all condi-
tions are satisfied the final conjunction-neuron will become
active, i.e. the subnetwork outputs 1.

Note that this construction again is sufficient only for pro-
grams which are covered. If we allowed local variables, then
more than one (in fact infinitely many) ground instances of
C with a head of level n could exist.

Let us have a closer look at the type of fibring function
needed for our construction. For the gate, it implicitly per-
forms a very simple pattern matching operation, checking
whether the atom with level n unifies with the head of the
clause. For the filters, it checks whether corresponding in-
stances of body literals are true in the given interpretation,
i.e. it implicitly performs a variable binding and an elemen-
tary check of set-inclusion.

We argue that the operations performed by the fibring
function are indeed biologically feasible. The perspective
which we take in this paper is that they should be understood
as functions performed by a seperate network, which we do
not give explicitly, although we will substantiate this point
to a certain extent in the next section. And pattern matching

is indeed a task that connectionist networks perform well.
The variable binding task will also be addressed in the next
section when we give examples for implementing the filters.

Neural Gates
As specified above, the gate for a clause C : H ← L1∧. . .∧
Lk fires if there is a ground instance C(n) of C with head is
of level n, as depicted in Figure 5. The decision based on

n

w
1

o

Φ
Φ(w, n) =

⎧⎨
⎩

1 if ground instance with
head of level n exists

0 otherwise

Figure 5: A neural gate

simple pattern matching is embedded into the fibring func-
tion. In what follows, we will discuss a number of different
cases of how to unfold this fibring function into a network,
in order to give plausible network topologies and yet simpler
fibring functions. Other implementations are possible, and
the cases presented here shall serve as examples only.

Ground-headed clauses. Let us first consider a clause for
which the head does not contain variables, i.e. a ground
clause, like for example the first clause given in Example
7 above. Since the level of the head in this case is fixed
to some value, say m, the corresponding gate subnetwork
should fire if and only if the general counter n is equal to m.
This can be done using the network shown in Figure 6 (left):
The neuron “1!” will allways output 1 and the neuron “= 0”
will output 1 if and only if the weighted inputs sum up to 0.
This can easily be implemented using e.g. threshold units.

1!

n

=0

1

-m

0’

1’

2’

0

1

2

Figure 6: Simple gates for ground-headed clauses (left) and
remainder classes (right)

Remainder classes. If the levels li of ground instantiated
heads for a certain clause can be expressed as multiples of a
certain fixed number m, i.e. li = i ·m for all i (like clauses
number 2 and 3 of Example 7), we can construct a simple
subnetwork, as depicted in Figure 6 (right). The neurons
symbolize the equivalence classes for the remainders of the
devision by 3. The network will be initialized by activat-
ing “1”. Every time it is reevaluated the activation simply
proceeds to the next neuron.

Powers. If the level li of ground instantiated heads for a
certain clause can be expressed as powers of a certain fixed

number m, i.e. li = mi for all i, we can construct a simple
subnetwork as shown in Figure 7.

1

n

=0

-1

w
l

Φ

winit = −1
Φ(w, x) = w ·m

Figure 7: A simple gate for powers

Filtering Interpretations
For a network to implement the ground instance C(n) :
Hn ← L

(n)
1 ∧ . . . ∧ L

(n)
k of a clause C with head of level

n, we need to know the distance between the head and the
body literals — in terms of levels — as a function in n, i.e.
we need a set of functions {bi : N → N | i = 1, . . . , k}—
one for each body literal — where bi computes the level of
the literal Li, taking as input the level of the head, as illus-
trated in Example 11.

Example 11 For the “even and odd numbers” program from
Example 7, we can use the following bi-functions:

even(0). {}
even(s(X))← ¬even(X). {b1 : n �→ n− 2}
odd(s(X))← even(X). {b1 : n �→ n− 1}

For each body literal we will now construct a filter sub-
network, that fires if the corresponding ground body literal
L

(n)
i of C(n) is included in I . Given an interpretation I ,

we need to decide whether a certain atom A is included or
not. The underlying idea is the following. In order to de-
cide whether the atom A of level n is included in the in-
terpretation I , we construct an interpretation J containing
all atoms of I with level smaller than n, and the atom A,
i.e. J = prefn−1(I) ∪ {A}, or, expressed on the reals,
R(J) = prefn−1(R(I))+B−n. If we evaluate R(I)−R(J)
the result will be non-negative if and only if A is included in
I . This can be done using the network shown in Figure 8.

Φ

O

n

1

trunc

=

w1

w2

w3

1 1

I

Φ(w1, n) = Bn

Φ(w2, n) = −B−n

Φ(w3, n) = B−n

Figure 8: Schematic plot and fibring function of a filter for
the atom of level n

It is clear that we can construct networks to filter an atom
of level bi(n), if the function bi can itself be implemented in
a neural network. Since fibring networks can implement any
polynomial function, as shown in (d’Avila Garcez & Gabbay

2004) and indicated in Example 2, our approach is flexible
and very general.

A Worked Example
Let us now give a complete example by extending on the
logic program and the level mapping from Example 7 above.
For the first clause we need a ground-headed gate only. To
implement the second clause a remainder-class gate for the
devision by 2 is needed, which returns 1 for all odd numbers.
Furthermore, we need a filter which returns 1 if the atom of
level n − 2 is not included in I . For the last clause of the
example, we need a gate returning 1 for all even numbers
and a similar filter as for clause number 2. Combining all
three parts and taking into account that P is acyclic, we get
the network shown in Figure 9. If run on any initial value,

n

1

0

=

=

1

trunc

1! =0

=

=

1

trunc

I

I

Φ

+1

1’

0’

Figure 9: Neural implementation of the whole example

its outputs converge to the unique supported model of P ,
i.e. the sequence of outputs of the right-most neuron is a
sequence of real numbers which converges to R(M), where
M is the unique supported model of P .

Conclusions
This paper contributes to advance the state of the art
on neural-symbolic integration by showing how first-order
logic programs can be implemented in fibring neural net-
works. Generic ways for representing the needed fibring
functions in a biologically plausible fashion remain to be
investigated in detail, as well as the task of extending our
proposal towards a fully functional neural-symbolic learn-
ing and reasoning system.

Fibring offers a modular way of performing complex
functions, such as logical reasoning, by combining relatively
simple modules (networks) in an ensemble. If each module
is kept simple enough, we should be able to apply standard
neural learning algorithms to them. Ultimately, this may

provide an integrated system with robust learning and ex-
pressive reasoning capability.

References
Bader, S., and Hitzler, P. 2004. Logic programs, iterated
function systems, and recurrent radial basis function net-
works. Journal of Applied Logic 2(3):273–300.
Bader, S.; Hitzler, P.; and Hölldobler, S. 2004. The inte-
gration of connectionism and first-order knowledge repre-
sentation and reasoning as a challenge for artificial intelli-
gence. In Proceedings of the Third International Confer-
ence on Information, Tokyo, Japan. To appear.
Bishop, C. M. 1995. Neural Networks for Pattern Recog-
nition. Oxford University Press.
Browne, A., and Sun, R. 2001. Connectionist inference
models. Neural Networks 14(10):1331–1355.
Cavedon, L. 1991. Acyclic programs and the complete-
ness of SLDNF-resolution. Theoretical Computer Science
86:81–92.
d’Avila Garcez, A. S., and Gabbay, D. M. 2004. Fibring
neural networks. In McGuinness, D. L., and Ferguson, G.,
eds., Proceedings of the Nineteenth National Conference
on Artificial Intelligence, Sixteenth Conference on Inno-
vative Applications of Artificial Intelligence, July 25-29,
2004, San Jose, California, USA, 342–347. AAAI Press
/ The MIT Press.
d’Avila Garcez, A. S.; Broda, K. B.; and Gabbay, D. M.
2002. Neural-Symbolic Learning Systems — Founda-
tions and Applications. Perspectives in Neural Computing.
Springer, Berlin.
Hitzler, P., and Seda, A. K. 2003. Generalized metrics and
uniquely determined logic programs. Theoretical Com-
puter Science 305(1–3):187–219.
Hitzler, P.; Hölldobler, S.; and Seda, A. K. 2004. Logic
programs and connectionist networks. Journal of Applied
Logic 2(3):245–272.
Hölldobler, S., and Kalinke, Y. 1994. Towards a massively
parallel computational model for logic programming. In
Proceedings ECAI94 Workshop on Combining Symbolic
and Connectionist Processing, 68–77. ECCAI.
Hölldobler, S.; Kalinke, Y.; and Störr, H.-P. 1999. Ap-
proximating the semantics of logic programs by recurrent
neural networks. Applied Intelligence 11:45–58.
Lloyd, J. W. 1988. Foundations of Logic Programming.
Springer, Berlin.
Thrun, S. B., et al. 1991. The MONK’s problems: A
performance comparison of different learning algorithms.
Technical Report CMU-CS-91-197, Carnegie Mellon Uni-
versity.

