
Applying the Connectionist Inductive Learning and Logic Programming System to
Power System Diagnosis∗

Artur S. d’Avila Garcez†

Department of Computing - Imperial College
180 Queen’s Gate, SW7 2BZ, London - UK

aag@doc.ic.ac.uk

Gerson Zaverucha‡

COPPE / UFRJ - Programa de Engenharia de Sistemas e Computação
Caixa Postal: 68511, CEP: 21945-970, Rio de Janeiro - Brazil

gerson@cos.ufrj.br

Victor Navarro A. L. da Silva
CEPEL - Centro de Pesquisas de Energia Elétrica

Caixa Postal: 2754, CEP: 20001-970, Rio de Janeiro - Brazil
navarro@fund.cepel.br

∗ This work is part of the project ICOM from CNPq - ProTem3.
† The author is partially financially supported by CAPES.
‡ The author is partially financially supported by CNPq.

Abstract

 The Connectionist Inductive Learning and Logic

Programming System, C-IL2P, integrates the symbolic and
connectionist paradigms of Artificial Intelligence through
neural networks that perform massively parallel Logic
Programming and inductive learning from examples and
background knowledge. This work presents an extension of

C-IL2P that allows the implementation of Extended Logic
Programs in Neural Networks. This extension makes

C-IL2P applicable to problems where the background
knowledge is represented in a Default Logic. As a case
example, we have applied the system for fault diagnosis of
a simplified power system generation plant, obtaining
good preliminary results.

Keywords: Hybrid Systems, Machine Learning,
Neural Networks, Extended Logic Programming, Power
Systems.

1: Introduction:

It is generally accepted that one of the main problems
in building Expert Systems (which are responsible for the
industrial success of Artificial Intelligence) lies in the
process of knowledge acquisition, known as the
“knowledge acquisition bottleneck”. An alternative is the
automation of this process through Machine Learning
techniques.

Learning, one of the basic attributes of intelligent
comportment, can be defined as the change of behavior
motivated by changes in the environment in order to
perform better in many knowledge domains [16]. Learning
strategies can be classified as: learning from instruction,
learning by deduction, learning by analogy, learning from
examples and learning by observation and discovery [16];
the latter two are forms of inductive learning.

Various learning strategies could be integrated in an
intelligent hybrid system, exploring the advantages that

each one presents. Taking into account the evolution of
computer science for massively parallel architectures [2], it
is desirable that intelligent hybrid systems could be based
on some artificial neural network’s model. In [25] and [26]
is empirically showed that neural networks using the
backpropagation learning algorithm [22] are at least as
effective as purely symbolic inductive learning systems [12,
18].

Notwithstanding, neural networks should be able to
justify their decision making process in order to acquire the
so called “explanation capability”, and to use prior
knowledge while learning, like the symbolic systems.
Therefore, it is very important to outline tight correlation
between symbolic knowledge and Artificial Neural
Networks.

Toward this goal, in [11] Holldobler and Kalinke
presented a massively parallel method for logic
programming [13]. They have shown that for each logic
program P there exists a three-layer feedforward neural
network R with binary threshold units that computes TP,
the fixed point operator of P. If R is transformed into a
recurrent network by linking the units in the output layer
to the corresponding units in the input layer, then it always
settles down in a unique stable state (given any input
vector, that is, any interpretation) when P is an acceptable
program (see [3])1. This stable state is the unique stable
model of P, that is the least fixed point of TP [6].

In [26] Towell and Shavlik presented KBANN2, a
system for rule insertion, refinement and extraction from
neural networks. In KBANN, the background knowledge
defines the neural network’s initial topology through a rule
inserting procedure, the backpropagation learning from
examples algorithm is responsible for the network’s
refinement, and the extraction of rules for its explanation
capability.

Considering the above results, the C-IL2P system
("Connectionist Inductive Learning and Logic
Programming System”) [4, 5] integrates two learning
strategies (deductive and inductive) in the same
environment, a simple artificial neural network
architecture, exploiting its best property - the inductive
learning skill. Therefore, a single computational model can
represent and process symbolic knowledge in a massively
parallel way, performing learning from examples with
background knowledge as in [26], and logic programming
as in [11]. This integration also offers explanation

1 It guarantees that P has exactly one stable model.
2 Knowledge-based Artificial Neural Network.

capability to the system through the extraction of revised
logic programs from the trained artificial neural network.

In this work, in section 2 we present an extension of

the C-IL2P system that allows the implementation of
extended logic programming [7] in neural networks.
Extended logic programming, that adds explicit negation
to general logic programs, corresponds to a fragment of

default logic [14]. In this way, the C-IL2P system can be
applied to problems in which the background knowledge is
described in (this fragment of) default logic. As a case
study, in section 3 we apply the system in fault diagnosis of
a simplified power generator plant [23, 24], where the
background knowledge is described using Poole’s default
logic system Theorist [20, 21]. In section 4, we conclude
and discuss directions for future work.

2: The Extended C-IL2P System

The C-IL2P system is a purely connectionist,
massively parallel system for logic programming, that is
capable of performing inductive learning from examples
and background knowledge.

 Connectionist
 Logic Programming

 Learning
 Inference
 Examples Machine Explanation

 2 3
 Logic Knowledge 4 Logic
 Program P 1 Base Program P’

 5

(1)Background Knowledge Insertion.
(2)Connectionist Inductive Learning (Backpropagation)
from examples and background knowledge.
(3)Connectionist Logic Programming System (Deduction).
(4)Revised Logic Program Extraction.
(5)Expert’ s validation and Feedback.

Figure 1. The C-IL2P system.

Definition 2.1: A general logic program P is a set of
clauses of the form A ← L1...Ln, where n ≥ 0, A is a atom

and Li (1 ≤ i ≤ n) are literals.

The background knowledge, represented by a logic
program P, is translated to an equivalent three-layer fully-

connected neural network R, given by the Insertion
Algorithm below [4, 5].

Insertion Algorithm: Let m and n be the number of
literals and clauses occurring in P, respectively. Consider
that the literals of P are numbered from 1 to m, such that
the input and output layer of R are vectors of length m,
where the i-th neuron represents the i-th literal of P.

1. Set the threshold (θI
i) of the neurons in the input layer

to ½. In this way, the activation of the neurons in the input
layer will represent the interpretations3 for P, given by the
input vector of R.

2. For each clause Cl of P of the form A ← L1, ... , Lk:

2.1. Add a neuron Nc
l
 to the hidden layer;

2.2. Connect each neuron Li (1 ≤ i ≤ k)4 in the input

layer to the neuron Nc
l in the hidden layer. If Li is a

positive literal then set the connection weight to W;
otherwise, set the connection weight to -W, W > 0;

2.3. Connect the neuron Nc
l in the hidden layer to the

neuron A in the output layer and set the connection
weight to W;

2.4. Define the threshold (θH
l) of the neuron Nc

l in the
hidden layer as (p - ½) W, where p is the number of
positive literals occurring in the clause Cl.

3. For each fact Fl of P of the form A ←:

3.1. Add a neuron Nf
l to the hidden layer;

3.2. Connect the neuron T in the input layer to the

neuron Nf
l in the hidden layer and set the connection

weight to W, where T has threshold ½ and input data
“1” ;

3.3. Connect the neuron Nf
l in the hidden layer to the

neuron A in the output layer and set the connection
weight to W;

3.4. Define the threshold (θH
l) of the neuron Nf

l in the
hidden layer as W/2.

4. Set the threshold (θO
i) of the neurons in the output layer

to W/2.5

3 Truth assignments to the literals: "true” (input data “1”) or false (input
data “0”).
4 When we write “neuron Lj” , it refers to the neuron in R that represents the

literal Lj in P.
5 Remember that R is fully-connected, thus all other connections have their
weights fixed at zero.

Example 2.1: Consider the following program: P =
{ A ← B,C,~D; A ← E,F; B ← }. Using the insertion
algorithm, we obtain the neural network R of Figure 2.

 A B

 W/2 W/2

 N1 N2 N3
 1,5W 1,5W W/2

 ½ B ½ C ½ D ½ E ½ F ½ T

Figure 2. The Neural Network R obtained by the
Insertion Algorithm over P.6

Definition 2.2: The meaning function TP, mapping
Herbrand interpretations (i) of P to Herbrand
interpretations (I) of P is defined as follows: TP(i) = I =

{A ∈ BPthere exists a ground instance of a clause in P of

the form A ← L1...Ln such that i satisfies L1...Ln }.

Theorem 2.1 [4]: For each general logic program P,
there exists a feedforward artificial neural network R with
a positive W and exactly three layers of semi-linear
neurons, obtained by the above “ Insertion Algorithm” ,
such that R computes TP.

If R is transformed into a recurrent network by
linking (with W = 1) the units in the output layer to the
corresponding units in the input layer, we have:

Corollary 2.1 [4]: Let P be an acceptable program.
There exists a recurrent neural network R such that,
starting from an arbitrary input, R converges to the unique
fixed-point of TP.

Since we obtain a standard three-layer neural network
after the insertion of the background knowledge, we can
apply backpropagation in order to train it with examples.
After that, the knowledge encoded in the trained neural

6 The connections with weight zero are shown by the gray arcs. In order to
perform inductive learning, these connections must receive random values
near zero.

network R’ can be extracted by the “ extraction algorithm”
[5] obtaining an equivalent and revised logic program P’ .

Theorem 2.2 [5]: For each three-layer feedforward
artificial neural network R’ with semi-linear neurons there
exists a general logic program P’ , obtained by the
“ Extraction Algorithm” , such that R’ computes TP’ .

In [7], Gelfond and Lifschitz developed the Extended
Logic Programming, adding explicit negation to general
logic programs. The semantics of these programs are given
by their Answer Sets which are based on the stable model
semantics for general logic programs. Extended Logic
Programming corresponds to a fragment of Reiter’ s default
logic [14] in the sense that answer sets correspond to
extensions.

A direct way to extend C-IL2P system to perform
Extended Logic Programming is to make it deal with
explicit negation in its insertion algorithm. To do so, we
simply need to define neurons in the input and output
layers of R that explicitly represent the negation of a given
atom. In order to C-IL2P compute a logic program, a
concept A is represented by a neuron in the input and / or
output layer of the neural network, whose weights indicates
whether A is a positive or negative literal (negation as
failure), that is, it differentiates A from ~A. For an
extended logic program, we must also represent the
concept ¬A (explicit negation) in the neurons, whose
weights, now, differentiates ¬A from ~¬A.

Notice that the extension of C-IL2P for dealing with
explicit negation in an extended logic program must be
seen as a simple renaming of negative literals (i.e.: ¬A) by
a new positive literal (i.e.: A’) (see [7]). After doing that,
we can apply directly C-IL2P’ s insertion algorithm.
Furthermore, if the resulting program, after renaming, is
acceptable then theorems 2.1 and 2.2 still hold.

3. Application in Power System Diagnosis

We apply C-IL2P in power systems diagnosis. Toward
this goal, we use as a case example a simplified Power
System Generation Plant (see Figure 3). This system has
two generators, two transformers with their respective
circuit breakers, two buses (main and auxiliary) and two
transmission lines also with their respective circuit
breakers. Each transmission line has six associated alarms:
breaker status (indicates whether it is open or not), phase
over-current (shows that there was an over-current in the
phase line), ground over-current (shows that there was an
over-current in the ground line), timer (shows that there

was a distant fault from the power plant generator),
instantaneous (shows that there was a close-up fault from
the power plant generator), and auxiliary (indicates that
the transmission line is connected to the auxiliary bus).

Each transformer has three associated alarms: breaker
status (indicates whether it is open or not), overloading
(shows that there was a transformer overload) and
auxiliary (indicates that the transformer is connected to the
auxiliary bus).

Transformer 01
13,8Kv/230Kv Breaker

Transformer 01

Breaker
By-pass

Main Bus Auxiliary Bus

Transformer 02
13,8Kv/230Kv

 Transmission Line 01

Generator
 1

Generator
 2

Breaker
Transformer 02

Breaker

Transmission Line 02
Breaker

Line 01
Transmission

Line 02
Transmission

Figure 3. Configuration of a simplified Power
System Generation Plant.

In the above electric system, we know that if the
instantaneous alarm of transmission line 01 is activated
there is a transmission line 01 close-up fault. This fact can
be described in the following way:

Fact:

 Alarm(instantaneous, transmission_line_01) ←
Fault(close-up, transmission_line_01)

Hypothesis:

Fault(close-up, transmission_line_01)

The sentences above represent the knowledge in a
default logic called Theorist [20]. Besides the background
knowledge related to the usual faults and their associated
alarms, we generate an example set that has noisy (absence
of one of the characteristic alarms) single and multiple
faults.

The aim of implementing the power system diagnosis
in C-IL2P is twofold: to use the background knowledge in
the neural learning process and to explain the reasons for
the activated alarm sets. For instance, if the set of three
alarms (opening the breaker of the transmission line 01,
transmission line 01 phase over-current and transmission

line 01 instantaneous) are activated, the system must
diagnose the transmission line 01 phase-to-phase close-up
fault.

Moreover, it is also possible that, in the case of a
system fault, an alarm fail to activate due to some
equipment failure. In order to handle this problem, our
intelligent system should be able to detect faults even if the
associated alarm set is not complete. For instance, if only
phase over-current and instantaneous alarms of
transmission line 01 are activated, the system must be able
to diagnose the transmission line 01 phase-to-phase close-
up fault, even without activation of the opening breaker
alarm. As this fault is best explained by the two first
alarms activated, it is reasonable that the intelligent system
points out the fault occurrence. This characteristic
motivates the use of artificial neural networks for the
system diagnosis since they present good generalization
performance in noisy situations (if sufficiently structured
and trained).

In order to verify the system generalization ability, we
applied two test cases: noisy (absence of one of the
characteristic alarms) single faults (92 patterns) and noisy
multiple faults (70 patterns). After submitting the total set
of alarm patterns to the C-IL2P neural network, the system
achieved 97% of correctness.

Figure 4 shows the error reduction curves during the
learning process using C-IL2P and backpropagation neural
networks. Notice that the faster convergence of C-IL2P
neural network is due to the use of the background
knowledge in the learning process. This result confirms the
importance of the background knowledge for inductive
learning.

Number of Iterations

0

0.1

0.2

0.3

0 10 20 30 40 50

Backprop.

C-IL2P

Figure 4. RMS Error in the learning process.

These preliminary results are considered to be very
promising since they are similar to the ones described in
[24] and show the good performance of C-IL2P as an
integrated system for inductive learning with background
knowledge and default logic.

4. Conclusions and Future Work

In this work we presented an extension of C-IL2P
system that allows the implementation of Extended Logic
Programs in Neural Networks. This extension makes

C-IL2P applicable to problems where the background
knowledge is represented in a default logic. As a case
example, we have applied the system for fault diagnosis of
a simplified power system generation plant, obtaining good
preliminary results.

These results indicates the usefulness of C-IL2P as a
tightly coupled hybrid system [9] for the solution of
problems related to signal processing.

As future work, we would like to submit the
application here presented to a more expressive quantity of

tests, to apply C-IL2P’ s extraction algorithm to this case
study and to further examine the results.

5. References

[1] R. Andrews, J. Diederich and A. B. Tickle; “ A Survey and
Critique of Techniques for Extracting Rules from Trained
Artificial Neural Networks” ; Knowledge-based Systems; Vol. 8,

no 6; 1995.

[2]] V. C. Barbosa; “ Massively Parallel Models of Computation” ;
Ellis Horwood Series in Artificial Intelligence; 1993.

[3] M. Fitting; “ Metric Methods - Three Examples and a
Theorem” ; Technical Report, CUNY - New York; 1993.

[4] A. S. Garcez, G. Zaverucha e L. A. Carvalho; “ Logical
Inference and Inductive Learning in Artificial Neural Networks” ;
Workshop on Neural Networks and Structured Knowledge, ECAI
96, Budapest; 1996.

[5] A. S. Garcez, G. Zaverucha, L. A. Carvalho; “ Logic
Programming and Inductive Learning in Artificial Neural
Networks: Insertion, Extraction and Applications” ; Technical
Report, Coppe - Universidade Federal do Rio de Janeiro; 1996.

[6] M. Gelfond and V. Lifschitz; “ The Stable Model Semantics

for Logic Programming” ; 5th Logic Programming Symposium,
MIT Press; 1988.

[7] M. Gelfond and V. Lifschitz; “ Classical Negation in Logic
Programs and Disjunctive Databases” ; New Generation
Computing, Vol. 9, Springer-Verlag; 1991.

[8] P. J. Hayes; “ In Defense of Logic” ; 5th IJCAI; 1977.

[9] M. Hilario; “ An Overview of Strategies for Neurosymbolic
Integration” ; Connectionist-Symbolic Integration: from Unified to
Hybrid Approaches - IJCAI 95; 1995.

[10] S. Holldobler; “ Automated Inferencing and Connectionist
Models” ; Postdoctoral Thesis, Intellektik, Informatik, TH
Darmstadt; 1993.

[11] S. Holldobler and Y. Kalinke; “ Toward a New Massively
Parallel Computational Model for Logic Programming” ;
Workshop on Combining Symbolic and Connectionist Processing,
ECAI’ 94; 1994.

[12] N. Lavrac and S. Dzeroski; “ Inductive Logic Programming:
Techniques and Applications” ; Ellis Horwood Series in Artificial
Intelligence; 1994.

[13] J. W. Lloyd; “ Foundations of Logic Programming” ; Springer
- Verlag; 1987.

[14] W. Marek and M. Truszczynski; “ Nonmonotonic Logic:
Context Dependent Reasoning” ; Springer-Verlag; 1993.

[15] L. Medsker; “ Neural Networks Connections to Expert
Systems” ; Proceedings of the World Congress on Neural
Networks; 1994.

[16] R. S. Michalski; “ Learning Strategies and Automated
Knowledge Acquisition” ; Computational Models of Learning,
Symbolic Computation, Springer-Verlag; 1987.

[17] M. Minsky; “ Logical versus Analogical, Symbolic versus

Connectionist, Neat versus Scruffy” ; AI Magazine, Vol. 12, no 2;
1991.

[18] S. Muggleton and L. Raedt; “ Inductive Logic Programming:
Theory and Methods” ; The Journal of Logic Programming; 1994.

[19] G. Pinkas; “ Reasoning, Nonmonotonicity and Learning in
Connectionist Networks that Capture Propositional Knowledge” ;
Artificial Intelligence, Vol. 77; 1995.

[20] D. L. Poole, R. G. Goebel and R. Aleliunas; “ Theorist: A
Logical Reasoning System for Defaults and Diagnosis” ; The
Knowledge Frontier: Essays in the Representation of Knowledge,
Springer-Verlag; 1987.

[21] D. L. Poole; “ Compiling a Default Reasoning System into
Prolog” ; New Generation Computing; 1991.

[22] D. E. Rumelhart, G. E. Hinton and R. J. Williams;
“ Learning Internal Representations by Error Propagation” ;
Parallel Distributed Processing, Vol. 1, D. E. Rumelhart, J. L.
McClelland and the PDP Research Group, MIT Press; 1986.

[23] V. N. A. L. da Silva, G. Zaverucha, Guilherme N. F. de
Souza, “ An Integration of Neural Networks and Nonmonotonic
Logic for Power Systems Diagnosis” , IEEE International
Conference on Neural Networks, Australia; 1995.

[24] V. N. A. L. da Silva, Ricardo S. Zebulum, “ An Integration of
Neural Networks and Fuzzy Logic for Power Systems Diagnosis” ,
Intelligent Systems Applications to Power Systems - ISAP’ 96;
1996.

[25] S. B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J.
Cheng, K. De Jong, S. Dzeroski, S. E. Fahlman, D. Fisher, R.
Haumann, K. Kaufman, S. Keller, I. Kononenko, J. Kreuziger, R.
S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich, H. Vafaie, K.
Van de Welde, W. Wenzel, J. Wnek and J. Zhang; “ The
MONK’ s Problem: A Performance Comparison of Different
Learning Algorithms” ; Technical Report, Carnegie Mellon
University; 1991.

[26] G. G. Towell and J. W. Shavlik; “ Knowledge-Based
Artificial Neural Networks” ; Artificial Intelligence, Vol. 70;
1994.

[27] G. Zaverucha; “ A Prioritized Contextual Default Logic:
Curing Anomalous Extensions with a Simple Abnormality
Default Theory” ; Proceeding of the KI’ 94, LNAI 861, Springer-
Verlag; 1994.

[28] G. Zaverucha; “ On Cumulative Default Logic with Filters” ;

6th International Workshop on Nonmonotonic Reasoning, Eds.
M. Goldszmidt and V. Lifschitz; Timberline, Oregon, USA,
pp.132-140; 1996.

