
Inducing Relational Concepts with Neural Networks
Via the LINUS System

 Rodrigo Basilio Gerson Zaverucha Artur S. Garcez

Programa de Engenharia de Sistemas e Computação
COPPE, Federal University of Rio de Janeiro

Caixa Postal 68511
Rio de Janeiro, Brazil - 21945-970

{rbasilio, gerson}@cos.ufrj.br

 Department of Computing - Imperial College
London SW7- 2AZ UK

aag@doc.ic.ac.uk

Abstract

This paper presents a method to induce relational concepts with neural networks using the inductive
logic programming system LINUS. Some first-order inductive learning tasks taken from machine
learning literature were applied successfully, thus confirming the quality of the hypothesis generated by
neural networks.

Keywords: Knowledge Acquisition, Architectures, Learning and Generalization

1. Introduction

The application of neural networks has
been successfull in a wide range of “real world”
tasks, such as speech understanding,
handwritten-character recognition, control of
dynamic systems and language learning.
[Towell, Shavlik 94], [Shavlik et al. 91] and
[Thrun et al 91] have favorably compared neural
networks with other machine learning methods,
specially when data are noisy. These
applications strongly suggest that connectionist
learning is a powerful approach, and the
research of new methods to increase its cognition
power merits exploration.

[McCarthy 88] pointed out that neural
networks applications have all the basic
predicates unary and even applied to a fixed
object and a concept is a propositional function
of these predicates. Therefore they cannot
perform concept description, but only
discrimination. An example can be found in
[Hinton 86].

Towards relational concept learning
[Holldobler, Kurfess 92] and [Shastri,
Ajjanagadde 90] presented methods to represent
First-Order Logic in neural networks. However,
these networks do not have acceptable learning
capability.

Knowledge based neural networks by
[Towell, Shavlik 94] and [Garcez et al. 96] are
propositional theory refinement systems.
Propositional rules describing a domain problem
are inserted into a neural network, then this
network is trained with examples and a refined

propositional theory corresponding to it is
extracted. The use of prior knowledge has shown
to lead to better generalization, specially when
there is a reduced number of training examples.
[Pazzani, Kibler 92]

[Shavlik 96] pointed out that first-order
theory refinement with neural networks is an
open problem.

An alternative way to induce relational
concepts using neural networks , that is
described in this paper, is using the LINUS
system [Lavrac, Dzeroski 94], [Lavrac et al 91].

In section two, the LINUS system is
reviewed and applied in an example. In section
three, LINUS is used with neural networks and
applied in the same example. In section four,
some conclusions and future work are presented.

2. The LINUS system

LINUS’ goal is to use attribute-value
propositional inductive learning algorithms, such
as ASSISTANT and NEWGEN, to induce
relational concept descriptions in a subset of
First-Order Logic, namely constrained DHDB
(Deductive Hierarchical Database) formalism
[Lloyd 87].

Given a DHDB background knowledge
and a set of training examples (ground facts of
the target predicate), LINUS transforms a first-
order problem into an attribute-value form. This
information is sent to an attribute-value learning
system, which generates an attribute-value
hypothesis. Finally, this hypothesis is converted

back to DHDB form. Figure 1 illustrates this
process.

Figure 1. The structure of LINUS.

A simple example of how LINUS works
is presented here. We use an example of learning
the target predicate mother(x,y) given the
background predicates father, wife, son and
daughter.

TARGET POSITIVE EXAMPLES (negative examples
are generated by Closed world assumption (CWA))
mother(penelope,arthur)
mother(penelope,victoria).
mother(christine,jennifer).
mother(victoria,charlotte).
mother(francesca, marco).
mother(francesca, angela).

mother(maria, emilio).
mother(maria, lucia).
mother(lucia,alfonso).
mother(lucia, sophia).
mother(victoria,colin).
mother(christine,james)

FATHER PREDICATE
father(andrew, james).
father(andrew,jennifer).
father(james, charlotte).
father(roberto, emilio).
father(marco, sophia).
father(marco,alfonso).

father(james, colin).
father(chris, arthur).
father(roberto,lucia).
father(pierro,marco).
father(pierro,angela).
father(chris,victoria).

SON PREDICATE
son(arthur, penelope).
son(james, christine).
son(colin, victoria).
son(emilio, maria).
son(marco, francesca).
son(james, andrew).

son(colin, james).
son(emilio, roberto).
son(marco, pierro).
son(alfonso, marco).
son(alfonso, lucia).
son(arthur, chris).

DAUGTHER PREDICATE
daughter(victoria,penelope).
daughter(jennifer, christine).
daughter(charlotte, victoria).
daughter(lucia, maria).
daughter(angela, francesca).
daughter(sophia, lucia).
daughter(jennifer, andrew).
daughter(charlotte, james).
daughter(lucia, roberto).
daughter(angela, pierro).
daughter(sophia, marco).
daughter(victoria, chris).

WIFE PREDICATE
wife(penelope, chris).
wife(christine,andrew).
wife(margaret,arthur).
wife(victoria, james).
wife(jennifer, charles).

wife(francesca,pierro).
wife(gina, emilio).
wife(lucia, marco).
wife(angela, tomaso).
wife(maria, roberto).

Table 1. The DHDB Background Knowledge and
training examples.

The possible applications of the
background predicates on the arguments of the
target relation are determined, taking into
account argument types. Each such application
introduces a new attribute. In our example, all
variables are of the same type person. The
corresponding attribute-value learning problem
is given in table 2.

ATTRIBUTES :
A1 - wife(mother,mother)
A2 - wife(mother, son_daughter)
A3 - wife(son_daughter, mother)
A4 -wife(son_daughter, son_daughter)
A5 -father (mother, mother)
A6 -father (mother, son_daughter)
A7 -father (son_daughter, mother)
A8 -father (son_daughter, son_daughter)
A9 -daughter (mother, mother)
A10- daughter (mother, son_daughter)
A11 - daughter (son_daughter, mother)
A12 - daughter (son_daughter,son_daughter)
A13 - son(mother, mother)
A14 - son (mother, son_daughter)
A15 - son (son_daughter, mother)
A16 - son (son_daughter, son_daughter)

Table 2. The set of attributes generated.

The attribute-value tuples are
generalizations (relative to the given background
knowledge) of the individual facts about the
target relation. The system picks a target ground
predicate from the examples, one at a time, and
applies its terms in all attributes on table 2. If
each resulting ground predicate can be proved by
the DHDB, it is set to TRUE, otherwise it is set
to FALSE. The application of this procedure to
the seventh and ninth ground predicates of the

DHDB Background
Knowledge and

 training examples

 LINUS

Attribute-value Learning
Algorithms

Training Examples
(attribute-value)

Induced Hypothesis
(attribute-value)

DHDB clauses

target positive examples are shown in table 3.

Mother(X,Y) Son(X,X)
(A13)

Son(Y,X)
(A15)

(maria, emilio)
TRUE

(maria,maria)
FALSE

(emilio, maria)
TRUE

(lucia, alfonso)
TRUE

(lucia,lucia)
FALSE

(alfonso,lucia)
TRUE

Table 3. Example of setting attribute value.

For the above task, LINUS generates
576 training patterns, 12 positive and the
remaining 564 negative.

3. Using LINUS with Neural Networks

This work proposes the use of neural
networks as another attribute-value inductive
learning algorithm for LINUS.

The set of attribute-values generated by
LINUS, as described by table 3, is used as a set
of training examples for the neural network.

The method described in [Garcez et al.
96] is used to extract the knowledge from the
neural network. Despite the fact that this method
is not suitable for large networks, it was
satisfactory applied in the above example and in
other experiments we have performed. In fact,
any rule extraction method [Andrews et al. 95]
could be used. All the rules extracted were
postprocessed to eliminate irrelevant literals in
the body of the rules, before they were returned
to LINUS.

Various examples from Machine
Learning literature described in [Lavrac,
Dzeroski 94; Lavrac et al 91] were used to
analyze the performance of neural networks’
learning via LINUS: family relationships, the
concept of an arch, rules that govern card
sequences and the description of robots.

In all the experiments, a standard
multilayer feedforward backpropagation neural
network of three layers has been used. It is
important to notice that any neural network
architecture can be used. The number of neurons
in the hidden layer was chosen arbitrarily for
each experiment, usually 10. The training
stopping criteria was 100% of accuracy in the
training set performance.

In the above examples, the results
showed that the neural networks learned the
hypothesis that correctly describes the problem.
In the last example, the robot descriptions,
besides having a training set it also has a test set.
The network learned a hypothesis that classified
correctly 100% of the test set.

In the sequel, we apply the above
described method in the example of section two.

The resulting propositional hypothesis is:

PROPOSITIONAL HYPOTHESIS (FROM NN)
mother <-~A6, A15.
mother <-~A6, A11.

The following rules are irrelevant, and removed after
theory is postprocessed.

not_mother<-A2.
not_mother <-~A11,~A15.
not_mother <-A14.

not_mother <-A7.
not_mother <-A6.
not_mother <-A3.
not_mother <-A10.

The First-Order hypothesis generated by LINUS
is:

FIRST-ORDER HYPOTHESIS (BY LINUS)
mother(_mother,_son_daughter) :-
not father(_mother,_son_daughter),
son(_son_daughter,_mother).

mother(_mother,_son_daughter) :-
not father(_mother,_son_daughter),
daughter(_son_daughter,_mother).

4. Conclusion and Future Work

Theory refinement of first-order theory
is an open problem [Shavlik 96]. Differently
from [Pinkas 9?] and [Holldobler, Kurfess 92],
the method presented here does not generate
structured neural networks that represent first-
order theories. Alternatively, LINUS is used to
transform a first-order theory (in DHDB form)
into an attribute-value form, perform a neural
learning process and apply a rule extraction
algorithm; finally, the knowledge obtained is
converted back to DHDB form.

As future works, we intend to apply this
method to some real world applications. We also
intend to use DINUS [Lavrac, Dzeroski 92], that
allows to induce a class of programs slightly
larger than LINUS.

It would be interesting to explore the
suitability of knowledge based neural networks
like KBANN [Towell and Shavlik 94], CIL2P
[Garcez et al 96] and CASCADE ARTMAP
[Tan, Ah-Hwee 97]. In the last system, the
learning process is incremental, local, and
preserves the rule structure - this makes easier
the extraction task - and the ability to discover
new rules. We could also apply the method
described in [Menezes et al. 98] for rule
extraction from knowledge based neural
networks.

Acknowledgements

This work is part of ICOM project,
funded by CNPq/ProTeM. The authors are
partially financially supported by CAPES and
CNPq.

References
[Andrews et al. 95] R. Andrews, J. Diederich
and A. B. Tickle; “A Survey and Critique of
Techniques for Extracting Rules from Trained
Artificial Neural Networks”; Knowledge-based
Systems; Vol. 8, no 6, pp.1-37; 1995.

[Garcez et al. 96] A. S. Garcez, G. Zaverucha e
L. A. Carvalho; “Logical Inference and
Inductive Learning in Artificial Neural
Networks”; Workshop on Neural Networks and
Structured Knowledge, ECAI 96, Budapest;
1996.

[Holldobler, Kurfess 92] S. Holldobler and F.
Kurfess; “CHCL: A Connectionist Inference
System”; Parallelization in Inference Systems, B.
Fronhofer and G. Wrightson (ed.), Springer
LNAI 590, pp.318-342; 1992.

[Hertz et al. 91] J. Hertz, A. Krogh and R. G.
Palmer; “Introduction to the Theory of Neural
Computation”; Addison-Wesley, 1991.

[Hinton 86] Hinton G.E. “Learning distribuied
representations of concepts”. Proc. Eighth
Annual Conference of the Cognitive Science
Society , Amherst, MA, 1986.

[Lavrac et al. 91] N. Lavrac and S. Dzeroski
M.Grobelnik; “Experiments in Learning
Nonrecursive Definitions of Relations in LINUS
”; Technical Report, Jozef Stefan Institute; 1991.

[Lavrac, Dzeroski 92] Lavrac, N. and Dzeroski,
S. “Background knowledge and declarative bias
in inductive concept learning” In Jantke, K.,
editor, Proc. Third International Workshop on
Analogical and Inductive Inference, pp 51-71.
Springer, Berlin.

[Lavrac, Dzeroski 94] N. Lavrac and S.
Dzeroski; “Inductive Logic Programming:
Techniques and Applications”; Ellis Horwood
Series in Artificial Intelligence; 1994.

[Lloyd 87] J. W. Lloyd; “Foundations of Logic
Programming” (Second Edition); Springer -
Verlag; 1987.

[McCarthy, John 88] J. McCarthy,
“Epistemological challenges for connectionism”,

Behavior and Brain Sciences, vol. 11, n. 1; pp.
44; 1988.

[Menezes et al. 98] R. Menezes, G. Zaverucha,
V. C. Barboza. “A Penalty-Function Approach
to Rule Extraction from Knowledge-Based
Neural Networks”. In this proceedings; 1998

[Minsky 91] M. Minsky; “Logical versus
Analogical, Symbolic versus Connectionist, Neat
versus Scruffy”; AI Magazine, Vol. 12-2, pp.34-
51; 1991.

[Pazzani, Kibler 92] Pazzani, M.J. & Kibler, D.,
“The utility of knowledge in inductive learning”,
Machine Learning, n.9, vol. 1, pp.57-94, 1992.

[Quinlan 90] Quinlan, J.R.; “Learning logical
definitions from relations.” Machine Learning,
n. 5, pp.239-266.

[Shastri, Ajjanagadde 90] L. Shastri and V.
Ajjanagadde; “From Simple Associations to
Semantic Reasoning: A Connectionist
Representation of Rules, Variables and Dynamic
Binding”; Technical Report, University of
Pennsylvania; 1990.

[Shavlik et al. 91] Shavlik J., Mooney R., Towell
G., “Symbolic and neural net learning
algorithm: An empirical comparison.” Machine
Learning, n. 6, pp. 111-143., 1991.

[Shavlik 94] Shavlik J.; “Combining symbolic
and neural learning.” , Machine Learning, n.2,
vol. 14, pp.321-331, 1994.

[Shavlik 96] J. W. Shavlik; “ An Overview of
Research at Wisconsin on Knowledge-Based
Neural Networks” , ICNN, pp. 65-69; 1996

[Smolensky 88] P. Smolensky; “ On the proper
treatment of connectionism” , Behavior and
Brain Sciences, vol. 11, n. 1;pp. 1-23; 1988.

[Tan, Ah-Hwee 97] Ah-Hwee Tan; “ Cascade
ARTMAP: Integrating Neural Computation and
Symbolic Knowledge Processing.” ; IEEE
Transactions on Neural Networks vol.8 no.2; pp.
237-250;1997

[Towell, Shavlik 94] G. G. Towell and J. W.
Shavlik; “ Knowledge-Based Artificial Neural
Networks” ; Artificial Intelligence, Vol. 70,
pp.119-165; 1994.

[Thrun et al. 91] S. B. Thrun et al. “ The
MONK’s Problem: A Performance Comparison
of Different Learning Algorithms” ; Technical
Report, Carnegie Mellon University; 1991.

