Knowledge Extraction from Trained Neural

Networks: A Position Paper

A. S. d’Avila Garcez* K. Broda'

Abstract— It is commonly accepted that one
of the main drawbacks of neural networks, the
lack of explanation, may be ameliorated by the
so called rules’ extraction methods.

We argue that neural networks encode non-
monotonicity, i.e., they jump to conclusions
that might be withdrawn when new informa-
tion is available.

In this paper, we present a new extraction
method that complies with the above perspec-
tive. We define a partial ordering on the net-
work’s input vectors set, and use it to confine
the search space for the extraction of rules by
querying the network. We then define a number
of simplification metarules, show that the ex-
traction is sound and present the results of ap-
plying the extraction algorithm to the AMonks’
Problems.

I. INTRODUCTION

It is now commonly accepted that one of the main
drawbacks of neural networks, the lack of explana-
tion, may be ameliorated by the so called rules’
extraction methods (see [1] for a comprehensive
survey on the subject). The problem lies in the
trade-off between the extraction algorithm’s com-
plexity and the quality of the set of rules extracted
from the network. So far, decompositional meth-
ods have shown a better overall performance than

*Department of Computing, Imperial College, London
SW7T 2BZ, UK. aag@doc.ic.ac.uk.

TDepa,rtment of Computing, Imperial College, London
SWT 2BZ, UK. kb@doc.ic.ac.uk.

iDepartment of Computer Science, King’s College, Lon-
don WC2R 2LS, UK. dg@dcs.kecl.ac.uk.

§Depa,rtment of Computer Science, University College
London, London WCI1E 6BT, UK. A.Souza@Qcs.ucl.ac.uk.

D. M. Gabbay? A. F. de Souza’

pedagogical ones, when empirically tested in cer-
tain application domains. However, such methods
as [7] and [9] rely on pruning of weights and re-
training, and unfortunately may derive unsound
rule sets (see [2]).

We propose a slight shift in perspective. We ar-
gue that neural networks are nommonotonic sys-
tems, i.e., they jump to conclusions that might
be withdrawn when new information is available
[6]. In this sense, we derive rules of the form
Ll,...,Li,N Li+17---7"’ Lj — Lj+1, where ~
stands for default negation. Thus, operationally
a ~ b — ¢ behaves such that c fires in the presence
of a provided that b is not present.

Moreover, one should only be able to derive
a — ¢ from a network with inputs a and b after
it is known that ab — ¢ and a ~ b — ¢, other-
wise the extraction may be unsound. Thus, we
see metarules like subsumption [4] and M-of-N [9],
which enhance considerably the readability of the
rule set, as simplifications of the rules extracted
from the network.

In this paper, we present a new extraction
method that complies with the above perspective.
We define the subnetworks of a network as is done
for decompositional techniques. We show that
there is a partial ordering on the set of input vec-
tors of each subnetwork w.r.t the corresponding
output’s activation value. We then use the order-
ing to guide the input vectors search space during
the extraction of rules, which is done by query-
ing each subnetwork. We define the simplification
metarules and show that they are strongly related
to the ordering on the input vectors. Finally, we
describe how to assemble the rule set for the net-
work and show that the extraction algorithm is
sound w.r.t exhaustive pedagogical extraction, i.e.,
that any rule extracted is actually encoded in the
network.

In section 2 we describe the extraction algo-
rithm, in section 3 we present the results of ap-
plying the algorithm in the Monks’ problems [8],
and in section 4 we conclude and discuss directions
for future work.

1The extraction algorithm is part of the Connection-
ist Inductive Learning and Logic Programming System
(CIL?P). The interested reader is referred to [3] for a de-
tailed description of the system, including the discussion
about neural networks’ nonmonotonic semantics, and to [2]

II. THE EXTRACTION ALGORITHM

Throughout this paper the truth-values 1'rue and
False are represented by 1 and -1, respectively.
We assume that each input value ¢; € {—1, 1}, and
each input vector i is associated with an interpre-
tation for the rule set. For example, let 7 be the
set of input neurons. Suppose Z = {a,b,c}. We
fix a linear ordering on the symbols of 7 and rep-
resent it as a list, say [a,b,¢]. Thus ifi = (1,—1,1)
then i(a) = i(c) = True and i(b) = False. The set
of input vectors I (i € I) is an abstract representa-
tion for the power set of the set of input neurons
Z,ie.,I=p(7). For example, i = (1,—1,1) above
represents the set {a,c}. We consider the class of
single hidden layer networks without loss of gener-
ality [5].

We define the extraction problem as follows:
given a trained network, find for each input vector
i, all the outputs o; in the corresponding output
vector o such that 0; > A, where A, € (0,1)
(we say that output neuron j is active for i iff
0j > Amin). For example, given the set of input
neurons Z = [a,b,¢], if j is active for i =(1,-1,1)
then derive the rule a ~ bc — j. If i has length
p then there are 2P possible input vectors to be
queried in the network.

Hence, let 6n
puted by network N, if we query the network for
all 27 input vectors and derive rules for each pair
(i, o) then we obtain a sound and complete rule set.
Clearly, the problem lies in the fact that comput-
ing such a rule set may turn out to be impossible
for large input vectors. Moreover, even for the case
of computable sets, the rules’ readability may be
extremely poor. In order to ameliorate the first
problem, we try and find a partial ordering® on
the set of input vectors I such that we can guide
the search for rules’ extraction. To cope with the
second problem, the simplification metarules are
brought to bear. A network that computes the
XOR function, called N (Figure 1), will be used to
exemplify the technique.

Notation: 0;(i,,) will denote the activation
of output neuron j given input vector i, and
6 : 1 — o, where N depends on the context. In
Figure 1 for example, for network N, o; refers to
the activation of neuron o, while for (sub)network
Ny, o refers to the activation of neuron hg.

We start by defining a distance function between
input vectors and the sum of an input vector.

i — o be the function com-

Definition 1 Let i, and i, be two input vectors
in I. The distance dist(ip,i,) between iy, and i,
is the number of inputs i; for which in, (4;) # in(4:).

for the full version of this paper and for the proofs of the
propositions.

2A partial ordering is a reflexive, transitive and antisym-
metric relation on a set.

Figure 1 — The network N, having tanh as activation

function, computes X OR. We will extract rules for hg,
h1 and o by querying N;, Ng and N 3, respectively,
and then assemble the rule set for V.

Definition 2 Leti,, be a p—ary input vector in L.
The sum (i) of i, is the sum of all input elements
Z'i n im, z'.e., <im> = le im(ii).

Now we define the partial ordering <j; on I =
9(Z) w.r.t set inclusion. We say that i, C i, if
the set represented by i,, is a subset of the set
represented by i,.

Definition 3 Let i, and i, be input vectors in 1.

Clearly, for a finite set 7, I is a finite partially
ordered set w.r.t <j having 7 as its maximum ele-
ment and the empty set () as its minimum element.
The following proposition shows that <j is an or-
dering of interest w.r.t the network’s outputs for
networks with positive weights only.

Proposition 4 Let o be a r — ary wvector. If
VEL Wi, € RT then iy, <y i, implies 0;(iy) <
0j(in), for all1 < j <.

By Proposition 4, we know for instance that if
output j is active for i,, then it is also active for
i,. However, Wj; € R is a very strong condi-
tion. In order to relax it, we need to split the net-
work into subnetworks, similarly to [4], such that
a variation of Proposition 4 will hold for W € .
A network with p input neurons, ¢ hidden neu-
rons and r output neurons contains g input-to-
hidden subnetworks, each with p inputs and a sin-
gle output, and r hidden-to-output subnetworks,
each with ¢ inputs and a single output (see Figure
1). To each subnetwork we apply a transforma-
tion whereby we rename input neurons z; linked
through negative weights to the output, by ~ zp
and replace each weight W;, € R by its modu-
lus. We call the result the positive form of the
subnetwork. For example, in Figure 1, N; and
Ny are the positive forms of the input-to-hidden
subnetworks of N, and N3 is the positive form
of the hidden-to-output subnetwork of N. More
precisely, we define the function ¢ mapping in-
put vectors of the positive form into input vec-
tors of the subnetwork as follows. Let zj € Z,

1 <k < s o([x1,eees Ts](B1, 00y 85)) = (8], 0y 8L),
where z;c = iy, if zy, is a positive literal and z;c = —
if z;, is a negative literal. For example, for Ny
U([a7'\' b](17 1)) = (17 _1)'

The following proposition shows that <j is still
valid for subnetworks and W, € R.

Proposition 5 For each subnetwork of a network,
i <1in implies 0;(0(Z,1m)) < 0j(0(Z,1n)).

Figure 2 shows <j on the input vectors of Ny,
where (1,1) = [a,~ b], and the mapping o to the
input vectors of the corresponding subnetwork of

N.

(1,D) c (1-1)
TN 7 N\
(-1,1) (L-1) (-L-1) (L1)
S~ A7 AN
(-1-1) (-1,1)

@ @i

Figure 2 — (7) <1 on the input vectors of N; and ()
the ordering on the input vectors of the corresponding
subnetwork of N.

If now, in addition, we consider the weights val-
ues of each positive form, we can decide whether
0j(in) < 0;(i,) when (i,) = (i,) *. Taking for
instance i, = (1,—1) and i, = (=1,1) for Ny,
since Whya < Whop it is not difficult to see that
ho(im) < ho(in). Let us formalize this idea.

Definition 6 Let i,,,i, and i, be three differ-
ent input vectors in I such that dist(in,i,) = 1,
dist(in, i,) = 1 and (i) < {in), {in), i€, iy and
i, are immediate successors of i,. Let i, be 0b-
tained from i, by flipping the i-th input from -1
to 1, while i, is obtained from i, by flipping the
k-th input from -1 to 1. We write i,, <y in iff
W;; < Wig.

Proposition 7 For each subnetwork of a network,
im <y in implies 0;(0(Z,1in)) < 0;(0(Z,1n)).

We may now define the ordering < on the input
vectors of a subnetwork’s positive form w.r.t <y
and <y as follows.

Definition 8 Let =< be a partial ordering on 1.
For alliy, i, € I, iy, 2 iy iff b <1 1y o7 iy <) e

Proposition 9 For each subnetwork of a network,
i, =i, implies 0;(0(Z,in,)) < 0;(0(Z,1,)).

3Recall that, previously, two input vectors im and in
such that (im) = (in) were incomparable, e.g., (—1,1) and
(1,-1) at Figure 2(¢).

Corollary 10 (Search Space Pruning Rule) Let
i, and i, be input vectors of the positive form
of a subnetwork with output neuron j, such that
im = in. Ifi, does not activate j then i,, does not
activate j either. By contraposition, if i,, activates
7 then i, also does.

Definition 8 (=), together with Corollary 10,
provides a systematic way of searching the input
vectors space (see [2] for implementation details).

Example 11 Figure 3 shows = on the positive
form of a subnetwork with three input neurons,
say {a,b,c}, and output neuron j. Let W;, = b,
Wiy, = 2, and Wj. =1 and (1,1,1) = [~ a,b,c].
By Corollary 10, if for instance (1,1,—1) activates
j then (1,1,1) also does (see Figure 3), and we can
derive the rules ~ ab ~ ¢ — j and ~ abc — j, re-
spectively. Similarly, if in addition (1,—1,1) does
not activate 3 then we can stop the search.
Basically, the extraction algorithm queries each
subnetwork’s positive form, alternating from both
the ordering’s maximum and minimum elements
and following the partial ordering = on the input
vectors, it generates rules accordingly (by using o)
until it reaches the frontier between wvectors that
activate the output and vectors that do not do so,
according to the Search Space Pruning Rule.

(1,1,1)
(1,1-1)
(1,-1,1)

A
CLLD (11,1

NS
(-1,1-1)

/F

(-L-L,1)

/F

(-L-1,-1)

Figure 3 — The ordering =< on 3-ary input vectors
[x1,x2,x3], where Wy, > Wiz, > Wig,.

Note that for 2 — ary input vectors, < is a linear
ordering. For Ny (—=1,—1) =< (1,-1) =< (-1,1) <
(1,1) and for Ny (—1,-1) = (—=1,1) < (1,-1) =
(1,1), where (1,1) = [a,~ b] for both. For Ny,
hg is active for (1,1) only. Thus, by applying o
we derive a ~ b — hg. For Nz, hy is not active
for (=1,—1) only. Similarly, we derive ab — hy,
~a~b— hyand a ~ b — hy. The last two rules
can be simplified to obtain ~ b — hy, since ~ b
implies h; given either a or ~ a. Similarly, from

ab — h; and a ~ b — h; we obtain a — h;. Let
us then define the simplification metarules of the
extraction algorithm.

Definition 12 (Subsumption) A rule 7y sub-
sumes a rule ro iff they have the same conclusion
and the set of premises of r1 is a subset of the set
of premises of ra.

Definition 13 (Complementary Literals) Let
T1 = Ll,...,Li,...,Lj — Lj+1 and) =
Ly,...,~ Li,...,.L; — L;., be derived rules.
Then, rs = Ll,...,Lifl,Li_‘_l,...,Lj — Lj+1 8
also a derived rule. Note that r3 subsumes r; and
2.

Definition 14 (M of N) Let m,n € N,Ir C
Z,|Z1) = n,m < n. Then, if any combination of
m elements chosen from L1 implies L; 1 we derive
a rule of the form m(Zr) — Lj.4.

Definition 15 (M of N Subsumption) Let m,p €
W, Tr C I,m(Zr) — Ljy1 subsumes p(Z/) — Lj4q
iff m < p.

Each simplification metarule is tied to the order-
ing = on the input vectors, e.g., Complementary
Literals are applied over vectors with distance one
between themselves, and valid M of N rules are
applied over up-sets?. Taking, for the sake of sim-
plicity, (1,1,1) = [a,b,¢| in the ordering of Fig-
ure 3, if (1,—1,—1) activates j then, by Corollary
10 and Definitions 12 and 13, we obtain the rule
a — j. Similarly, if (—1,1,1) activates j then,
by using Definition 14 as well, we derive the rule
2(abc) — j. Finally, by Definition 15, 1(abc) — 7,
obtained when (—1,—1,1) activates j, subsumes
2(abc) — 7, and so on. The following proposition
shows that the simplification metarules preserve
equivalence of rule sets.

Proposition 16 Let S and S’ be rule sets. If S’
is obtained from S by applying Definitions 12, 13,
14 or 15 then S and S’ are logically equivalent.

So far, we have deliberately not mentioned
the extraction from hidden-to-output subnetworks.
Briefly, all the propositions above hold for such
subnetworks, if we assume that the network’s hid-
den neurons present discrete values activations
such as {—1,1}. We know however that this is
not the case, and therefore accuracy problems may
arise from such assumption (see [1]). At this point
we need to compromise. Either we assume that
the hidden neurons activations are in {—1, Apyin },
and then are able to show that the extraction is
sound but incomplete, or we assume that it is in

4Let P be an ordered set and Q C P. Q is an up-set if,
whenever z € Q, y € P and x Xy, then y € Q.

{—Amin,1}, obtaining an unsound but complete
extraction. We have chosen the first approach®.

Back to the XOR example, for N3 we have
(_17_1) j (_17Am1n) j (Am”“—l) j
(Amin7 Amin)y where (Ami'n,yAmin) = [Nh07h1] and
Amin = 0.5. Only (Amin, Amin) activates o, and
we derive the rule ~hgh; — o.

In what follows, we outline the extraction algo-
rithm for a network A and present a simple but
illustrative example. The interested reader is re-
ferred to [2] for the detailed presentation of the
extraction algorithm. For each subnetwork A; of

N we do:

1. Apply the Transformation o on N; and obtain
Ni’s positive form (N]7).

2. Fix a linear ordering on 7 according to the
weights vector of N;".

3. Query N with input vector inf(I), where
tnf(I) is the minimum element of the ordering
=<onl If 0 > Anin, derive the rule — j and
stop (j is a fact, by Definition 13).

4. Query N;” with input vector sup(I), where
sup(I) is the maximum element of the order-
ing < on L. If 0; < —Apin, stop.

5. Search the input vectors space I. Set i, =
inf(I), i, = sup(I). While dist(i, ,inf(I)) <
nDIV2 or dist(i,,sup(I)) < nDIV2 + nMOD2,
where n is the number of input neurons of

J\fﬁ', do:

Generate new i, and i, from old i, and
i, respectively, following the ordering =<

T2

on I, and query the network

(a) set new i, := old i, according to =< .
Query N~ with new i, .

(2

(b) If the Search Space Pruning Rule is ap-
plicable: stop generating the successors
of i, , apply Complementary Literals and
add the rules derived accordingly to the
rule set.

(c) set new i, := old i., according to < .

Query N with new i;.

(d) If the Search Space Pruning Rule is ap-
plicable: stop generating the predeces-
sors of i..

6. Apply Subsumption to the rule set.

5Here, we perform a kind of worst case analysis. By
choosing activations in {—1, Anin }, misclassifications occur
because of the absence of a rule (incompleteness). Analo-
gously, by choosing {—Anin, 1}, misclassifications are due
to the inappropriate presence of rules in the rule set (un-
soundness). In this context, the choice of {—1,1} yields
unsound and incomplete rule sets.

7. Apply M of N and M of N Subsumption to
the rule set.

Example 17 (Exactly 1 of 5) We train a network
with five input neurons {a,b,c,d,e}, two hidden
neurons {ho,h1} and one output neuron {o}, on
all the 32 possible input vectors. The network’s
output fires iff exactly 1 of its inputs fires. Al-
though this is a very simple network, it is not very
easy to verify by inspecting its weights that it com-
putes exactly 1 out of {a,b,c,d,e}. Assume that
Whoa| < [Whee| < [Whoe| < [Whoal < [Whes| and
Whial < [Whiel < [Whial < [Whiel < [Whyel-
We split the network into ils subnetworks and ap-
ply the extraction algorithm, i.e., we query each
positive form, by following the ordering < on 1,
until we reach the frontier of activations. Tak-
ing T = [a,b, c,d,e] for the subnetwork with output
ho, suppose we find that input (—1,—1,—-1,1,—1)
activates ho. Since |Wy,q| is the smallest weight,
from the ordering < on I and by applying Defin-
itions 18 and 14, we derive the rule 1(abede) —
hg. Note that, by Definition 12, this rule sub-
sumes m(abede) — hg, for m > 1. Taking again
7 = [a,b,c,d,e] for the subnetwork with output hy,
suppose we find that input (—1,—1,—1,1,1) ac-
tivates hi. Similarly, from the ordering = on I
and by applying Definitions 18 and 14, we derive
the rule 2(abcde) — hy. Finally, for the hidden-
to-output subnetwork, I = [hg,~ hy]. Taking
Amin = 0.5, 0 is only activated by (Amin, Amin)
and we derive the rule hg ~ hy — o. Therefore,
exactly 1 out of {a,b,c,d, e} is obtained by comput-
ing 1(abede) N ~ 2(abede) — o, i.e., at least 1 out
of {a,b,c,d,e} AND at most 1 out of {a,b,c,d, e}
implies o.

The last step of the extraction algorithm is to
assemble the rule set of A/. In the above exam-
ple, in order to obtain the rule mapping inputs
{a,b,c,d,e} directly into the output {0}, we as-
sumed that 1(abcde) < hy and 2(abede) — hg.
Lemma 18 below guarantees that we can do so,
i.e., we take the completion of each rule extracted
from input-to-hidden subnetworks. For example,
for network N (Figure 1) we had a ~ b — h,
a — hy, ~ b — hy and ~hgh; — o. And from
a ~ b < hg and aV ~ b < h; we finally obtain
(~aVb)A(aV ~b) — o; the XOR function.

Lemma 18 The extraction of rules from input-to-
hidden subnetworks is sound and complete.

Lemma 19 The extraction of rules from hidden-
to-output subnetworks is sound.

Finally, the proof that the extraction algorithm
is sound follows from Lemmas 18 and 19.

Theorem 20 The extraction algorithm is sound.

III. EXPERIMENTAL RESULTS

As a point of departure for testing, we applied
the extraction algorithm® to the Monks’ prob-
lems [8], which have been used as benchmark for
performance comparison between a range of sym-
bolic and connectionist machine learning systems.
Briefly, in the Monks’ problems, robots in an arti-
ficial domain are described by six attributes with
the following possible values: head-shape{round,
square, octagon}, body shape{round, square, oc-
tagon}, is_smiling{yes, no}, holding{sword, bal-
loon, flag}, jacket color{red, yellow, green, blue}
and has_tie{yes, no}. Problem 1 trains a net-
work with 124 examples, selected from 432, where
head_shape = body_shape V jacket_color = red.
Problem 2 trains a network with 169 examples,
selected from 432, where ezxactly two of the six at-
tributes have their first value. Problem 3 trains a
network with 122 examples with 5% noise, selected
from 432, where (jacket_color = greenAholding =
sword) V (jacket_color # blue N body_shape #
octagon). The remaining examples are used in the
respective test sets.

We use the same architectures as Thrun [8], i.e.,
single hidden layer networks with three, two and
four hidden neurons, for Problems 1, 2 and 3, re-
spectively; 17 input neurons, one for each attribute
value, and a single output neuron, for the binary
classification task. We use the standard back-
propagation learning algorithm. Differently from
Thrun, we use bipolar activation function, inputs
in the set {—1,1}, and A, = 0 (See [3] for the
motivation behind this).

For Problems 1, 2 and 3, the networks’ test set
performance was 100%, 100% and 93.1%, and the
rule sets performance in the same test sets was
100%, 99.2% and 91.9%, respectively. In general,
less than 30% of the input vectors set is queried
and, among them, less than 50% generate rules.
The tables below present, for Problems 1, 2, and
3, the number of input vectors queried during ex-
traction and the number of rules obtained before
and after simplifications Complementary Literals
and Subsumption are applied. For example, for
hidden neuron hgy in Monk’s Problem 1, 18,724 in-
put vectors are queried generating 9,455 rules that
after simplification are reduced to 2,633 rules.

Monksl | Input Vectors | Queried | Extracted | Simplified
ho 131072 18724 9455 2633
hy 131072 18598 9385 536
hy 131072 42776 | 21526 1793
o 8 8 2 1

6The extraction algorithm was implemented in ANSI C.

Monks2 Input Vectors Queried Extracted Simplified
ho 131072 131070 | 58317 18521
hy 131072 43246 21769 5171
o 4 4 1 1

Monks3 Input Vectors Queried Extracted Simplified
ho 131072 18780 9240 3311
hy 131072 18618 9498 794
ho 131072 43278 21282 3989
hs 131072 18466 9544 1026

o 16 14 8 2

In general, Complementary Literal and Sub-
sumption reduce the rule set by 80%. M of N
and M of N Subsumption further enhance the rule
set readability. In particular, the rule set for
Problem 1 is presented in the Appendix’. For
short, we name each attribute value with a letter
from a to ¢ in the sequence presented above, s.t.
a = (head_shape = round),b = (head_shape =
square), and so on.

It is interesting that because the rule obtained
for the hidden-to-output subnetwork of Problem 1
was ~h; ~hg — 0 and since the rule set presents
100% of accuracy, hidden neuron hg is not neces-
sary at all, i.e., the problem could have been solved
by a network with two hidden neurons only, obtain-
ing the same results. Another interesting exercise
is to try and see what the network has general-
ized, given the rule set and the classification task
learned.

IV. WORK IN PROGRESS AND CONCLUSION

The next step is to test the extraction algorithm
on real world applications such as Computational
Biology, where the number of input neurons make
an exhaustive pedagogical extraction impossible,
and compare results with those obtained in [4, 7, 9].

We have formally presented a new algorithm
that extracts (sound) nonmonotonic rules from
neural networks. Its application in the Monks’
Problems shows very promising results.

REFERENCES

[1] R. Andrews, J. Diederich and A. B. Tickle, “Sur-
vey and Critique of Techniques for Extracting
Rules from Trained Artificial Neural Networks”,
Knowledge-based Systems, 8(6):373-389, 1995.

[2] A. S. d’Avila Garcez, K. Broda and D. Gabbay,
“Symbolic Knowledge Extraction from Trained
Neural Networks: A New Approach”, Technical
Report TR-98-014, Department of Computing, Im-
perial College, London, 1998.

"We use the Integrity Constraints of the Monks’ Prob-
lems in order to present the rule set here. For example,
we do not present derived rules where has_tie = yes and
has_tie = no simultaneously.

[3] A.S.d’Avila Garcez and G. Zaverucha, “The Con-
nectionist Inductive Learning and Logic Program-
ming System”, In F. Kurfess (ed.) Applied Intel-
ligence Journal, Special Issue on Neural Networks
and Structured Knowledge (to appear), 1999.

[4] L. Fu, “Neural Networks in Computer Intelli-
gence”, McGraw Hill, 1994.

[5] K. Hornik, M. Stinchcombe and H. White, “Multi-
layer Feedforward Networks are Universal Approx-

imators”, Neural Networks, 2:359-366, 1989.

[6] W. Marek and M. Truszczynski, “Nonmonotonic
Logic: Context Dependent Reasoning”, Springer-
Verlag, 1993.

[7] R. Setiono, “Extracting Rules from Neural Net-
works by Pruning and Hidden-unit Splitting”,
Neural Computation 9:205-225, 1997.

[8] S. B. Thrun et al., “T'he MONK’s Problem: A Per-
formance Comparison of Different Learning Algo-
rithms”, Technical Report, Carnegie Mellon Uni-
versity, CMU-CS-91-197, 1991.

[9] G. G. Towell and J. W. Shavlik, “The Extraction
of Refined Rules From Knowledge Based Neural
Networks”, Machine Learning, 13(1):71-101, 1993.

APPENDIX

Rules extracted for the Monk’s Problem 1:

Nthh2—>O

~ abcd ~ e — hy

bd ~e~1—hy

b~i~Imn—hy

bed(~ IV ~ef) — by

b~ef(mnVmo) —hy

~abdf(~1VmVn)— h

mno(~IVb~eVd~eVbcVedV ~ abVbf) —hy

1(mno) A (bd ~ eVbd ~ IV bcdf Vb~ ef ~ IV ~
abedV ~ab ~e~1Vbc~e~1Ved~e~1)—hy

a~b~dek ~1— hy

ac ~ dem ~ q — hg

a~b~def ~1— hg

ae ~ gjm(n Vo) — hy

~be~ g~ lin(aV ~d) — hg

ar~bersde~1(cV ~h)— hy

~brder g l(mVo)— hy

ar~brde~1(jVpVi)— hy

arber~ 1l g(~dVm)— hg

arber~gel(~dVmVo)— hy

aem(~ gn ~ pv ~ go ~ pvV ~ hknV ~
hko)—>h2

1(mno) A(a ~de ~hVar~de~gVarde~
IVa~b~deVac~defVar~brdf ~IV~br~
def ~Iva~bef ~IVa~br~d~g~IVa~be~
h~IlVa~rb~d~h~IlV~b~de~h~IVas
bee ~ IV @ ~be~drs IV ~be~ de ~ 1) —hgy

