
A CONNECTIONIST INDUCTIVE LEARNING SYSTEM FOR
MODAL LOGIC PROGRAMMING

Artur S. d’Avila Garcezα, Luís C. Lambβ and Dov M. Gabbayγ

αDept. of Computing, City University, London, EC1V 0HB, UK. aag@soi.city.ac.uk
βInstituto de Informática, UFRGS, Porto Alegre, RS, 91501-970, Brazil. lamb@inf.ufrgs.br

γDept. of Computer Science, King’s College, London WC2R2LS, UK. dg@dcs.kcl.ac.uk

ABSTRACT
Neural-Symbolic integration has become a very active re-
search area in the last decade. In this paper, we present a
new massively parallel model for modal logic. We do so
by extending the language of Modal Prolog [15, 18] to al-
low modal operators in the head of the clauses. We then
use an ensemble of C-IL2P neural networks [7, 9] to encode
the extended modal theory (and its relations), and show that
the ensemble computes a fixpoint semantics of the extended
theory. An immediate result of our approach is the ability
to perform learning from examples efficiently using each
network of the ensemble. Therefore, one can adapt the ex-
tended C-IL2P system by training possible world represen-
tations.

Keywords: Hybrid Systems, Neural-Symbolic Integra-
tion, Modal Logic, Change of Representation.

1. INTRODUCTION

Neural-Symbolic integration concerns the utilization of
problem-specific symbolic knowledge within the neurocom-
puting paradigm [7]. In spite of the progress in the last
decade, neural-symbolic systems have not been shown to
fully represent and learn first order logic [5]. We believe that
a promising approach to unravel this problem is to inves-
tigate ways of representing and learning the necessity and
possibility operators, and the acessibility relation of propo-
sitional modal logic [3] in neural networks1.

In this paper, we propose a new massively parallel model
for propositional modal logic, thus contributing to the rep-
resentation of quantification in neural networks. We present
an algorithm to translate a modal theory into an ensemble of
Connectionist Inductive Learning and Logic Programming
(C-IL2P) networks [7], and show that the ensemble com-
putes a fixpoint semantics of the theory. As a result, the

1Modal logic was found to be appropriate to study mathematical ne-
cessity (in the logic of provability), time, knowledge, belief, obligation
and other concepts and modalities. In artificial intelligence and comput-
ing, modal logics are among the most employed formalisms to analyse and
represent multi-agent systems and concurrency properties [10].

ensemble can be seen as a new massively parallel model for
modal logic. In addition, since each C-IL2P network can be
trained efficiently using the Backpropagation learning algo-
rithm [17], one can adapt the C-IL2P ensemble by training
each network with examples.

In Section 2, we briefly present the basic concepts of
modal logic used in this paper. In Section 3, we present a
Modalities Algorithm that translates extended modal logic
programs into ensembles of C-IL2P networks. We then show
that the ensemble computes a fixpoint semantics of the given
modal program, thus proving the correctness of the Modal-
ities Algorithm. In Section 4, we conclude and discuss di-
rections for future work.

2. EXTENDED MODAL LOGIC PROGRAMS

In this section, we present some basic concepts of modal
logic. We also extend modal Prolog [18] to allow the neces-
sity (�) and possibility (3) modalities to appear in the head
of the clauses, as well as default negation (∼) to appear in
the body of the clauses [4]. Finally, we define a fixpoint se-
mantics for such extension, to be computed by our ensemble
of C-IL2P networks. As usual, we assume that any clause is
ground over a finite domain.

A main feature of modal logics is the use of possible
world semantics, which has significantly contributed to the
development of new non-classical logics, many of which
with great impact in computing science. A proposition is
necessary (�) in a world if it is true in all worlds which are
possible in relation to that world, whereas it is possible (3)
in a world if it is true in at least one world which is possible
in relation to that same world.

Definition 1 A modal atom is of the form MA where M ∈
{�,3} and A is an atom. A modal literal is of the form ML

where L is a literal.

Definition 2 A modal prolog program is a finite set of clauses
of the form MA1, ...,MAn → A.

We define extended modal programs as modal prolog
programs extended with modalities � and 3 in the head of
clauses, and default negation ∼ in the body of clauses. In

addition, each clause is labelled by the possible world in
which they hold, similarly to Gabbay’s Labelled Deductive
Systems [12], as follows.

Definition 3 An extended modal program is a finite set of
clauses C of the form ωi : ML1, ...,MLn → MA, where
ωi is a label representing a world in which the associated
clause holds, and a finite set of relations R(ωi, ωj) between
worlds ωi and ωj in C.

For example: P = {ω1 : r → �q, ω1 : 3s → r, ω2 : s,

ω3 : q → 3p,R(ω1, ω2),R(ω1, ω3)} is an extended modal
program. The � and 3 modalities will have the following
interpretation.

Definition 4 (Kripke Models for Modal Logic) Let L be a
modal language. A model for L is a tuple M = 〈Ω,R, v〉
where Ω is a set of possible worlds, v is a mapping that
assigns to each propositional letter of L a subset of Ω, and
R is a binary relation over Ω, such that: (i) (M, ω) |= 2α

iff for all ω1 ∈ Ω, if R(ω, ω1) then (M, ω1) |= α, and (ii)
(M, ω) |= 3α iff there exists a ω1 such that R(ω, ω1) and
(M, ω1) |= α.

In what follows, we define a model-theoretic semantics
for extended modal programs. When computing the seman-
tics of the program, we have to consider both the fixpoint
of a particular world, and the fixpoint of the program as
a whole. When computing the fixpoint in each world, we
have to consider the consequences derived locally and the
consequences derived from the interaction between worlds.
Locally, fixpoints are computed as in the stable model se-
mantics of logic programming, by simply renaming each
modal literal MLi by a new literal Lj not in the language
L, and applying the Gelfond-Lifschitz Transformation [2] to
it. When considering interacting worlds, there are two cases
to be addressed, according to the � and 3 modalities, and
the acessibility relation R, which might render additional
consequences in each world.

Definition 5 (Modal Immediate Consequence Operator) Let
P = {P1, ...,Pk} be an extended modal program, where
each Pi is the set of modal clauses that hold in a world ωi

(1 ≤ i ≤ k). Let BP be the Herbrand base of P and I be
a Herbrand interpretation for Pi. The mapping MTPi

:
2BP → 2BP in ωi is defined as follows: MTPi

(I) =
{MA ∈ BP | either (i) or (ii) or (iii) below holds}. (i)
ML1, ...,MLn→MA is a clause in Pi and{ML1, ...,MLn

} ⊆ I; (ii) M = 3 and there exists a world ωj such that
R(ωi, ωj), ML1, ...,MLm → A is a clause in Pj and
{ML1, ...,MLm} ⊆ J, where J is a Herbrand interpre-
tation for Pj; (iii) M = � and for each world ωj such
that R(ωi, ωj), ML1, ...,MLo → A is a clause in Pj and
{ML1, ...,MLo} ⊆ K, where K is a Herbrand interpreta-
tion for Pj .

Definition 6 (Global Modal Immediate Consequence Op-
erator) Let P = {P1, ...,Pk} be an extended modal pro-
gram. Let BP be the Herbrand base of P and Ii be a Her-
brand interpretation for Pi (1 ≤ i ≤ k). The mapping
MTP : 2BP → 2BP is defined as follows: MTP(I1, ..., Ik)

=
⋃k

j=1{MTPj
}.

In the case of definite extended modal programs, by re-
naming each modal atom MAi by a new atom Aj , we can
apply the following result of Ramanujam [16], regarding the
fixpoint semantics of distributed definite logic programs.

Theorem 1 (Minimal Model of Distributed Programs [16])
For each distributed definite logic program P , the function
MTP has a unique fixpoint. The sequence of all

MTm
P (I1, ..., Ik),m ∈ N,

converges to this fixpoint MT $
P (I1, ..., Ik), for each Ii ⊆

2BP .

In order to provide a fixpoint semantics for extended
modal programs, we have to extend the definition of accept-
able logic programs [1].

Definition 7 (Level Mapping) Let P be a general logic pro-
gram. A level mapping for P is a function | | : BP → N

from ground atoms to natural numbers. For A ∈ BP , |A| is
called the level of A and |∼ A| = |A|.

Definition 8 (Acceptable Programs) Let P be a program,
| | a level mapping for P , and I a model of P . P is
called acceptable w. r. t | | and I if for every clause
L1, ..., Lk → A in P the following implication holds. If
I �

∧i−1
j=1 Lj then |A| > |Lj | for 1 ≤ i ≤ k.

Theorem 2 (Minimal Model of Acceptable Programs [11])
For each acceptable program P , the function TP has a unique
fixpoint2. The sequence of all T m

P (I),m ∈ N, converges to
this fixpoint T $

P (I) (which is identical to the stable model
of P [14])3, for each I ⊆ BP .

Definition 9 (Acceptable Extended Modal Programs) An ex-
tended modal program P is acceptable iff the program P ′

obtained by renaming each modal literal MLi in P by a
new literal Lj not in the language L is acceptable.

Clearly, the classical results about the fixpoint semantics
of logic programming also apply to extended modal pro-
grams. The proof of Theorem 3, below, follows directly
from Theorems 2 and 1.

2The mapping TP is defined as follows: Let I be a Herbrand inter-
pretation, then TP (I) = {A0 | L1, ..., Ln → A0 is a clause in P and
{L1, ..., Ln} ⊆ I}.

3An interpretation I of a general logic program P is called stable iff
TPI

(I) = I , where PI is the definite program obtained by applying the
Gelfond-Lifschitz Transformation on P .

Theorem 3 (Minimal Model of Acceptable Extended Modal
Programs) For each acceptable extended modal program
P , the function MTP has a unique fixpoint. The sequence
of all MT m

P (I1, ..., Ik),m ∈ N, converges to this fixpoint
MT$

P (I1, ..., Ik), for each Ii ⊆ 2BP .

Finally, note that in the above semantics, the choice of
an arbitrary world for 3 elimination (made before the com-
putation of MTP) may lead to different fixpoints of a given
extended modal program. Such a choice is similar to the
approach adopted by Gabbay in [13], in which one chooses
a point in the future for execution and then backtracks if
judged necessary (and at all possible).

3. CONNECTIONIST MODAL PROGRAMS

In this section, we present a new Modalities Algorithm that
translates extended modal programs into neural networks
ensembles. By using an ensemble of C-IL2P networks, we
can enhance the expressive power of the C-IL2P system [7],
yet maintaining the simplicity needed for performing in-
ductive learning efficiently. Let us first recall how C-IL2P
works.

C-IL2P [7] is a massively parallel computational model
based on artificial neural networks that integrates inductive
learning from examples and background knowledge with
deductive learning from logic programming. A Translation
Algorithm maps a general logic program P into a single hid-
den layer neural network N such that N computes the least
fixpoint of P . This provides a massively parallel model for
computing the stable model semantics of P . In addition, N
can be trained with examples using Backpropagation, hav-
ing P as background knowledge. The knowledge acquired
by training can then be extracted, closing the learning cycle
[6].

Let us exemplify how the Translation Algorithm works.
Each rule (rl) of P is mapped from the input layer to the
output layer of N through one neuron (Nl) in the single hid-
den layer of N . Intuitively, the Translation Algorithm from
P to N has to implement the following conditions: (C1)
The input potential of a hidden neuron (Nl) can only exceed
Nl’s threshold (θl), activating Nl, when all the positive an-
tecedents of rl are assigned the truth-value true while all
the negative antecedents of rl are assigned false; and (C2)
The input potential of an output neuron (A) can only exceed
A’s threshold (θA), activating A, when at least one hidden
neuron Nl that is connected to A is activated.

Example 1 Consider the logic program P = {B,C,∼ D →
A;E,F → A;→ B}. The Translation Algorithm derives
the network N of Figure 1, setting weights (W ′s) and thresh-
olds (θ′s) in such a way that conditions (C1) and (C2) above
are satisfied. Note that, if N ought to be fully-connected,
any other link (not shown in Figure 1) should receive weight
zero initially.

Note that, in Example 1, each input and output neuron
of N is associated with an atom of P . As a result, each
input and output vector of N can be associated with an in-
terpretation for P . Note also that each hidden neuron Nl

corresponds to a rule rl of P . In order to compute the stable
models of P , output neuron B should feed input neuron B

such that N is used to iterate TP , the fixpoint operator of P .
N will eventually converge to a stable state which is identi-
cal to a stable model of P (C-IL2P’s Translation Algorithm
and the proof of convergence are given in [9]).

In order to translate extended modal programs into neu-
ral networks ensembles, we use C-IL2P’s Translation Algo-
rithm for creating each network of the ensemble, and the
new Modalities Algorithm (below) for interconnecting the
different networks. Figure 2 shows an ensemble of three
C-IL2P networks, representing possible worlds ω1, ω2 and
ω3, which might communicate in different ways. Due to
the simplicity of each C-IL2P network, performing induc-
tive learning within each possible world (e.g., ω1) seems
straightforward. The problem to be tackled here is, there-
fore, how to learn (or set up) the connections that establish
the necessary communication between networks (e.g., ω1

and ω2). In the case of modal logic, such connections are
defined analogously to the modal rules of natural deduction
(Table 1). For example, we know that if �A is true in ω1

then A must be true in ω2, whenever R(ω1, ω2). As a re-
sult, we must connect �A in the output layer of ω1 to A

in the output layer of ω2, making sure that whenever �A is
activated in ω1, A is activated in ω2

4.

ω1:�α,R(ω1,ω2)
ω2:α

�E ω1:♦α
ω2:α,R(ω1,ω2)

♦E

[ωi:α]...R(ω1,ωi)
ω1:�α

�I
ω2:α,R(ω1,ω2)

ω1:♦α
♦I

Table 1: Modal rules of natural deduction5.

Modalities Algorithm:

1. Let P be an extended modal program with clauses of
the form ωi : ML1, ..., MLk → MA (1 ≤ i ≤ n),
where Lj (0 ≤ j ≤ k) is a literal, A is an atom and
M ∈ {2,3}. As in the case of individual C-IL2P net-
works, we start by calculating MAXP(k1, ..., kq, µ1,

..., µq, n), which returns the greatest element among
kl, µl (1 ≤ l ≤ q) and n, where kl is the number
of literals in the body of rule rl in P , µl is the num-
ber of rules with the same atom in the head for each

4Note that input and output neurons may represent literals �L, 3L or
L.

5The 3E rule can be seen as a skolemization of the existen-
tial quantifier over possible worlds, which is semantically implied
by the formula 3α in the premise. In the 2I rule, the tempo-
rary assumption should be read as “given an arbitrary accessible
world ωi”. The rule of 3I represents that if we have a relation
R(ω1, ω2), and if α holds at ω2 then it must be the case that α
holds at ω1. The rule 2E represents that if 2α holds at a world
ω1, and ω1 is related to ω2, then we can infer that α holds at ω2.

rule rl in P , and n is the number of C-IL2P networks
(possible worlds) in the ensemble.

2. Calculate Amin >
MAXP(k1,...,kq,µ

1
,...,µq,n)−1

MAXP(k1,...,kq,µ
1
,...,µq,n)+1 , which

will denote the minimum activation for a neuron to be
considered active (in which case its associated atom
will be considered true).

3. Let Pi ⊆ P be the set of clauses labelled by ωi in
P . Let Ni be the neural network that denotes Pi.
Let WM ∈ < be such that W M > h−1(Amin) +
µlW + θA, where h(x) = 2

1+e−x − 1,6 W ≥ 2 ·
ln(1+Amin)−ln(1−Amin)

MAXP(k1,...,kq,µ
1
,...,µq)·(Amin−1)+Amin+1 , and θA =

(1+Amin)(1−µl)
2 ·W are obtained from C-IL2P’s Trans-

lation Algorithm7.

4. For each Pi do:

(a) Rename each MLj in Pi by a new literal not oc-
curing in P of the form L2

j if M = 2, or L3

j if
M = 3;8 (b) Call C-IL2P’s Translation Algorithm;9

5. For each output neuron L3

j in Ni, do:

(a) Add a hidden neuron LM
j to an arbitrary network

Nk (0 ≤ k ≤ n) in the ensemble such that R(ωi, ωk);
(b) Set the step function y = s(x); where y = 1 if
x > 0, and y = 0 otherwise; as the activation func-
tion of LM

j ; (c) Connect L3

j in Ni to LM
j and set the

connection weight to 1; (d) Set the threshold θM of
LM

j such that −1 < θM < Amin; and (e) Connect
LM

j to Lj in Nk and set the connection weight to
WM .

6. For each output neuron L2

j in Ni, do:

(a) Add a hidden neuron LM
j to each network Nk

(0 ≤ k ≤ n) such that R(ωi, ωk); (b) Set s(x) as
the activation function of LM

j ; (c) Connect L2

j in Ni

to LM
j and set the connection weight to 1; (d) Set the

threshold θM of LM
j such that −1 < θM < Amin;

and (e) Connect LM
j to Lj in Nk and set the connec-

tion weight to W M .

7. For each output neuron Lj in Nk such that R(ωi, ωk)
(0 ≤ i ≤ m), do:

(a) Add a hidden neuron L∨
j to Ni; (b) Set s(x) as

the activation function of L∨
j ; and (c) For each output

neuron L3

j in Ni, do:

6We use the bipolar sigmoid function h(x) as activation function.
7Recall that µl is the number of connections to output neuron l (see

Example 1).
8This labelling of neurons allows us to treat each modal literal MLj as

a literal Lj and apply C-IL2P’s Translation Algorithm directly to Pi.
9This is done to construct the C-IL2P network that represents each pos-

sible world ωi.

(i) Connect Lj in Nk to L∨
j and set the connection

weight to 1; (ii) Set the threshold θ∨ of L∨
j such that

−nAmin < θ∨ < Amin − (n − 1); and (iii) Con-
nect L∨

j to L3

j in Ni and set the connection weight to
WM .

8. For each output neuron Lj in Nk such that R(ωi, ωk)
(0 ≤ i ≤ m), do:

(a) Add a hidden neuron L∧
j to Ni; (b) Set s(x) as

the activation function of L∧
j ; and (c) For each output

neuron L�
j in Ni, do:

(i) Connect Lj in Nk to L∧
j and set the connection

weight to 1; (ii) Set the threshold θ∧ of L∧
j such that

n−(1+Amin) < θ∧ < nAmin; and (iii) Connect L∧
j

to L2

j in Ni and set the connection weight to W M .

Let us now illustrate the use of the Modalities Algorithm
with the following example.

Example 2 Let P = {ω1 : r → �q, ω1 : 3s → r, ω2 : s,

ω3 : q → 3p, R(ω1,ω2), R(ω1,ω3)}. We start by applying
C-IL2P’s Translation Algorithm, which creates three neural
networks to represent the worlds ω1, ω2, and ω3 (see Figure
3). Then, we apply the Modalities Algorithm. Hidden neu-
rons labelled by {M, ∨, ∧} are created using the Modalities
Algorithm. The remaining neurons are all created using the
Translation Algorithm. For the sake of clarity, unconnected
input and output neurons are not shown in Figure 3.

Taking N1 (which represents ω1), output neurons L3

j

should be connected to output neurons Lj in an arbitrary
network Ni (which represents ωi) to which N1 is related.
For example, taking Ni = N2, 3s in N1 is connected to
s in N2. Then, output neurons L�

j should be connected
to output neurons Lj in every network Ni to which N1 is
related. For example, �q in N1 is connected to q in both
N2 and N3. Now, taking N2, output neurons Lj need to be
connected to output neurons L3

j and L�
j in every world Nj

related to N2. For example, s in N2 is connected to 3s in
N1 via the hidden neuron denoted by ∨ in Figure 3, while
q in N2 is connected to �q in N1 via the hidden neuron
denoted by ∧. Similarly, q in N3 is connected to �q in N1

via ∧. The algorithm terminates when all output neurons
have been connected.

We are now in a position to show that the ensemble of
neural networks N obtained from the above Modalities Al-
gorithm is equivalent to the original extended modal pro-
gram P , in the sense that N computes the modal immediate
consequence operator MTP of P (see Definition 5).

Theorem 4 For any extended modal program P there exists
an ensemble of single hidden layer neural networks N such
that N computes the modal fixpoint operator MTP of P .

Proof. We have to show that there exists W > 0 such
that the network N , obtained by the above Modalities Al-
gorithm, computes MTP . Assume that Ni and Nj are two
arbitrary sub-networks of N , representing possible worlds
ωi and ωj , respectively, such that R(ωi, ωj). We distinguish
two cases: (a) rules with modalities � and 3 in the head,
and (b) rules with no modalities in the head. (a) Firstly,
note that rules with � in the head must satisfy �E, while
rules with 3 in the head must satisfy 3E (see Table 1).
Given input vectors i and j to Ni and Nj , respectively, each
neuron A in the output layer of Nj is active (A > Amin)
if and only if: (i) there exists a clause of Pj of the form
ML1, ...,MLk → A s.t. ML1, ...,MLk are satisfied by
interpretation j, or (ii) there exists a clause of Pi of the
form ML1, ...,MLk → �A s.t. ML1, ...,MLk are satis-
fied by interpretation i, or even (iii) there exists a clause of
Pi of the form ML1, ...,MLk → 3A s.t. ML1, ...,MLk

are satisfied by interpretation i, and the Modalities Algo-
rithm (step 5) has selected Nj as the arbitrary network Nk.
(b) Rules with no modalities must satisfy �I and 3I in Ta-
ble 1. Given input vectors i and j to Ni and Nj , respec-
tively, each neuron �A in the output layer of Ni is active
(�A > Amin) if and only if: (i) there exists a clause of
Pi of the form ML1, ...,MLk → �A s.t. ML1, ...,MLk

are satisfied by interpretation i, or (ii) for all Nj , there ex-
ists a clause of Pj of the form ML1, ...,MLk → A s.t.
ML1, ...,MLk are satisfied by interpretation j. Each neu-
ron 3A in the output layer of Ni is active (3A > Amin)
if and only if: (iii) there exists a clause of Pi of the form
ML1, ...,MLk → 3A s.t. ML1, ...,MLk are satisfied by
interpretation i, or (iv) there exists a clause of Pj of the
form ML1, ...,MLk → A s.t. ML1, ...,MLk are satisfied
by interpretation j. The complete proof, in which cases a(i)
to a(iii) and b(i) to b(iv) are proved, is given in [8]. �

Now, if we make output neurons feed their correspond-
ing input neurons in each (sub)network, the resulting (par-
tially recurrent) ensemble N r can be used to iterate MTP

in parallel, as in the case of C-IL2P (but now to compute a
modal program). For example, in Figure 3, if we connect
output neurons 3s and r to input neurons 3s and r, respec-
tively, in N1, and output neuron q to input neuron q in N3,
the ensemble computes {3s, r,�q} in ω1, {s, q} in ω2, and
{q,3s} in ω3.

10 As expected, these are some of the logical
consequences of the program P given in Example 2.
Corollary 5 Let P be an acceptable extended modal pro-
gram. There exists an ensemble of single hidden layer neu-
ral networks N r such that, starting from an arbitrary initial
input, N r converges to a stable state and yields the unique
fixpoint (MT $

P (I)) of MTP .
Proof. Assume that P is an acceptable program. By The-
orem 4, N r computes MTP . Recurrently connected, N r

10Although the computation is done in parallel in N , following it by
starting from facts (such as s in ω2) would help in verifying this.

computes the upwards powers (T m
P (I)) of TP . Finally, by

Theorem 3, N r computes the unique fixpoint (MT $
P (I)) of

MTP . �

Hence, in order to use N as a massively parallel model
for modal logic, we simply need to recurrently connect its
(sub)networks Ni using fixed-weight links Wr = 1.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new massively parallel
model for modal logic, thus contributing towards the repre-
sentation of quantification in neural networks. We have de-
fined an extension of modal logic programming [18], which
allows modal operators in the head of clauses. We then pre-
sented an algorithm to translate the modal theory into an en-
semble of C-IL2P neural networks [7], and showed that the
ensemble computes a fixpoint semantics of the theory. As
a result, the ensemble can be seen as a new massively par-
allel model for modal logic. In addition, since each C-IL2P
network can be trained efficiently using Backpropagation
[9], one can adapt the C-IL2P ensemble by training possible
world representations from examples in each network.

Our next step is to perform experiments on learning pos-
sible world representations in the C-IL2P ensemble. This
would lead us to another interesting avenue of research,
namely, rule extraction from neural networks ensembles,
which would need to consider extraction methods for more
expressive knowledge representation formalisms [6]. In ad-
dition, extensions of the basic modal C-IL2P ensemble pre-
sented in this paper include the study of how to represent
properties of other modal logics, e.g., S4 and S5, and of
inference and learning of fragments of first order logic. Fi-
nally, the addition of modalities to the C-IL2P system leads
us towards richer distributed knowledge representation and
learning mechanisms, with a broader range of potential ap-
plications, including practical reasoning and learning in a
multiagent environment [10].

5. REFERENCES

[1] K. R. Apt and D. Pedreschi. Reasoning about termination
of pure prolog programs. Information and Computation,
106:109–157, 1993.

[2] G. Brewka and T. Eiter. Preferred answer sets for extended
logic programs. Artificial Intelligence, 109:297–356, 1999.

[3] A. Chagrov and M. Zakharyaschev. Modal Logic. Clarendon
Press, Oxford, 1997.

[4] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and Databases, pages 293–322, Plenum Press,
New York, 1978.

[5] I. Cloete and J. M. Zurada, editors. Knowledge-Based Neu-
rocomputing. The MIT Press, 2000.

[6] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic
knowledge extraction from trained neural networks: A sound
approach. Artificial Intelligence, 125:155–207, 2001.

[7] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-
Symbolic Learning Systems: Foundations and Applications.
Perspectives in Neural Computing. Springer-Verlag, 2002.

[8] A. S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay. A
connectionist inductive learning system for modal logic pro-
gramming. Technical Report 2002/6, Department of Com-
puting, Imperial College, London, 2002.

[9] A. S. d’Avila Garcez and G. Zaverucha. The connectionist
inductive learning and logic programming system. Applied
Intelligence Journal, Special Issue on Neural Networks and
Structured Knowledge, 11(1):59–77, 1999.

[10] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

[11] M. Fitting. Metric methods: Three examples and a theorem.
Journal of Logic Programming, 21:113–127, 1994.

[12] D. M. Gabbay. Labelled Deductive Systems. Clarendom
Press.

[13] D. M. Gabbay. The declarative past and imperative future. In
H. Barringer, editor, Proceedings of the Colloquium on Tem-
poral Logic and Specifications, LNCS 398. Springer-Verlag,
1989.

[14] M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. In Proceedings of the fifty Logic Pro-
gramming Symposium, 1988.

[15] M. A. Orgun and W. Ma. An overview of temporal and modal
logic programming. In Proceedings of International Confer-
ence on Temporal Logic, ICTL’94, LNAI 827, pages 445–
479. Springer.

[16] R. Ramanujam. Semantics of distributed definite clause pro-
grams. Theoretical Computer Science, 68:203–220, 1989.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing internal representations by error propagation. In D. E.
Rumelhart and J. L. McClelland, editors, Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition, volume 1. MIT Press, 1986.

[18] Y. Sakakibara. Programming in modal logic: An extension
of PROLOG based on modal logic. In Logic Programming
86, pages 81–91. Springer LNCS 264, 1986.

A B
θA θB

W WW

θ1 N1 θ2 N2 θ3 N3

B FE DC

WWW -WW

Interpretations

Figure 1: Sketch of a network N for program P .

C

C

B

B

A

A

C

C

B

B

A

A

C

C

B

B

A

A

ω 1

ω 3
2 ω

Figure 2: An ensemble of C-IL2 P networks for modal logic.

s

q

q

♦♦♦♦p

ω 2

ω 3

ω 1

q

r

 r

♦s

q

∨∨∨∨

♦s

∧∧∧∧

M

M M

Figure 3: The ensemble N1, N2 , N3 that represents P .

