Extended Theory Refinement in
Knowledge-based Neural Networks

Artur S. d’Avila Garcez*
Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ, UK
aagQ@doc.ic.ac.uk

Abstract

This paper shows that single hidden layer net-
works with semi-linear activation function com-
pute the answer set semantics of extended
logic programs. As a result, incomplete (non-
monotonic) theories, presented as extended logic
programs, i.e. possibly containing both classical
and default negation, may be refined through in-
ductive learning in knowledge-based neural net-
works. Keywords: Hybrid Architectures, Ex-
tended Logic Programming, Feedforward Neural
Networks.

1 Introduction

Tt is generally accepted that one of the main prob-
lems in building Expert Systems (which are responsible
for the industrial success of Artificial Tntelligence) lies
in the process of knowledge acquisition, known as the
“knowledge acquisition bottleneck”. An alternative is
the automation of this process through Machine Learn-
ing techniques[17]. Traditional machine learning tech-
niques (either symbolic or neural) generate hypotheses by
finding regularities in a set of training examples. More
recently, hybrid machine learning techniques have been
successfully applied by combining background knowledge
(prior domain knowledge) with training examples. The
idea is to benefit from better generalisation when cor-
rect background knowledge is available, and rely on the
training examples to extend, or even revise, incomplete
background knowledge[19]. In particular, hybrid (syrn—
bolic and neural) systems have been successfully applied
in a number of areas, ranging from DNA sequence analy-
sis [20] to software requirements specifications [6] (see [23]
for a comparison).

The Connectionist Inductive Learning and Logic Pro-
gramming System (C-IL? P) is a hybrid system that uses a

*This work was supported by the Brazilian Research Council
CAPES and UK EPSRC grant GR/M38582 (VOICI project). I am
grateful to Gerson Zaverucha and Krysia Broda for useful discus-
sions, and to the anonymous referees for their comments.

feedforward artificial neural network to integrate induc-
tive learning from examples and background knowledge
with deductive learning from logic programming[5, 7].
Starting with the background knowledge represented by a
general logic program, a Translation Algorithm is applied
generating a neural network that can be trained with ex-
amples using, for instance, Backpropagation [14]. The re-
sults obtained with this refined network can be explained
by applying an Eztraction Algorithm, responsible for de-
riving a revised logic program from the trained network.
Moreover, the neural network computes the stable model
of the program inserted in it or learned with examples,
thus functioning as a parallel system for logic program-
ming,.

This paper formally extends the C-IL?P system to
the language of Extended Logic Programs, which con-
tains classical negation (—) in addition to default negation
(~). According to Lifschitz and McCarthy, commonsense
knowledge can be represented more easily when classical
negation is also available. Extended logic programs can
be viewed as a fragment of Default theories (see [18]), and
thus are of interest with respect to the relation between
Logic Programming and nonmonotonic formalisms. The
extended C-IL?P system computes the Answer Set Se-
mantics of extended logic programs[13]. As a result, it
can be applied in a broader range of domains. For ex-
ample, the application of C-IL? P to power systems’ fault
diagnosis, described in [8] and [22], requires the use of the
extended C-IL? P with classical negation.

A number of nonmonotonic hybrid systems have been
proposed recently [3, 16, 21]. However, to the best of
my knowledge, no hybrid system has combined the abil-
ity to represent default negation and classical negation.
By extending C-IL? P to deal with classical negation, we
are providing not only a massively parallel nonmonotonic
system to compute the semantics of extended logic pro-
gramming, but also a more flexible hybrid system to per-
form inductive learning with examples and background
knowledge.

Tn Section 2, we recall C-IL? P’s Translation Algorithm
for inserting general logic programs into neural networks.
Tn Section 3, we extend the Translation Algorithm to al-

low the insertion of extended logic programs. We also
show that the network obtained computes the answer set
semantics of the extended program, i.e. that the transla-
tion algorithm is correct. Tn Section 4 we conclude and
discuss directions for future work.

2 The C-IL?P System

C-IL°P [5, 7] is a hybrid system that uses a Translation
Algorithm to map general logic programs P (Definition
1) into single hidden layer neural networks A such that
N computes the least fixpoint Tp | w of P (Definitions 2
and 3).

Definition 1 (General Logic Program) A general clause
18 a rule of the form Ag «— Ly,..., L, , where Ag is called
an atom and L; (1 <i < n) is called a literal.? A neg-
ative literal L; can be also written as ~ Aj;, where ~
denotes defoult negation. A general logic program is a
finite set of general clauses.’

Definition 2 (Tmmediate Consequence Operator Tp)
Let P be a general program. Bp will denote the set of
atoms occurring in P, called the Herbrand base of P. The
mapping Tp : 287 — 287 is defined as follows. Let T be
a Herbrand interpretation,® then Tp(I) = {Ao € Bp |
Ao « Ly, ..., Ly is a clause in P and {L1,...,L,} C T},
where ~ Aj; is mapped to false (resp. true) by I iff A is
mapped to true (resp. false) by I.

Definition 3 (Least Fixpoint Tp | w of P) We define
T1a=T(T 1 (a—1)), where a is a successor ordinal.
Assuming that Bp is finite, there is somen € w (w =
{0,1,2,...}) such that Tp T n = Tp T n+ 1. We define
Tp T W = Tp T n.

C-IL? P’s Translation Algorithm provides a massively
parallel model for computing the stable model semantics
of P, as done in [15]. Stable models were introduced in
[12], using the intuition of rational beliefs from autoepis-
temic logic, as follows:

Definition 4 (Gelfond-Lifschitz Transformation) Let P
be a (grounded) logic program®*. Given a set T of atoms
from P, let Pr be the program obtained from P by deleting:
(7) each rule that has a negative literal ~ A in its body
with A € T, and (i2) all the negative literals in the bodies

of the remaining rules.

Clearly, Py is a positive program, so that it has a unique
minimal Herbrand model[25]. Tf this model coincides with
T then we say that 7 is a stable model of P.

Definition 5 (Stable Models) A Herbrand interpreta-
tion I of a program P is called stable iff Tp,(T) =1T.

LA literal is an atom or the negation of an atom.

2Throughout, we use ~ for default negation and — for classical
negation.

3An interpretation is a function mapping atoms in Bp to
{true, false}. A model for P is an interpretation that maps P
to true.

4 As usual, it is assumed that programs are ground, i.e. formed
by substituting for each variable a ground term from some fixed
language £ (this process is called instantiation).

The intuition behind the definition of a stable model is
as follows: consider a rational agent with a set of beliefs
T and a set of premises P. Then, any clause that has a
literal ~ A in its body when A € T is useless, and may be
removed from P. Moreover, any literal ~ A with A ¢ T
is trivial, and may be deleted from the clauses in which
it appears in P. This yields the simplified (positive) pro-
gram P7, and if happens to be precisely the set of atoms
that follows logically from the simplified set of premises,
then the set of beliefs 7 is stable. Hence, stable models
are possible sets of belief a rational agent might hold.

Tn addition to being a massively parallel model for the
computation of general logic programs P, C-IL?P net-
works A can be trained with examples, using for in-
stance Backpropagation, having P as background knowl-
edge. The knowledge acquired by training could then
be extracted, closing the learning cycle (as done in [24]).
Knowledge extraction from trained networks is an exten-
sive topic in its own right (see [1] for a comprehensive
survey), and is out of the scope of this paper. The reader
is referred to [5] for C-IL? P’s Extraction Algorithm.

2.1 Translation Algorithm

Tn what follows, we recall C-IL® P’s Translation Algorithm
by presenting an example of the insertion of knowledge
into the network.

Each rule (r;) of P is mapped from the input layer to
the output layer of A through one neuron (V;) in the
single hidden layer of /. Tntuitively, the Translation Al-
gorithm from P to N has to implement the following
conditions: (7) The input potential of a hidden neuron
(N;) can only exceed N;’s threshold (#;), activating N,
when all the positive antecedents of 7; are assigned the
truth-value true while all the negative antecedents of 7,
are assigned false; and (2) The input potential of an
output neuron (A) can only exceed A’s threshold (64),
activating A, when at least one hidden neuron N; that is
connected to A is activated.

Example 6 Consider the logic program P = {A «
B,C,~ D; A — E,F; B — }. The Translation Algo-
rithm derives the network N of Figure 1, setting weights
(W's) and thresholds (8's) in such a way that conditions
(1) and (2) above are satisfied. Note that, if N ought to
be fully-connected, any other link (not shown in Figure 1)
should receive weight zero initially.

Note that, in Example 6, each input and output neuron
of \V is associated with an atom of P. As a result, each
input and output vector of A can be associated with an
interpretation for P. Also, each hidden neuron N; corre-
sponds to a rule r; of P. Tn order to compute the stable
model of P, output neuron B should feed input neuron B
such that N is used to iterate Tp, the fixpoint operator
of P. N will eventually converge to a stable state which
is identical to the stable model of P (see [7]), whenever
P is an acceptable program (Definitions 7 and 8).

Inter pretations
Fig. 1. Sketch of a neural network for the above program P.

Definition 7 A level mapping for a program P is a func-
tion || : Bp — X of atoms to natural numbers. For
A € Bp, |A| is the level of A and |~ A| = |A|.
Definition 8 (Acceptable Logic Programs) Let P be a
general logic program, || a level mapping for P, and T
a model of P. P is called acceptable w. r. t. || and T
if, for every clause Ay «— Lq,...,Ly in P, the following
implication holds for 1 <i <n.

i—1
i TE)\ Lj then |Ag| > |Lil

j=1

P is called acceptable if it is acceptable w. r. L.
level mapping and a model of P.

Given a general logic program P, let ¢ denote the
number of rules r; (1 < I < ¢) occurring in P; 7,
the number of literals occurring in P; Amin, the mini-

some

mum activation for a neuron to be considered “active”
(or true), Amin € (0,1); Apmaz, the maximum activation
for a neuron to be considered “not active” (or false),
Amaz € (—1,0); h(z) = 1+e+ﬁw — 1, the bipolar semi-
linear activation function®; g(x) = z, the standard linear
activation function; W (resp. -W), the weight of con-
nections associated with positive (resp. negative) literals;
#,, the threshold of hidden neuron NN, associated with
rule 7;; 8 4, the threshold of output neuron A, where A
is the head of rule 7;; k;, the number of literals in the
body of rule r;; p;, the number of positive literals in the
body of rule 7;; n;, the number of negative literals in the
body of rule r;; ;, the number of rules in P with the
same atom in the head, for each rule r;; MAX,, (ki 1),
the greater element among k; and g, for rule r;; and
MAXp (K1, kgy fy; -, 1ig), the greatest element among

all k’s and pu’s of P. We use % as a short for (K1s . kg),
and 77 as a short for (s oees Hg)-

For instance, for program P (Example 6), ¢ = 3,
n =206,k =3,k =2 k =0,p =2 p =2
p3 =0, =1, 10 =0,n3 =0, py = 2, py = 2,

5We use the bipolar semi-linear activation function for conve-
nience. Any monotonically crescent activation function could have
been used here.

s = 1, MAX, (ki.py) = 3, MAX, (ks j1) = 2,
MAXTs(k&H’S) =1, MAXP(khk%kB:ﬂl:Mz:%) =3.

In the Translation Algorithm below, we define A,,;n,
W, 6, and 6 4 such that conditions (7) and (2) above are
satisfied (the proof is provided in [7]).

e Translation Algorithm:

Given a general logic program P, consider that the lit-
erals of P are numbered from 1 to 7 such that the input
and output layers of A are vectors of maximum length 7,
where the i-th neuron represents the i-th literal of P. We
assume, for mathematical convenience and without loss
of generality, that A;er = —Amin.

1. Calculate MAXp(?,) of P;

2. Calculate the values of A,,;, and W such that the
following is satisfied:

MAXp(k,) — 1

Amin > — and
W Z g) l’n(]:Amm) - l,n/(‘l _Amin) :
/8 MAXP(]C,V) (1411[1in_])“‘félmin""l

3. For each rule r; of P of the form Ly, ...,
(k>0):

Lk—>A

(a) Add a neuron N; to the hidden layer of N;

(b) Connect each neuron L; (1 < ¢ < k) in the in-
put layer to the neuron N; in the hidden layer.
If L; is a positive literal then set the connec-
tion weight to W; otherwise, set the connection
weight to —W;

Connect the neuron NN, in the hidden layer to
the neuron A in the output layer and set the
connection weight to W;

Define the threshold (§;) of the neuron NV, in the
hidden layer as:
(T4 Amin) (ki = 1)

0, = 2

w

Define the threshold (6 .4) of the neuron A in the
output layer as:

g, = (4 Anin)

2

—Ml)W

4. Set g(z) as the activation function of the neurons in
the input layer of A/. In this way, the activation of
the neurons in the input layer of N, given by each
input vector i, will represent an interpretation for P.

5. Set h(z) as the activation function of the neurons
in the hidden and output layers of /. Tn this way,
a gradient descent learning algorithm, such as back-
propagation, can be applied on N efficiently.

6. Tf A ought to be fully-connected, set all other con-
nections to zero.

Theorem 9 [7] For each general logic program P, there
exists a feedforward artificial neural network N with ex-
actly one hidden layer and semi-linear neurons such that
N computes Tp.

Tn order to iterate Tp, N is transformed into a partially
recurrent network N, by connecting each neuron in the
output layer to its correspondent neuron in the input layer
(e.g., B in Figure 1) with a fixed weight W, = 1. Tn this
way, the network’s output vector becomes its input vector
in the next computation of Tp.

Theorem 10 [9] For each acceptable general program P,
the function Tp has a unique fizpoint. The sequence of
all Tp T m (i),m € X, converges to this fixpoint Tp T w
(i) (which is identical to the stable model of P), for each
iC Bp.

Corollary 11 [7] Let P be an acceptable general pro-
gram. There exists a recurrent neural network N, with
semi-linear neurons such that, starting from an arbitrary
initial input, N, converges to a stable state and yields the
unique fixpoint (Tp 1 w (1)) of Tp, which is identical to
the unique stable model of P.

Recall that, since NV, has semi-linear neurons, for each
real value o; in the output vector of N, if 0; > A,,in then
the corresponding i-th atom in P is assigned true, while
0; < Apmar means that it is assigned false.®

3 The Extended C-IL?’P System

General logic programs provide negative information im-
plicitly, using the closed-world assumption, while ex-
tended programs include explicit negation, allowing the
presence of incomplete information in the database. “In
the language of extended programs, we can distinguish
between a query which fails in the sense that it does not
succeed, and a query which fails in the stronger sense that
its negation succeeds”[13]. The following example, due to
John McCarthy, illustrates such a difference: a school bus
may cross railway tracks under the condition that there is
no approaching train. This can be expressed in a general
logic program by the rule cross < ~ train, only if the
absence of train in the database could be interpreted as
the absence of an approaching train. Such a convention
is unacceptable if the information about the presence of
a train is not available. However, if we use classical nega-
tion and represent the above knowledge as the extended
program: cross «— —irain, then cross will not be derived
until the fact —train is added to the database.
Therefore, the difference between —p and ~ p in a logic
program is essential whenever we cannot assume that the
available positive information about p is complete, that
is, when the closed world assumption is not applicable

6 Activations in the interval [Amaz, Amin] are not allowed by the
Translation Algorithm.

to p. Nevertheless, the close-world assumption can be
explicitly included in extended programs by adding rules
of the form —A « ~ A, whenever the information about
A in the database is assumed to be complete. Moreover,
for some predicates, the opposite assumption A «—~ —A
may be appropriate.

Definition 12 (Extended Logic Program) An extended
logic program is a finite set of clauses of the form Lo «—
Liyee;Liny~ Lipsty ey~ Ly, where Ly (0 < i < m)is
a literal (an atom or the classical negation of an atom,
denoted by —).

The semantics of extended programs, called the Answer
Set Semantics, is an extension of the stable model seman-
tics for general logic programs. A “well-behaved” general
program has exactly one stable model, and the answer
that it returns for a ground query (A) is yes or no, de-
pending on whether A belongs or not to the stable model
of the program. “A ‘well behaved’ extended program has
exactly one answer set, and this set is consistent. The
answer that an extended program returns for a ground
query (A) is yes, no or unknown, depending on whether
its answer set contains A, —A or neither. If a program
does not contain classical negation, then its answer sets
are exactly the same as its stable models” [13].

Consider, for example, the extended program P =

{—g < ~ p}. Intuitively, it means: ¢ is false if there
is no evidence that p is true. We will see that the only
answer set for this program is {—¢} and, therefore, the
answer that the program gives to the queries p and ¢ are,
respectively, unknown and false.
Definition 13 (Definition 4 rewritten) Let P be an ex-
tended program. By Lit we denote the set of ground liter-
als in the language of P. For any set S C Lit, let P be
the extended program obtained from P by deleting (i) each
clause that has a formula ~ L in its body when L € S,
and (i) all formulas of the form ~ L present in the bodies
of the remaining clauses.

Following [4], we say that P* = Rs(P), which should

read P* is the Gelfond-Lifschitz Reduction of P wr.t. S
(after its inventors). By the above definition, P* does
not contain default negation (~), and its answer set can
be defined as follows.
Definition 14 (Answer Sets of ‘~ free’ Programs) The
answer set of PT is the smallest subset ST of Lit such that
(¢) for any rule Lo «— Ly,...,;Ly, of P, if Ly,....; Ly, €
St then Lo € 8T, and (it) if ST contains a pair of com-
plementary literals then ST = Lit.

Finally, the answer set of an extended program P that
contains default negation (~) can be defined as follows.
Definition 15 (Answer Sets) Let P be an extended pro-
gram and § C Lit. Let P* = Rs(P) and ST be the
answer set of PT. S is the answer set of P iff S=S7.

For example, the program P = {—q «— ~ p} has {—¢}
as its only answer set, since no other subset of the literals
in P has the same fixpoint property. As another example,

compare the programs Py = {—p < ; p < —¢} and Py =
{-p < ; ¢ — —p}. Each of them has a single answer set:
{-p} and {-p, g}, respectively.”

Note that if P does not contain classical negation (—)
then its answer sets do not contain negative literals. Tn
other words, the answer sets of a general logic program
are identical to its stable models. However, the absence
of an atom A in the stable model of a general program
means that A is false (by default), while the absence of
A (and —A) in the answer set of an extended program
means that nothing is known about A.2

An extended logic program (P) that has a consistent
answer set can be reduced to a general logic program (P*)
as follows. For any negative literal —=A occurring in P, let
A’ be a positive literal that does not occur in P. A’ is
called the positive form of —=A. P* is obtained from P by
replacing all the negative literals of each rule of P by its
positive form. P* is called the positive form of P. For
example, the program P = {a < b,—¢ ; ¢ «— } can be
reduced to its positive form P* = {a <« b,c¢’ ; ¢+ }.
Definition 16 For any set S C Lit, let S* denote the
set of the positive forms of the elements of S.
Proposition 17 [13] A consistent set S C Lit is an an-
swer set of P if and only if S* is a stable model of P*.

The mapping from P to P* reduces extended programs
to general programs, although P* alone does not indicate
that A’ represents the negation of A.

By Proposition 17, in order to translate an extended
program (P) into a neural network (\'), we can use the
same approach as the one for general programs (Section
2.1), with the only difference that input and output neu-
rons should be labelled as literals, instead of atoms. Tn
the case of general logic programs, a concept A is repre-
sented by a neuron, and its weights indicate whether A
is a positive or a negative literal in the sense of default
negation, that is, the weights differentiate A from ~ A.
Tn the case of extended logic programs, we must also be
able to represent the concept —A in the network. We do
so by explicitly labelling input and output neurons as —A,
while the weights differentiate = A from ~ —A. Note that,
in this case, both neurons A and —A might be present in
the same network.

Analogously to Theorem 9, the following proposition

ensures that the translation of extended programs into
neural networks is correct.
Theorem 18 For each extended logic program P, there
exists a feedforward neural network N with exactly one
hidden layer and semi-linear neurons such that N com-
putes Tp«, where P* is the positive form of P.

"Note that, as the answer set semantics assigns different mean-
ings to the rules p «— —g and q «— —p, it is not contrapositive w.
r. t. The reason is that it interprets implications as
inference rules or causal implication, rather than conditionals or
material implication.

8Gelfond and Lifschitz think of answer sets as incomplete the-
ories rather than three-valued models. Intuitively, answer sets are
possible sets of beliefs that a rational agent may hold.

«— and —.

Proof. By Definition 15, we simply need to rename each
negative literal ~A; (0 <i <n)in P by A}, and label the
corresponding neuron in N as =A;. Then, by Theorem 9,
N computes Tp+. O

Example 19 Consider the extended program P = {A —
B,—C; =C « B,~ =FE; B «+— ~ D}. C-1L?P’s Transla-
tion Algorithm over the positive form P* of P obtains the
network N of Figure 2 such that N computes the fixpoint
operator Tp« of P*.

Fig. 2. From extended programs to neural networks.

As before, the network of Figure 2 can be transformed
into a partially recurrent network by connecting neurons
in the output layer (e.g., B) to its correspondent neuron in
the input layer, with weight W,. = 1, so that A/ computes
the upward powers of Tp+.

Definition 20 (Acceptable Extended Programs) An ez-
tended logic program P is called an acceptable program if
its positive form P* is an acceptable program.

Corollary 21 Let P be a consistent acceptable extended
program. Let P* be the positive form of P. There exists
a recurrent neural network N with semi-linear neurons
such that, starting from an arbitrary input, N converges
to the unique fixpoint of P* (T'p~ 1 w), which is identical
to the unique answer set of P.

Proof. By Proposition 18, N computes Tps. As-
sume that P is an acceptable program. By Corollary 11,
when recurrently connected, N' computes the unique stable
model of P*. By Proposition 17, a consistent set S C Lit
is an answer set of P if and only if S* is a stable model
of P*. Thus, N' computes the unique answer set of P. O

Example 22 (Example 19 continued) Given any initial
activation in the input layer of N (Figure 2), it always
converges to the following stable state: A = true,B =
true,—C = true,D = false,—E = false, which repre-
sents the answer set of P, Sp = {A, B,~C}.

Let us now briefly discuss the case of inconsistent ex-
tended programs. Consider, for example, the contradic-
tory program P = {B «— A; =B «— A; A — }. As
it is an acceptable program, its associated network al-
ways converges to the stable state that represents the set
{A, B,—B}. At this point, we have to make a choice: ei-
ther we adopt Gelfond and Lifschitz’s Definition 14, and

assume that the answer set of P is the set of all liter-
als in the language (Lit), or we use a paraconsistent ap-
proach [2]. Since the presence of inconsistencies in C-IL,° P
networks is tolerated (differently from classical logic, in
which any inconsistency proves Lif and, thus, trivialises
the theory), we believe that the second approach is more
appropriate. “There is a need to develop a framework in
which inconsistency can be viewed according to context,
as a trigger for actions, for learning, and as a source of
directions in argumentation.”[10] This paper has paved
the way for exciting new research on how to solve incon-
sistencies in incomplete theories using inductive learning
in neural networks.

4 Conclusion and Future Work

This paper has presented an extension to the C-IL? P sys-
tem [5, 7] that defines a massively parallel model for ex-
tended logic programming, based on a single hidden layer
neural network, capable of performing inductive learning
from background knowledge and examples. This allows
facts of commonsense knowledge to be represented more
easily in the extended system, with the use of classical
negation in addition to default negation.

The results presented in this paper indicate that neural
networks, as (nonmonotonic) hybrid systems, and the re-
search on Belief Revision [11] have some interesting inter-
connections. Tn principle, while neural networks present
the advantage of eliciting new knowledge from examples,
Belief Revision techniques can guarantee consistency of
the new knowledge, and satisfy the (desirable) Principle
of Minimal Change. A theoretical and empirical compari-
son of these two methods of theory refinement is long due,
and would result in a highly attractive piece of work.

References

[1] R. Andrews, J. Diederich, and A. B. Tickle. A sur-
vey and critique of techniques for extracting rules from
trained artificial neural networks. Knowledge-based Sys-

tems, 8(6):373-389, 1995.

[2] H. Blair and V. S. Subrahmanian. Paraconsistent logic
programming. Theoretical Computer Science, 68:135—
154, 1989.

[3] B. Boutsinas and M. N. Vrahatis. Artificial nonmonotonic
neural networks. Artificial Intelligence, 132:1-38, 2001.

[4] G. Brewka and T. Eiter. Preferred answer sets for ex-
tended logic programs. Artificial Intelligence, 109:297—
356, 1999.

[5] A.S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Sym-
bolic knowledge extraction from trained neural networks:
A sound approach. Artificial Intelligence, 125:155-207,
2001.

[6] A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and
J. Kramer. An analysis-revision cycle to evolve require-
ments specifications. In Proc. 16th IEEE Automated Soft-
ware Engineering Conference ASEQ1, 2001.

[7] A. S. d’Avila Garcez and G. Zaverucha. The connec-
tionist inductive learning and logic programming system.
Applied Intelligence Journal, 11(1):59-77, 1999.

[8] A.S. d’Avila Garcez, G. Zaverucha, and V. N. Silva. Ap-
plying the connectionist inductive learning and logic pro-
gramming system to power systems’ diagnosis. In Proc.

TEEE ICNN97, 121-126, Houston, 1997.

[9] M. Fitting. Metric methods: Three examples and a the-
orem. Journal of Logic Programming, 21:113-127, 1994.
D. M. Gabbay and A. Hunter. Making inconsistency
respectable: part 1. In Fundamentals of AI Research.
Springer- Verlag, 1991.

P. Gardenfors, editor. Belief Revision. Tracts in Theo-
retical Computer Science, Cambridge, 1992.

M. Gelfond and V. Lifschitz. The stable model seman-

tics for logic programming. In Proc. Logic Programming
Symposium, 1988.

[10]

[11]

[12]

[13] M. Gelfond and V. Lifschitz. Classical negation in logic

programs and disjunctive databases. New Generation

Computing, 9:365—-385, 1991.

S. Haykin. Neural Networks: A Comprehensive Founda-
tion. Prentice Hall, 1999.

S. Holldobler and Y. Kalinke. Toward a new massively
parallel computational model for logic programming. In
Proc. Workshop on Combining Symbolic and Connection-
ist Processing, FCAI 94, 1994.

S. Holldobler, Y. Kalinke, and H. P. Storr. Approx-
imating the semantics of logic programs by recurrent
neural networks. Applied Intelligence Journal, 11(1):45—
58, 1999.

N. Lavrac and S. Dzeroski. Inductive Logic Programming:
Techniques and Applications. Ellis Horwood, 1994.

[18] W. Marek and M. Truszczynski. Nonmonotonic Logic:
Context Dependent Reasoning. Springer-Verlag, 1993.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
M. O. Noordewier, G. G. Towell, and J. W. Shavlik.

Training knowledge-based neural networks to recognize
genes in DNA sequences. In NIPS91, vol. 3, 530-536,
1991.

[14]

[15]

[16]

[17]

[19]
[20]

[21]

G. Pinkas. Reasoning, nonmonotonicity and learning in
connectionist networks that capture propositional knowl-

edge. Artificial Intelligence, 77:203-247, 1995.

V. N. Silva, G. Zaverucha, and G. Souza. An integration
of neural networks and nonmonotonic reasoning for power

systems’ diagnosis. In Proc. IEEE ICNN95, Perth, 1995.
S. B. Thrun et al. The MONK’s problems: A performance

comparison of different learning algorithms. Technical

Report CMU-CS-91-197, Carnegie Mellon, 1991.

G. G. Towell and J. W. Shavlik. Knowledge-based arti-
ficial neural networks. Artificial Intelligence, 70(1):119-
165, 1994.

M. H. van Emden and R. A. Kowalski. The semantics of
predicate logic as a programming language. Journal of
the ACM, 23(4):733-742, 1976.

22]

23]

24]

[25]

