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Abstract. This paper presents a method for realising abductionprogram, but computes a set of assumptions that, when aded to the
in artificial neural networks (ANNSs) by generalising existing neuro- program, ensure the goal succeeds. Each set of abducibles is called
symbolic approaches from normal logic programs to abductive logi@anabductive explanatioand represents an extension of the program
programs (ALPs) in order to provide a more expressive formalisnthat is referred to as generalised stable modgl1]. By extending

for representing and reasoning about partial knowledge and integritthe program in this way, abduction can extrapolate potentially useful
constraints. The aim is to develop a massively-parallel methodologgssumptions from partially complete theories.

for abduction that can also be integrated with connectionist learning The incompleteness of knowledge inherent in learning suggests
approaches to offer a finer degree of control over which assungptioninductive techniques may benefit from a facility for abduction. This
can and cannot be made in learning. Existing methods for abductioalaim is supported by logic-based machine learning systems show
in neural networks are not well suited to this task as they only applythat abduction and induction can be combined to achieve superior
to arestricted a class of abduction problems or they do not adequateigasoning capabilities, as evidenced for example in [15, 12, 4]. The
address the issues of local minima and multiple solutions. This papdsenefits offered by neural networks over logical approaches irsterm
proposes an algorithm for translating ALPs into ANNs whereby noof noise-tolerance and massive-parallelism provide an even greater
restrictions are imposed on the underlying programs and, if requiredncentive to investigate the integration of abduction and induction at
the network can systematically compute all abductive explanations dhe sub-symbolic level. But, existing methods for abduction in neural
provide a guarantee when none exist. Moreover, since the topology afetworks are not well suited to this task as they only apply to a very
the network mirrors the structure of the program, it can be acquiredestricted a class of abduction problems whose expressivity is limited
and revised by standard neuro-symbolic training techniques and can definite acyclic programs [7, 18, 2, 22] or they do not adequately
also be exploited to impose a preference on the order in which thaddress the issues of avoiding local minima and computing multiple
solutions are found. solutions [13, 21, 14, 1].

This paper presents a novel methodology for abduction in neural
networks by generalising existing neuro-symbolic approaches from
normal logic programs to abductive logic programs. In particular,
Neuro-symbolic integration [9, 6] aims to combine the respectivean algorithm is proposed for translating ALPs into ANNs such that
benefits of artivicial neural networks (ANNs) and logic programming the fixpoints of the network represent the generalised stable models
by providing practical methods of learning with declarative knowl- Of the program. The translation is introduced in three steps. First, a
edge representations. This is achieved by translating logic progranfynctiond is defined that maps logic programs into neural networks
into neural networks; either to provide an initial network which can by adapting existing neuro-symbolic encoding methods. Second, a
be trained on further data using techniques such as back-propagatiddnction ¢ is defined that maps acyclic abductive logic programs
as in [20], or to compute the consequences of the program under tHBto neural networks by extending the program with some additonal
stable model semantics by means of massively parallel deduction, &guses for abduction. Third, a functignis defined that maps any
in [8]. But, state-of-the art approaches such as [20, 8, 6] only apphpPductive logic program into a neural network using a simple pre-
to logic programs with unique stable models and are not particularyprocessing transformation which allows positive and negative cycles
well suited for representing and reasoning about partial knowledgé® be uniformly handled through abduction.
that is inherent in learning. This limitation motivates the study of ~The paper is structured as follows. Section 2 recalls some basic
more powerful formalisms for expressing uncertainty and handlingotation and terminology relating to neural networks (with binary
programs with more than one stable model. threshold neurons) and logic programs before introducing the task of

Abductive logic programs (ALPs) [10] are an extension of logic @bductive logic programming. Section 3 defines the functibasd
programs that are more appropriate for representing and reasonirigand shows how the networks they produce can compute the gen-
about partially complete knowledge. In particular, they allow the€ralised stable models of acyclic abductive logic programs. Section
truth or falsity of some ground literals, known abduciblesto be 4 shows how the approach is extended to abductive logic programs
left unspecified subject to given integrity constraints. In contrast tovith positive and negative cycles. The paper concludes with a sum-
normal logic programming, abductive proof procedures are free téhary and directions for future work. All of the examples have been
assume any consistent set of abducibles when solving a goal. Thu§plemented and tested using inBoxneural network simulator
abduction does not merely determine whether a goal follows from 42] and the configuration files may be downloaded from [16].

1 Introduction
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2 Background are collectively called aabductive contextA context is said to be

) definite, acyclic, etc, iff the theory is definite, acyclic, etc.
Threshold Neural Networks A neural network or justnetwork

hereafter, is a grapbV, ') whose nodesV are calledheuronsand  Definition 2.1 (Abductive Context) Anabductive contexis a four-
whose edge#’ C N x N are calledconnectionsEach neuronis  tuple (T, G, IC, A) whereT is set of rulesG and A are sets of

n € N labeled with a numbet(n) called itsthresholdand each  ground atoms, andC is a set of integrity constraints.

connection(n, m) € E is labeled with a numbern(n,m) called its

weight The stateof a network is a functiors that assigns to each Example 2.1. Consider the abductive context below describing an
neuron the value 0 or 1. A neuron is said todmtiveif its state is 1 old car. The theory states that the car wont start if its battery is flat
and it is said to bénactiveif its state is 0. For each statethere is  or if fuel tank is empty; that the battery is flat on wet days; that the
a unique successor statesuch that a neuron is active ins’ iff its car will overheat if its fan is broken; and that the lights of the car
threshold is exceeded by the sum of the weights on the connectiori@e on. The integrity constraint states that the lights cannot be on at
coming intor. from nodes which are active in A network is saidto  the same time the battery is flat. The goal to that must be proved is
berelaxediff all of its neurons are inactive. fixpointof the network ~ wont_start. The abducibles which may be assumed-arg_day,

is any state that is identical to its own successor. [Ehset fixpoinbf ~ fan_broke, fuel_empty.

the network, if it exists, is the fixpoint reached by repeatedly com-

puting successor states starting from an initially relaxed network.
wont_start < battery_flat

wont_start «— fuel_empty

Normal Logic Programs A rule is an expression of the form T = battery_flat «— wet_day
H «— Bu,...,By,~Ch,...,mC,, where theH, B; andC; are overheat «— fan_broke
all atoms. The atom to the left of the arrow is calleshdof the rule, lights_on
while the literals to the right comprise thmdy The head atoni/
and the positive body atonds; are said to occypositivelyin the rule, G = { wontstart }
while the negated body atoni are said to occunegatively A rule c = { L — battery_flat, lights_on }
with no negative body literals is calleddefinite clausend written '
H «— Ba,...,B,. Arule with no body literals at all is calledfact A = { fan_broke, fuel_empty, wet_day }
and writtenH . A normal logic programor justprogramhereatfter, is
asetofrules. If? is a program, theS » (theHerbrand basef P) is There are two abuctive explanations of this conteft; =

the set of all atoms built from the predicate and function symbols in{fuel,empty} and A, = { fan_broke, fuel_empty}. The former
P;andGp (theground expansioof P) is the program comprising all s poth minimal and basic, while the latter is neither minimal nor
ground instances of the clausesfnin additon,A;” and.Aj, denote,  pasic. These are the only correct explanations since all other sets of

respectively, the sets of ground atoms that occur positively and negshqycibles fail to satisfy either the goal or the integrity constraints.
atively inGp; andDp (the dependency grapbf P) is the directed

graph with signed edges whose nodes are the atoms in A, and
where there is a positive (resp. negative) edge frotn b iff there 3 Neural Network Abuction: Simple Case
is a clause irGp with a in the head and occurring positively (resp.
negatively) in the body. A cycle i p is positiveif has no negative
edges and isegativeotherwise. A progran® is said to beacyclic
iff Dp contains no (positive or negative) cycles sfable modebf
P is a Herbrand interpretatioh C Bp that coincides with the least
Herbrand model of the definite prograRY obtained by removing
from Gp each rule containing a negative literal not satisfied,iand
by deleting all of the negative literals in the remaining rules.

This section presents a first methodology for realising abduction in
neural networks by defining a translation which maps definite acyclic
abductive logic programs into networks whose fixpoints correspond
to the generalised stable models of the program. The initial restric-
tion to acyclic programs is merely to simplify the presentation of the

key ideas and is immediately lifted in the next section through some
simple syntactic preprocessing of the inputs.

The proposed methodology builds upon existing neuro-symbolic
techniques for transforming logic programs into neural networks and
is easily adapted to suit any choice of encoding. In this paper, for
ease of exposition, we introduce a translation based on multi-layer
threshold networks, which is a slight variation of the approaches in
[20, 8] and is easily generalised to the recurrent sigmoidal networks
using the techniques in [6].

As formalised in Definition 3.1 below, the neural netwdP)

Abductive Logic Programs An abductive logic progranfl0] is
atriple(T,IC, A) whereT is a program (the¢heory), IC'is a set of
rules {ntegrity constraintywith the atom.L denoting logical falsity
in their head, and! is a set of ground atomaducible$. Given a set
G of ground atoms (thgoalg, the task of ALP is to compute a set
A C A of abducibles such that andIC are satisfied in some stable

model of7"U A. In the terminology of [11], the god is said tobe ¢ eqponding to a normal programis obtained from the ground
satisfied in thegeneralised stable mod&l(A); and A is said to be expansiorGp of P in the following way. For each rule — H —
anabductive explanatioof G with respect tdl’, IC and A. Bi....,Bn,—~Ch,...,—Cy, in Gp, add to the network

To select between alternative explanations, additional preference
criteria are often utilised. Two popular desiderata are the propertie§ a node with threshold — 1/2 to represent the rule
of minimality andbasicality. Formally, an explanatioth of G with e anode with threshold/2 for each atonH,B;,C; in the rule
respect tq7', IC, A) is minimaliff there is noA” C A such that\’ (which has not already been added through an earlier rule)
is an explanation of, and ishasiciff there is noA” 2 A suchthat ¢ an edge with weight from r to the head atonf
A is an explanation of\. Intuitively, an explanatioa is minimal if e an edge with weight from each unnegated body atd8j to r
none of its atoms are redundant and is basic if none of its atoms ca§ an edge with weight-1 from each negated body atafj to r
be further explained. For convenience the four ingdisG, IC, A)
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Definition 3.1 (6). If P is a program, therd(P) is the network a; — a;, ¢

(N, E) such that N a; — d; by < next
rH Bi,...,Bn,Ci,...,Cp, C:U bi  a; Uq done < bn,-an
N = U { |’r7:H’<—7B1 ’ 7B ’—\C1 -C } i=1 | ¢+ bi—1,7ai-1,a; done — done
re€gp T T di « bi—1,ma;—1,7a;

E = U (r,H),(Bl,r),..,,(Bn,r)7(01,r),.,,,(Cm,r)
- |T:H<—Bl,...,Bn,—|Cl,...,—|Cm

M
K= U{ ki — ki—1 }U{ ko — —hold, =k }
i=1

reGp sync «— ko, 7k1

andforallr = H < B1,...,B,,—C1,...,~Cy, € Gp

nogood « ic
t(H) = % w(r, H) =1 nogood «— —goal
tr)y=n— % t(B;) = % w(B;,r) =1 soln « sync, ~nogood
t(Cy) = % w(Cy,r) = -1 L= soln «— soln, —nogood
hold «— soln
Example 3.1. If P is the programT' in Example 2.1 above, then hold — done
6(P) is the network below. For convenience, nodes representing neat « sync, nogood

atoms are lightly shaded and are annotated with the name of the

atom, while nodes corresponding to the rules in the program are The first four theories passed fioare a representation of the ab-
darkly shaded. The threshold of each neuron and the weight of eacictive context in whiclyoal is true when the goal is satisfieid, is
connection are also shown. true when an integrity constraint is violated, and each abdueible
is true when the corresponding atamis true. More formally,T”

is the theoryI'; G’ comprises a single clause witlaal in the head
and the atoms of7 in the body;IC" is obtained by insertingc into
the head of each constraintli€’; and A’ contains one clause of the

wont_start

over_heat lights_on form A; < a; for each abduciblel; € A = {A1,..., A }.
1 1 The last three theories passedltdenotes some control logic for
T T activating different combinations of abducibles until an explanation

is found or all possibilities are exhausted. When a solution is found,

the network will enter a stable state in whigbin is activated and

thea; indicate which abducibles are contained in the explanation. If

next is briefly activated, the network will leave this stable state and

look for the next solution. Once all possibilities have been tried, the
The translation algorithm above produces a neural network encochetwork will enter a stable state in whidlane is activated.

ing of a given program. In common with other approaches, it can be The theory C' represents a binary counter whose outputs

shown that if the program is acyclic then the least fixpoint of the netwyan_; ... a1 each drive one abducible. The network encoding of

work exists and corresponds the unique stable model of the progrant is shown below. The counter advances each time the nede

But, to perform abduction, this procedure must be supplemente briefly activated and it activates the nadene when the counter

with some way of representing goals, integrity constraints and someverflows. Each bit of the counter uses for nodesb;, ¢; andd;, to

means of activating different combinations of abducibles. As for-implement a divide by two register that toggles the state; afhen-

malised in Definition 3.2 below, the required abductive machineryever the state ai;_, changes from on to off: with the nodesand

can be obtained by transforming an abductive contéxtz, IC, A) d; signalinga; to turn off and on, respectively.

into a logic program with some clauseg'( G’, IC’, A’) represent-

ing the context and other€’( K, L) representing some additional

fan_broke fuel_empty wet_day

logic to ensure the fixpoints of the network correspond to the geneidone by oy bng Cnot b, ¢, by next
alised stable models of the theory. QR. C;}
Definition 3.2 (¢). Let(T,G,IC, A) be an abductive context. Let ’

N be the number of abducibles iA. Let P be the length of the
longest directed path i with no repeated nodes. L&t be the

smallest integer greater than or equal %QP + 2N + 3). Letgoal, ay an-1 a, |
ic, soln, next, done, sync, nogood, hold, a;, b;, c;, d; and k; be
propositions not appearing if7,G,IC, A) forall 0 < i < N

and for all0 < 57 < M. Then¢(T,G,IC, A) is the network
O(T" UG UIC'UA"UC UK UL)where

The theoryK represents a clock whose outpyfnc is used to
advance the counter if the current state is not a solution. The network
encoding ofK is shown below. The nodds form a loop where the

T’ - T sate of each one follows that of its predecessor; except for the first,

;L B which opposes the last. The period of the clock is proportional to
G = Agoal = By,....Bu[{B1,... Bn} = G} the number of nodes/ + 1, which is chosen to give the rest of the
IC" = {ic—1Li,....,Lp|L—L1,....,L, € IC} network sufficient time to stabilise between successive signals. The
A = {Ai—ai|A €A} clock is disabled whehold is active. The outputync is active when

ko is is on butk; is not,
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sync First consider positive cycles by supposing that the rule
fan_broke <« over_heat is added tol" in Example 2.1 and the
T constraint L «— over_heat is added to/C. The problem is that
the cycle betweerfan_broke andover_heat introduces a memory
"""" into the network that causes a permanent violation of integrity. Once
over_heat is activated byfan_broke, they both remain high, and so
doesic. Hence, the one correct solution is rejected due to the memory
K ’ G K of the violation caused by first hypothesis to be tested.
M M- 1 One solution to this problem is to relax the sub-netwdFks G
I1Cx and Ax after each set of abducibles is tried. This is easily re-
@}ised by adding a special abducilsla.e to the body of each rule
that it is always connected to the least significantbibf the counter
do ensure that its state is continuously alternating with respect to the
other abducibles. In this way, any self-sustaining loops are system-
activated depending on the staterafgood. The first case will ad- atically deactivated before the next set of abducibles is presented to

vance the network into the next state while the second will force thd€ network. - ) )
network to stabilise. Next consider negative cycles by supposing that the rules

door_open «— —door_closed anddoor_closed < —door _open are
Example 3.2. If (T,G,IC, A) is the context in Example 2.1 added tdl' in Example 2.1 and the atorvor_open is added taG.
above, then¢(T,G,IC,A) is the network shown in Figure The problem is that the cycle betweéoor_open anddoor_closed
1(a). The theoriesT”,G',IC’, A’ are shown below. There are introduces an instability into the network that prevents any fixpoint

The theoryL represents some simple control logic that ugesc
to advance the counter or to suspend the clock according to wheth
the current abducibles are a valid explanatiengood indicates
when the goal is not satisfied or one of the integrity constraints i
violated. Whensync becomes active, eithetext or soln will be

N = 3 abducibles inA and the longest simple path iGr is being reached from the initially relaxed state. Instead of converging
(wet_day, fuel_empty, fan_broke) with lengthP = 3. The least  to a stable state in whictioor_open is active anddoor _closed is
upper bound 0%(P +2N +3)isM =6. inactive, these atoms continually force each other to change state.
Following [3], one answer to this problem involves re-writing
T =T negative literals as positive abducibles and to implement negation

through abduction. This is achieved by introducing a new abducible

! p—
G = {goal — wont.start} predicatep; to denote the negationp; of each predicate; in the
IC" = {ic < battery_flat,lights_on} context and adding integrity constraints to ensure that for any ground
fan_broke — ay termsty, ...ty (_exactly one oﬁ_)(tl, coaytn) @andp® (ti, ..., tn) s
Y- fuel_empty — az true. As shown in [11], there is a 1-1 correspondence between the

generalised stable models of the original and transformed contexts.
These solutions are formalised together in Definition 4.1 below,
For any acyclic abductive contekt’, G, IC, A) it can be shown  which transforms an arbitrary conte, G, IC, A) into a definite

that the least fixpoint of the netwo(T', G, IC, A) exists and is  context(T"”,G", IC", A”) before usingp to generate the network.

computed in a finite time. lfoln is active in this state, then the net- Since the latter context is definite, there are no potential instabilities

work represents a generalised stable mddeh) of T' that satisfies  in the network caused by negative cycles; and assumingstheps

G andIC, whereA consists of the active abdicubles. All other so- ¢rue to a1, there will be no residual memory in the network caused

lutions can be computed by assertingrt to force the network to by positive cycles. Thus, it can be shown tadi™”’, G”, 1C”, A”)

search for the next stable state, which also exists and is computed gomputes exactly the generalised stable mode{§'ofs, IC, A).
finite time. If done is active, then no further solutions exist.

In the case of Example 3.2 above, it is easily verifietthat the ~ Definition 4.1 (). Let (T, G, IC, A) be an abductive context not
initially relaxed network rejects the initial hypothedigan_broke} containing the propositionrue. LetR = {p1, ..., px } be the set of
and converges instead to the solutidn = {flat_battery}. If a predicateg; appearing in(T, G, IC, A) and letS = {p7,...,p5}
signal is manually applied teext, then network will converge tothe be a set of predicatep; not appearing in(7T, G, IC, A). For

wet_day — as

next solutionAs = {flat_battery, fan_broke}. If another signal  each atomC' of the formp;(t1,...,t,), let C* denote the atom
is applied tonext, then network will reject all remaining hypotheses p; (t1, .. .,t,). Recall that A7, ;- denotes the set of atoms that
and converge to the findbne state, indicating that no other solutions appear negated in the ground expansion of the prog@m IC.
exist for this context. Theny(T, G, IC, A) is the networkp(T", G", IC", A" such that
4 Neural Network Abduction: General Case = { H —true, By, ..., B, C1,...,Cpy }

|H < Bi1,...,Bn,7C1,...,~Cp €T
This section shows how the methodology introduced above can be
extended to abductive logic programs with cycles using a simple pre- G" = GU{true}
processing transformation. But, before doing so, it is instructive to 9 1« Bi,...,Bn,Ct,...,Ck
illustrate why programs with cycles are potentially problematic. ¢ = { | L« By,...,Bn,~Ci,...,~Cy, € IC }

3 The reader can use the software available from [5] with tha da[16] to
run the network in Fig 1(a) by holding down ctrl-F1 to advatteenetwork
one time point and double clicking neuron 98 to apply a sigoatdxt.
Note that the data file contains some redundant neurons whigyiserve p
to ensure that the connections between neurones followatine gasy-to- A
read layout as shown in the figure above.

{L<0CC*|CeAr e }
{ L—-C,-C"|CeAr e }
AU {true} U{C"|C € A7 o}

Cc C
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nogood
@

Figure 1(a) Simple Case Figure 1(b) General Case

Example 4.1. Consider the context obtained by extending Example The approach described above comprises a sound and complete
2.1 as described above: with one claugen_broke < over_heat method for solving ALPs in ANNS. It is interesting to distinguish
stating that the fan will break if the car overheats; with two clausestwo special cases of this problem which are of practical importance:
door_open «— —door_closed and door_closed «— —door_open first, given a context in whichC' and A are both empty, ALP reduces
stating that the car door is open if it is not closed and vive versa;to the problem of deciding whethét follows from T'; second, given

with one goakloor_open; and with one constrainl. «— over_heat. a context in which&, IC and A are all empty, ALP reduces to the
The theories™’, G”, IC" and A” obtained by applying Definition problem of computing the stable models Bf It is instructive to
4.1 to this extended context are shown below. consider a classic example of this latter problem.

wont_start — true, battery. flat Example 4.2. Consider the following abductive context:

wont_start «— true, fuel_empty

— T

battery_flat «— true, wet_day ({ P 4 } , 0,0, @)
q<—p

overheat < true, fan_broke

1!
T B fan broke — true, over_heat As remarked previously, solving this context amounts to computing
door_open — true, door_closed" the stable models of the following program:
door_closed «+ true, door_open™
lights_on «— true P p— —q
- { q—"p }
G = { wont_start, door_open, true } ] ] ) )
As observed in [8], this program is not easily handled by many
) other approaches as it has two stable modéls: and{p}. Applying
L « battery-flat, lights-on 1 to the this context results in the transformed context below and the
L — over_heat sub-network shown in Figure 1(b) above.
" = 1« door_open, door_open™
1« door_closed, door_closed”
L « —door_open, ~door_open™ — p, px
L« —=door_closed, —~door _closed™ {p — @, true } { e } — q, q* p:
q — px,true |’ 7Y — —p, o tgue
Y { fan_broke, fuel_empty, wet_day, } g g
door_closed™ , door_open™ , true

The reader can verify that the relaxed network converges into a
stable state whetg px andtrue alone are active — corresponding to
Due to space limitations, the network(T', G, IC, A) is not  the stable mode{q}. Applying a signal toext forces the network
shown. However, the reader can verify that the network convergeg, converge to the next stable state wheye+ and true alone are
to a least fixpoint in which exactly three abduciblggel_empty, active — corresponding to the stable model}. Applying another
door-open” andtrue are activated. This solution indicates that  signal toneat forces the network to converge to the finahe state
and /¢ are satisfied in a stable model U { fuel_empty} where  _jngicating that these are the only two models of the program.
door_open is false. If a signal is applied taext, the network will
reject all remaining hypotheses and converge to the done state, indi Note that the rest of the network is not shown because it istic to that
cating that no other solutions exist for this context. given in Figure 1(a).
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(4]

This paper presented a novel method for realising abductive reason-
ing in neural networks. In particular, it proposed an algorithm for [5]
translating abductive logic programs into neural networks so that[G]
abductive inference can benefit from the massive-parallelism of the
neural architecture. The methodology extends the original program
with some additional control logic to ensure that the fixpoints of the [7]
network correspond to the stable models of the program. It also uses
a well-known relationship between negation and abduction in orderg
to correctly handle programs with positive and negative cycles. In
contrast to earlier work, no restrictions are placed on the programs
and, if required, the network can be made to enumerate all expla-
nations. Moreover, because our methodology is a generalisation o?
existing neuro-symbolic techniques, we believe it can be more easiIMO]
combined with standard learning approaches. In this way, we see our
approach as a first tentative step towards the principled integration 6¥1]
abduction and induction at the sub-symbolic level — which could one
day have applications in fields of cognitive modelling and scientific[12]
discovery.

At present we are still a long way from realising these goals. Onél13]
problem with our current approach is that, although parallelism is
exploited when checking each individual hypothesis, the number 4]
hypotheses checked is exponential in the number of abducibles. Two
complementary strategies should be explored in order to address this]
problem. The firstis to use some form of pruning during the search as
in symbolic ALP system such as [17]; and the second is to use some®!
form of simplification when preprocessing the program as in answey; ;
set programing systems such as [19]. An important extension of the
work involves exploiting the structure of the network to impose a
preference on the order in which solutions are found. For example, [£8]
counter can be modified to output numbers in the order 0001, 0010,
0100, 1000, 0011, ... with the fewest number of bits high so thaE]_g]
explanations will be discovered in order of minimality. In addition,
the abducibles topologically far from the goal can be connected to
the least significant bits of the counter, so that explanations will alsé?0!
be discovered in order of basicality. [

An key direction for future work is that of integrating abductive
reasoning with inductive learning in order to realise the benefits sug-
gested by recent symbolic machine learning systems. By providing a
richer formalism for representing and reasoning about partial knowl-22
edge and integrity constraints, abduction could help to exercise a
finer degree of control over which assumptions can and cannot be
made in learning. In this context, it may be more appropriate to use
a variation of the methodology presented in this paper, whereby the
network is topology is projected onto a single layer recurrent network
(computing the immediate consequence operator) and the threshold
units are replaced by sigmoidal neurones. This should enable an ex-
perimental validation of the approach as well as a more detailed com-
parison with symbolic systems.

5 Conclusion

]
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