
Towards the integration of abduction and induction
in artificial neural networks

Oliver Ray1 and Artur Garcez 2

Abstract. This paper presents a method for realising abduction
in artificial neural networks (ANNs) by generalising existing neuro-
symbolic approaches from normal logic programs to abductive logic
programs (ALPs) in order to provide a more expressive formalism
for representing and reasoning about partial knowledge and integrity
constraints. The aim is to develop a massively-parallel methodology
for abduction that can also be integrated with connectionist learning
approaches to offer a finer degree of control over which assumptions
can and cannot be made in learning. Existing methods for abduction
in neural networks are not well suited to this task as they only apply
to a restricted a class of abduction problems or they do not adequately
address the issues of local minima and multiple solutions. This paper
proposes an algorithm for translating ALPs into ANNs whereby no
restrictions are imposed on the underlying programs and, if required,
the network can systematically compute all abductive explanations or
provide a guarantee when none exist. Moreover, since the topology of
the network mirrors the structure of the program, it can be acquired
and revised by standard neuro-symbolic training techniques and can
also be exploited to impose a preference on the order in which the
solutions are found.

1 Introduction

Neuro-symbolic integration [9, 6] aims to combine the respective
benefits of artivicial neural networks (ANNs) and logic programming
by providing practical methods of learning with declarative knowl-
edge representations. This is achieved by translating logic programs
into neural networks; either to provide an initial network which can
be trained on further data using techniques such as back-propagation,
as in [20], or to compute the consequences of the program under the
stable model semantics by means of massively parallel deduction, as
in [8]. But, state-of-the art approaches such as [20, 8, 6] only apply
to logic programs with unique stable models and are not particularly
well suited for representing and reasoning about partial knowledge
that is inherent in learning. This limitation motivates the study of
more powerful formalisms for expressing uncertainty and handling
programs with more than one stable model.

Abductive logic programs (ALPs) [10] are an extension of logic
programs that are more appropriate for representing and reasoning
about partially complete knowledge. In particular, they allow the
truth or falsity of some ground literals, known asabducibles, to be
left unspecified subject to given integrity constraints. In contrast to
normal logic programming, abductive proof procedures are free to
assume any consistent set of abducibles when solving a goal. Thus,
abduction does not merely determine whether a goal follows from a

1 Imperial College London, UK, email: or@doc.ic.ac.uk
2 City University London, UK, email: aag@soi.city.ac.uk

program, but computes a set of assumptions that, when aded to the
program, ensure the goal succeeds. Each set of abducibles is called
anabductive explanationand represents an extension of the program
that is referred to as ageneralised stable model[11]. By extending
the program in this way, abduction can extrapolate potentially useful
assumptions from partially complete theories.

The incompleteness of knowledge inherent in learning suggests
inductive techniques may benefit from a facility for abduction. This
claim is supported by logic-based machine learning systems show
that abduction and induction can be combined to achieve superior
reasoning capabilities, as evidenced for example in [15, 12, 4]. The
benefits offered by neural networks over logical approaches in terms
of noise-tolerance and massive-parallelism provide an even greater
incentive to investigate the integration of abduction and induction at
the sub-symbolic level. But, existing methods for abduction in neural
networks are not well suited to this task as they only apply to a very
restricted a class of abduction problems whose expressivity is limited
to definite acyclic programs [7, 18, 2, 22] or they do not adequately
address the issues of avoiding local minima and computing multiple
solutions [13, 21, 14, 1].

This paper presents a novel methodology for abduction in neural
networks by generalising existing neuro-symbolic approaches from
normal logic programs to abductive logic programs. In particular,
an algorithm is proposed for translating ALPs into ANNs such that
the fixpoints of the network represent the generalised stable models
of the program. The translation is introduced in three steps. First, a
functionθ is defined that maps logic programs into neural networks
by adapting existing neuro-symbolic encoding methods. Second, a
function φ is defined that maps acyclic abductive logic programs
into neural networks by extending the program with some additonal
clauses for abduction. Third, a functionψ is defined that maps any
abductive logic program into a neural network using a simple pre-
processing transformation which allows positive and negative cycles
to be uniformly handled through abduction.

The paper is structured as follows. Section 2 recalls some basic
notation and terminology relating to neural networks (with binary
threshold neurons) and logic programs before introducing the task of
abductive logic programming. Section 3 defines the functionsθ and
φ and shows how the networks they produce can compute the gen-
eralised stable models of acyclic abductive logic programs. Section
4 shows how the approach is extended to abductive logic programs
with positive and negative cycles. The paper concludes with a sum-
mary and directions for future work. All of the examples have been
implemented and tested using theBrainBoxneural network simulator
[5] and the configuration files may be downloaded from [16].



2 Background

Threshold Neural Networks A neural network, or justnetwork
hereafter, is a graph(N,E) whose nodesN are calledneuronsand
whose edgesE ⊆ N × N are calledconnections. Each neuron is
n ∈ N labeled with a numbert(n) called its thresholdand each
connection(n,m) ∈ E is labeled with a numberw(n,m) called its
weight. The stateof a network is a functions that assigns to each
neuron the value 0 or 1. A neuron is said to beactiveif its state is 1
and it is said to beinactive if its state is 0. For each states there is
a unique successor states′ such that a neuronn is active ins′ iff its
threshold is exceeded by the sum of the weights on the connections
coming inton from nodes which are active ins. A network is said to
berelaxediff all of its neurons are inactive. Afixpointof the network
is any state that is identical to its own successor. Theleast fixpointof
the network, if it exists, is the fixpoint reached by repeatedly com-
puting successor states starting from an initially relaxed network.

Normal Logic Programs A rule is an expression of the form
H ← B1, . . . , Bn,¬C1, . . . ,¬Cm, where theH, Bi andCj are
all atoms. The atom to the left of the arrow is calledheadof the rule,
while the literals to the right comprise thebody. The head atomH
and the positive body atomsBi are said to occurpositivelyin the rule,
while the negated body atomsCj are said to occurnegatively. A rule
with no negative body literals is called adefinite clauseand written
H ← B1, . . . , Bn. A rule with no body literals at all is called afact
and writtenH. A normal logic program, or justprogramhereafter, is
a set of rules. IfP is a program, thenBP (theHerbrand baseof P ) is
the set of all atoms built from the predicate and function symbols in
P ; andGP (theground expansionofP ) is the program comprising all
ground instances of the clauses inP . In additon,A+

p andA−

P denote,
respectively, the sets of ground atoms that occur positively and neg-
atively in GP ; andDP (thedependency graphof P ) is the directed
graph with signed edges whose nodes are the atoms inA+

p ∪A
−

P and
where there is a positive (resp. negative) edge froma to b iff there
is a clause inGP with a in the head andb occurring positively (resp.
negatively) in the body. A cycle inDP is positiveif has no negative
edges and isnegativeotherwise. A programP is said to beacyclic
iff DP contains no (positive or negative) cycles. Astable modelof
P is a Herbrand interpretationI ⊆ BP that coincides with the least
Herbrand model of the definite programP I obtained by removing
fromGP each rule containing a negative literal not satisfied inI, and
by deleting all of the negative literals in the remaining rules.

Abductive Logic Programs An abductive logic program[10] is
a triple(T, IC,A) whereT is a program (thetheory), IC is a set of
rules (integrity constraints) with the atom⊥ denoting logical falsity
in their head, andA is a set of ground atoms (aducibles). Given a set
G of ground atoms (thegoals), the task of ALP is to compute a set
∆ ⊆ A of abducibles such thatG andIC are satisfied in some stable
model ofT ∪∆. In the terminology of [11], the goalG is said to be
satisfied in thegeneralised stable modelT (∆); and∆ is said to be
anabductive explanationof G with respect toT , IC andA.

To select between alternative explanations, additional preference
criteria are often utilised. Two popular desiderata are the properties
of minimalityandbasicality. Formally, an explanation∆ of G with
respect to(T, IC,A) is minimal iff there is no∆′ ⊂ ∆ such that∆′

is an explanation ofG, and isbasiciff there is no∆′ 6⊇ ∆ such that
∆′ is an explanation of∆. Intuitively, an explanation∆ is minimal if
none of its atoms are redundant and is basic if none of its atoms can
be further explained. For convenience the four inputs(T,G, IC,A)

are collectively called anabductive context. A context is said to be
definite, acyclic, etc, iff the theoryT is definite, acyclic, etc.

Definition 2.1 (Abductive Context). An abductive contextis a four-
tuple (T,G, IC,A) whereT is set of rules,G andA are sets of
ground atoms, andIC is a set of integrity constraints.

Example 2.1. Consider the abductive context below describing an
old car. The theory states that the car wont start if its battery is flat
or if fuel tank is empty; that the battery is flat on wet days; that the
car will overheat if its fan is broken; and that the lights of the car
are on. The integrity constraint states that the lights cannot be on at
the same time the battery is flat. The goal to that must be proved is
wont start. The abducibles which may be assumed arewet day,
fan broke, fuel empty.

T =

8

>

>

>

>

<

>

>

>

>

:

wont start← battery flat
wont start← fuel empty
battery flat← wet day
overheat← fan broke
lights on

9

>

>

>

>

=

>

>

>

>

;

G =
˘

wont start
¯

IC =
˘

⊥ ← battery flat, lights on
¯

A =
˘

fan broke, fuel empty, wet day
¯

There are two abuctive explanations of this context:∆1 =
{fuel empty} and∆2 = {fan broke, fuel empty}. The former
is both minimal and basic, while the latter is neither minimal nor
basic. These are the only correct explanations since all other sets of
abducibles fail to satisfy either the goal or the integrity constraints.

3 Neural Network Abuction: Simple Case

This section presents a first methodology for realising abduction in
neural networks by defining a translation which maps definite acyclic
abductive logic programs into networks whose fixpoints correspond
to the generalised stable models of the program. The initial restric-
tion to acyclic programs is merely to simplify the presentation of the
key ideas and is immediately lifted in the next section through some
simple syntactic preprocessing of the inputs.

The proposed methodology builds upon existing neuro-symbolic
techniques for transforming logic programs into neural networks and
is easily adapted to suit any choice of encoding. In this paper, for
ease of exposition, we introduce a translation based on multi-layer
threshold networks, which is a slight variation of the approaches in
[20, 8] and is easily generalised to the recurrent sigmoidal networks
using the techniques in [6].

As formalised in Definition 3.1 below, the neural networkθ(P )
corresponding to a normal programP is obtained from the ground
expansionGP of P in the following way. For each ruler = H ←
B1, . . . , Bn,¬C1, . . . ,¬Cm in GP , add to the network

• a node with thresholdn− 1/2 to represent the ruler
• a node with threshold1/2 for each atomH,Bi,Cj in the rule

(which has not already been added through an earlier rule)
• an edge with weight1 from r to the head atomH
• an edge with weight1 from each unnegated body atomBi to r
• an edge with weight−1 from each negated body atomCj to r

2 (or - April 17, 2006)



Definition 3.1 (θ). If P is a program, thenθ(P ) is the network
(N,E) such that

N =
[

r∈GP



r,H,B1, . . . , Bn, C1, . . . , Cm

| r = H ← B1, . . . , Bn,¬C1, . . . ,¬Cm

ff

E =
[

r∈GP



(r,H), (B1, r), . . . , (Bn, r), (C1, r), . . . , (Cm, r)
| r = H ← B1, . . . , Bn,¬C1, . . . ,¬Cm

ff

and for allr = H ← B1, . . . , Bn,¬C1, . . . ,¬Cm ∈ GP

t(r) = n− 1

2

t(H) = 1

2

t(Bi) = 1

2

t(Cj) = 1

2

w(r,H) = 1
w(Bi, r) = 1
w(Cj , r) = −1

Example 3.1. If P is the programT in Example 2.1 above, then
θ(P ) is the network below. For convenience, nodes representing
atoms are lightly shaded and are annotated with the name of the
atom, while nodes corresponding to the rules in the program are
darkly shaded. The threshold of each neuron and the weight of each
connection are also shown.

����������

�	��
���
	��	����

��	���	��

����	�������

���������

��������	

The translation algorithm above produces a neural network encod-
ing of a given program. In common with other approaches, it can be
shown that if the program is acyclic then the least fixpoint of the net-
work exists and corresponds the unique stable model of the program.
But, to perform abduction, this procedure must be supplemented
with some way of representing goals, integrity constraints and some
means of activating different combinations of abducibles. As for-
malised in Definition 3.2 below, the required abductive machinery
can be obtained by transforming an abductive context(T,G, IC,A)
into a logic program with some clauses (T ′,G′, IC′, A′) represent-
ing the context and others (C, K, L) representing some additional
logic to ensure the fixpoints of the network correspond to the gener-
alised stable models of the theory.

Definition 3.2 (φ). Let (T,G, IC,A) be an abductive context. Let
N be the number of abducibles inA. Let P be the length of the
longest directed path inDT with no repeated nodes. LetM be the
smallest integer greater than or equal to1

2
(P + 2N + 3). Letgoal,

ic, soln, next, done, sync, nogood, hold, ai, bi, ci, di andkj be
propositions not appearing in(T,G, IC,A) for all 0 ≤ i ≤ N
and for all 0 ≤ j ≤ M . Thenφ(T,G, IC,A) is the network
θ(T ′ ∪G′ ∪ IC′ ∪A′ ∪ C ∪K ∪ L) where

T ′ = T

G′ = {goal← B1, . . . , Bn | {B1, . . . Bn} = G}

IC′ = {ic← L1, . . . , Lm | ⊥ ← L1, . . . , Lm ∈ IC}

A′ = {Ai ← ai |Ai ∈ A}

C=

N
[

i=1

8

>

>

>

>

<

>

>

>

>

:

ai ← ai,¬ci
ai ← di

bi ← ai

ci ← bi−1,¬ai−1, ai

di ← bi−1,¬ai−1,¬ai

9

>

>

>

>

=

>

>

>

>

;

∪

8

<

:

b0 ← next
done← bN ,¬aN

done← done

9

=

;

K =

M
[

i=1

˘

ki ← ki−1

¯

∪



k0 ← ¬hold,¬kM

sync← k0,¬k1

ff

L =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

nogood← ic
nogood← ¬goal
soln← sync,¬nogood
soln← soln,¬nogood
hold← soln
hold← done
next← sync, nogood

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

The first four theories passed toθ are a representation of the ab-
ductive context in whichgoal is true when the goal is satisfied,ic is
true when an integrity constraint is violated, and each abducibleAi

is true when the corresponding atomai is true. More formally,T ′

is the theoryT ; G′ comprises a single clause withgoal in the head
and the atoms ofG in the body;IC′ is obtained by insertingic into
the head of each constraint inIC; andA′ contains one clause of the
formAi ← ai for each abducibleAi ∈ A = {A1, . . . , An}.

The last three theories passed toθ denotes some control logic for
activating different combinations of abducibles until an explanation
is found or all possibilities are exhausted. When a solution is found,
the network will enter a stable state in whichsoln is activated and
theai indicate which abducibles are contained in the explanation. If
next is briefly activated, the network will leave this stable state and
look for the next solution. Once all possibilities have been tried, the
network will enter a stable state in whichdone is activated.

The theory C represents a binary counter whose outputs
aNaN−1 . . . a1 each drive one abducible. The network encoding of
C is shown below. The counter advances each time the nodenext
is briefly activated and it activates the nodedone when the counter
overflows. Each bit of the counter uses for nodes,ai, bi, ci anddi, to
implement a divide by two register that toggles the state ofai when-
ever the state ofai−1 changes from on to off: with the nodesci and
di signalingai to turn off and on, respectively.

����

�
�

�
����

�

	
�

	



�
�

����

�





�

	
���



���

�
���

	
�



�

�
�

The theoryK represents a clock whose outputsync is used to
advance the counter if the current state is not a solution. The network
encoding ofK is shown below. The nodeski form a loop where the
sate of each one follows that of its predecessor; except for the first,
which opposes the last. The period of the clock is proportional to
the number of nodesM + 1, which is chosen to give the rest of the
network sufficient time to stabilise between successive signals. The
clock is disabled whenhold is active. The outputsync is active when
k0 is is on butk1 is not,

3 (or - April 17, 2006)



����

��

��	


��

�� ��
� ����

��

The theoryL represents some simple control logic that usessync
to advance the counter or to suspend the clock according to whether
the current abducibles are a valid explanation.nogood indicates
when the goal is not satisfied or one of the integrity constraints is
violated. Whensync becomes active, eithernext or soln will be
activated depending on the state ofnogood. The first case will ad-
vance the network into the next state while the second will force the
network to stabilise.

Example 3.2. If (T,G, IC,A) is the context in Example 2.1
above, thenφ(T,G, IC,A) is the network shown in Figure
1(a). The theoriesT ′, G′, IC′, A′ are shown below. There are
N = 3 abducibles inA and the longest simple path inGT is
(wet day, fuel empty, fan broke) with lengthP = 3. The least
upper bound of1

2
(P + 2N + 3) isM = 6.

T ′ = T

G′ = {goal← wont start}

IC′ = {ic← battery flat, lights on}

A′ =

8

<

:

fan broke← a1

fuel empty ← a2

wet day ← a3

9

=

;

For any acyclic abductive context(T,G, IC,A) it can be shown
that the least fixpoint of the networkφ(T,G, IC,A) exists and is
computed in a finite time. Ifsoln is active in this state, then the net-
work represents a generalised stable modelT (∆) of T that satisfies
G andIC, where∆ consists of the active abdicubles. All other so-
lutions can be computed by assertingnext to force the network to
search for the next stable state, which also exists and is computed in
finite time. If done is active, then no further solutions exist.

In the case of Example 3.2 above, it is easily verified3 that the
initially relaxed network rejects the initial hypothesis{fan broke}
and converges instead to the solution∆1 = {flat battery}. If a
signal is manually applied tonext, then network will converge to the
next solution∆2 = {flat battery, fan broke}. If another signal
is applied tonext, then network will reject all remaining hypotheses
and converge to the finaldone state, indicating that no other solutions
exist for this context.

4 Neural Network Abduction: General Case

This section shows how the methodology introduced above can be
extended to abductive logic programs with cycles using a simple pre-
processing transformation. But, before doing so, it is instructive to
illustrate why programs with cycles are potentially problematic.

3 The reader can use the software available from [5] with the data at [16] to
run the network in Fig 1(a) by holding down ctrl-F1 to advancethe network
one time point and double clicking neuron 98 to apply a signal to next.
Note that the data file contains some redundant neurons which merely serve
to ensure that the connections between neurones follow the same easy-to-
read layout as shown in the figure above.

First consider positive cycles by supposing that the rule
fan broke ← over heat is added toT in Example 2.1 and the
constraint⊥ ← over heat is added toIC. The problem is that
the cycle betweenfan broke andover heat introduces a memory
into the network that causes a permanent violation of integrity. Once
over heat is activated byfan broke, they both remain high, and so
doesic. Hence, the one correct solution is rejected due to the memory
of the violation caused by first hypothesis to be tested.

One solution to this problem is to relax the sub-networksT∗, G∗
IC∗ andA∗ after each set of abducibles is tried. This is easily re-
alised by adding a special abducibletrue to the body of each rule
that it is always connected to the least significant bita1 of the counter
to ensure that its state is continuously alternating with respect to the
other abducibles. In this way, any self-sustaining loops are system-
atically deactivated before the next set of abducibles is presented to
the network.

Next consider negative cycles by supposing that the rules
door open← ¬door closed anddoor closed← ¬door open are
added toT in Example 2.1 and the atomdoor open is added toG.
The problem is that the cycle betweendoor open anddoor closed
introduces an instability into the network that prevents any fixpoint
being reached from the initially relaxed state. Instead of converging
to a stable state in whichdoor open is active anddoor closed is
inactive, these atoms continually force each other to change state.

Following [3], one answer to this problem involves re-writing
negative literals as positive abducibles and to implement negation
through abduction. This is achieved by introducing a new abducible
predicatep∗i to denote the negation¬pi of each predicatepi in the
context and adding integrity constraints to ensure that for any ground
termst1, . . . , tn exactly one ofp(t1, . . . , tn) andp∗(t1, . . . , tn) is
true. As shown in [11], there is a 1-1 correspondence between the
generalised stable models of the original and transformed contexts.

These solutions are formalised together in Definition 4.1 below,
which transforms an arbitrary context(T,G, IC,A) into a definite
context(T ′′, G′′, IC′′, A′′) before usingφ to generate the network.
Since the latter context is definite, there are no potential instabilities
in the network caused by negative cycles; and assuming thatφ maps
true to a1, there will be no residual memory in the network caused
by positive cycles. Thus, it can be shown thatφ(T ′′, G′′, IC′′, A′′)
computes exactly the generalised stable models of(T,G, IC,A).

Definition 4.1 (ψ). Let (T,G, IC,A) be an abductive context not
containing the propositiontrue. LetR = {p1, . . . , pk} be the set of
predicatespi appearing in(T,G, IC,A) and letS = {p∗1, . . . , p

∗
k}

be a set of predicatesp∗i not appearing in(T,G, IC,A). For
each atomC of the formpi(t1, . . . , tn), let C∗ denote the atom
p∗i (t1, . . . , tn). Recall thatA−

T∪IC denotes the set of atoms that
appear negated in the ground expansion of the programT ∪ IC.
Thenψ(T,G, IC,A) is the networkφ(T ′′, G′′, IC′′, A′′) such that

T ′′ =



H ← true,B1, . . . , Bn, C
∗
1 , . . . , C

∗
m

|H ← B1, . . . , Bn,¬C1, . . . ,¬Cm ∈ T

ff

G′′ = G ∪ {true}

IC′′ =



⊥ ← B1, . . . , Bn, C
∗
1 , . . . , C

∗
m

| ⊥ ← B1, . . . , Bn,¬C1, . . . ,¬Cm ∈ IC

ff

∪
˘

⊥ ← C,C∗ |C ∈ A−

T∪IC

¯

∪
˘

⊥ ← ¬C,¬C∗ |C ∈ A−

T∪IC

¯

A′′ = A ∪ {true} ∪ {C∗ |C ∈ A−

T∪IC}

4 (or - April 17, 2006)



����

����

	
��

������


�
�
�

�

�

�

�����������

���

���

���

���
��

�� �	�

��
� ��

����

	���

�� ����

�� 	
�� 
�

� 


��

��

��

Figure 1(a) Simple Case Figure 1(b) General Case

Example 4.1. Consider the context obtained by extending Example
2.1 as described above: with one clausefan broke ← over heat
stating that the fan will break if the car overheats; with two clauses
door open ← ¬door closed and door closed ← ¬door open
stating that the car door is open if it is not closed and vive versa;
with one goaldoor open; and with one constraint⊥ ← over heat.
The theoriesT ′′, G′′, IC′′ andA′′ obtained by applying Definition
4.1 to this extended context are shown below.

T ′′ =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

wont start← true, battery flat
wont start← true, fuel empty
battery flat← true, wet day
overheat← true, fan broke
fan broke← true, over heat
door open← true, door closed∗

door closed← true, door open∗

lights on← true

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

G′′ =
˘

wont start, door open, true
¯

IC′′ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

⊥ ← battery flat, lights on
⊥ ← over heat
⊥ ← door open, door open∗

⊥ ← door closed, door closed∗

⊥ ← ¬door open,¬door open∗

⊥ ← ¬door closed,¬door closed∗

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

A′′ =



fan broke, fuel empty, wet day,
door closed∗, door open∗, true

ff

Due to space limitations, the networkψ(T,G, IC,A) is not
shown. However, the reader can verify that the network converges
to a least fixpoint in which exactly three abduciblesfuel empty,
door open∗ and true are activated. This solution indicates thatG
andIC are satisfied in a stable model ofT ∪ {fuel empty} where
door open is false. If a signal is applied tonext, the network will
reject all remaining hypotheses and converge to the done state, indi-
cating that no other solutions exist for this context.

The approach described above comprises a sound and complete
method for solving ALPs in ANNs. It is interesting to distinguish
two special cases of this problem which are of practical importance:
first, given a context in whichIC andA are both empty, ALP reduces
to the problem of deciding whetherG follows fromT ; second, given
a context in whichG, IC andA are all empty, ALP reduces to the
problem of computing the stable models ofT . It is instructive to
consider a classic example of this latter problem.

Example 4.2. Consider the following abductive context:

„

p← ¬q
q ← ¬p

ff

, ∅ , ∅ , ∅

«

As remarked previously, solving this context amounts to computing
the stable models of the following program:

P =



p← ¬q
q ← ¬p

ff

As observed in [8], this program is not easily handled by many
other approaches as it has two stable models:{q} and{p}. Applying
ψ to the this context results in the transformed context below and the
sub-network shown in Figure 1(b) above.4

0

B

B

@



p← q∗, true
q ← p∗, true

ff

,
˘

true
¯

,

8

>

>

<

>

>

:

← p, p∗
← q, q∗
← ¬p,¬p∗
← ¬q,¬q∗

9

>

>

=

>

>

;

,

8

<

:

p∗
q∗
true

9

=

;

1

C

C

A

The reader can verify that the relaxed network converges into a
stable state whereq, p∗ andtrue alone are active – corresponding to
the stable model{q}. Applying a signal tonext forces the network
to converge to the next stable state wherep, q∗ and true alone are
active – corresponding to the stable model{p}. Applying another
signal tonext forces the network to converge to the finaldone state
– indicating that these are the only two models of the program.

4 Note that the rest of the network is not shown because it is identical to that
given in Figure 1(a).

5 (or - April 17, 2006)



5 Conclusion

This paper presented a novel method for realising abductive reason-
ing in neural networks. In particular, it proposed an algorithm for
translating abductive logic programs into neural networks so that
abductive inference can benefit from the massive-parallelism of the
neural architecture. The methodology extends the original program
with some additional control logic to ensure that the fixpoints of the
network correspond to the stable models of the program. It also uses
a well-known relationship between negation and abduction in order
to correctly handle programs with positive and negative cycles. In
contrast to earlier work, no restrictions are placed on the programs
and, if required, the network can be made to enumerate all expla-
nations. Moreover, because our methodology is a generalisation of
existing neuro-symbolic techniques, we believe it can be more easily
combined with standard learning approaches. In this way, we see our
approach as a first tentative step towards the principled integration of
abduction and induction at the sub-symbolic level – which could one
day have applications in fields of cognitive modelling and scientific
discovery.

At present we are still a long way from realising these goals. One
problem with our current approach is that, although parallelism is
exploited when checking each individual hypothesis, the number of
hypotheses checked is exponential in the number of abducibles. Two
complementary strategies should be explored in order to address this
problem. The first is to use some form of pruning during the search as
in symbolic ALP system such as [17]; and the second is to use some
form of simplification when preprocessing the program as in answer
set programing systems such as [19]. An important extension of the
work involves exploiting the structure of the network to impose a
preference on the order in which solutions are found. For example, it
counter can be modified to output numbers in the order 0001, 0010,
0100, 1000, 0011, ... with the fewest number of bits high so that
explanations will be discovered in order of minimality. In addition,
the abducibles topologically far from the goal can be connected to
the least significant bits of the counter, so that explanations will also
be discovered in order of basicality.

An key direction for future work is that of integrating abductive
reasoning with inductive learning in order to realise the benefits sug-
gested by recent symbolic machine learning systems. By providing a
richer formalism for representing and reasoning about partial knowl-
edge and integrity constraints, abduction could help to exercise a
finer degree of control over which assumptions can and cannot be
made in learning. In this context, it may be more appropriate to use
a variation of the methodology presented in this paper, whereby the
network is topology is projected onto a single layer recurrent network
(computing the immediate consequence operator) and the threshold
units are replaced by sigmoidal neurones. This should enable an ex-
perimental validation of the approach as well as a more detailed com-
parison with symbolic systems.

REFERENCES
[1] A. Abdelbar, M. El-Hemaly, E. Andrews, and D. Wunsch II, ‘Recur-

rent neural networks with backtrack-points and negative reinforcement
applied to cost-based abduction’,Neural Networks, 18(5-6), 755–764,
(2005).

[2] B. Ayeb, S. Wang, and J. Ge, ‘A Unified Model For Neural Based Ab-
duction’, IEEE Transactions on Systems, Man and Cybernetics, 28(4),
408–425, (1998).

[3] K. Eshghi and R.A. Kowalski, ‘Abduction compared with negation by
failure’, in Proceedings of the 6th International Conference on Logic
Programming, eds., G. Levi and M. Martelli, pp. 234–254. MIT Press,
(1989).

[4] F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli, ‘Multistrategy
Theory Revision: Induction and Abduction in INTHELEX’,Machine
Learning, 38(1/2), 133–156, (2000).

[5] N. Fraser. BrainBox Neural Network Simulator (v. 1.8), 2006. at
http://neil.fraser.name/software/brainbox/.

[6] A. d’Avila Garcez, K. Broda, and D. Gabbay,Neural-Symbolic Learn-
ing Systems: Foundations and Applications, Perspectives in Neural
Computing, Springer, 2002.

[7] A. Goel and J. Ramanujam, ‘A Neural Architecture for a Classof Ab-
duction Problems’,IEEE Transactions on Systems, Man and Cybernet-
ics, 26(6), 854–860, (1996).

[8] S. Höllbler and Y. Kalinke, ‘Towards a massively parallel computa-
tional model for logic programming’, inProceedings ECAI94 Work-
shop on Combining Symbolic and Connectionist Processing, pp. 68–77,
(1994).

[9] Artificial Intelligence and Neural Networks: Steps Toward Principled
Integration, eds., V. Honavar and L. Uhr, Boston Academic Press, 1994.

[10] A.C. Kakas, R.A. Kowalski, and F. Toni, ‘Abductive Logic Program-
ming’, Journal of Logic and Computation, 2(6), 719–770, (1992).

[11] A.C. Kakas and P. Mancarella, ‘Generalized Stable Models: a Seman-
tics for Abduction’, inProceedings of the 9th European Conference on
Artificial Intelligence, pp. 385–391. Pitman, (1990).

[12] A.C. Kakas and F. Riguzzi, ‘Abductive concept learning’, New Gener-
ation Computing, 18(3), 243–294, (2000).

[13] P. Lima, ‘Logical Abduction and Prediction of Unit Clauses in Symmet-
ric Hopfield Networks’, inArtificial Neural Networks, 2, eds., I. Alek-
sander and J. Taylor, volume 1, pp. 721–725. Elsevier, (1992).

[14] J. Medina, E. Ḿerida-Casermeiro, and M. Ojeda-Aciego. A neural ap-
proach to abductive multiadjoint reasoning, 2002.

[15] O. Ray,Hybrid Abductive-Inductive Learning, Ph.D. dissertation, De-
partment of Computing, Imperial College London, UK, 2005.

[16] O. Ray. BrainBox Neural Network Abduction Demo Files, 2006. at
http://www.doc.ic.ac.uk/˜or/neural/abduction/demo.

[17] O. Ray and A. Kakas, ‘ProLogICA: a practical system for Abductive
Logic Programming’, inProceedings of the 11th International Work-
shop on Non-monotonic Reasoning, (2006). to appear.

[18] J. Reggia, Y. Peng, and S. Tuhrim, ‘A Connectionist Approach to Di-
agnostic Problem-Solving Using Causal Networks’,Information Sci-
ences, 70, 27–48, (1993).

[19] Patrik Simons, Ilkka Niemelä, and Timo Soininen, ‘Extending and im-
plementing the stable model semantics.’,Artificial Intelligece, 138(1-
2), 181–234, (2002).

[20] G. Towell and J. Shavlik, ‘Knowledge-based artificial neural networks’,
Artificial Intelligence, 70(1-2), 119–165, (1994).

[21] R. Vingrálek, ‘A connectionist approach to finding stable models
and other structures in nonmonotonic reasoning.’, inProceedings of
the Second International Workshop on Logic Programming andNon-
Monotonic Reasoning, eds., L. Pereira and A. Nerode, pp. 60–81. MIT
Press, (1993).

[22] C. Zhang and Y. Xu, ‘A Neural Network Model for Diagnostic Prob-
lem Solving with Causal Chaining’,Neural Networks and Advanced
Control Strategies, 54, 87–92, (1999).

6 (or - April 17, 2006)


