
A Connectionist Model for Constructive
Modal Reasoning

Artur S. d’Avila Garcez
Department of Computing, City University London

London EC1V 0HB, UK
aag@soi.city.ac.uk

Lu ı́s C. Lamb
Institute of Informatics, Federal University of Rio Grandedo Sul

Porto Alegre RS, 91501-970, Brazil
LuisLamb@acm.org

Dov M. Gabbay
Department of Computer Science, King’s College London

Strand, London, WC2R 2LS, UK
dg@dcs.kcl.ac.uk

Abstract

We present a new connectionist model for constructive, intuitionistic
modal reasoning. We use ensembles of neural networks to represent in-
tuitionistic modal theories, and show that for each intuitionistic modal
program there exists a corresponding neural network ensemble that com-
putes the program. This provides a massively parallel modelfor intu-
itionistic modal reasoning, and sets the scene for integrated reasoning,
knowledge representation, and learning of intuitionistictheories in neural
networks, since the networks in the ensemble can be trained by examples
using standard neural learning algorithms.

1 Introduction

Automated reasoning and learning theory have been the subject of intensive investigation
since the early developments in computer science [14]. However, while (machine) learn-
ing has focused mainly on quantitative and connectionist approaches [16], the reasoning
component of intelligent systems has been developed mainlyby formalisms of classical
and non-classical logics [7, 9]. More recently, the recognition of the need for systems that
integrate reasoning and learning into the same foundation,and the evolution of the fields of
cognitive and neural computation, has led to a number of proposals that attempt to integrate
reasoning and learning [1, 3, 12, 13, 15].

We claim that an effective integration of reasoning and learning can be obtained by neural-
symbolic learning systems [3, 4]. Such systems concern the application of problem-specific
symbolic knowledge within the neurocomputing paradigm. Byintegrating logic and neural



networks, they may provide (i) a sound logical characterisation of a connectionist system,
(ii) a connectionist (parallel) implementation of a logic, or (iii) a hybrid learning system
bringing together advantages from connectionism and symbolic reasoning.

Intuitionistic logical systems have been advocated by manyas providing adequate logical
foundations for computation (see [2] for a survey). We argue, therefore, that intuitionism
could also play an important part in neural computation. In this paper, we follow the re-
search path outlined in [4, 5], and develop a computational model for integrated reasoning,
representation, and learning of intuitionistic modal knowledge. We concentrate on reason-
ing and knowledge representation issues, which set the scene for connectionist intuitionistic
learning, since effective knowledge representation should precede learning [15]. Still, we
base the representation on standard, simple neural networkarchitectures, aiming at future
work on experimental learning within the model proposed here.

A key contribution of this paper is the proposal to shift the notion of logical implication
(and negation) in neural networks from the standard notion of implication as a partial func-
tion from input to output (and of negation as failure to activate a neuron), to an intuitionistic
notion which we will see can be implemented in neural networks if we make use of network
ensembles. We claim that the intuitionistic interpretation introduced here will make sense
for a number of problems in neural computation in the same waythat intuitionistic logic is
more appropriate than classical logic in a number of computational settings. We will start
by illustrating the proposed computational model in an appropriate constructive reasoning,
distributed knowledge representation scenario, namely, thewise men puzzle[7]. Then, we
will show how ensembles ofConnectionist Inductive Learning and Logic Programming
(C-ILP) networks [3] can compute intuitionistic modal knowledge. The networks are set
up by anIntuitionistic Modal Algorithmintroduced in this paper. A proof that the algorithm
produces a neural network ensemble that computes a semantics of its associated intuitionis-
tic modal theory is then given. Furthermore, the networks inthe ensemble are kept simple
and in a modular structure, and may be trained from examples with the use of standard
learning algorithms such asbackpropagation[11].

In Section 2, we present the basic concepts of intuitionistic reasoning used in the paper. In
Section 3, we motivate the proposed model using the wise men puzzle. In Section 4, we
introduce theIntuitionistic Modal Algorithm, which translates intuitionistic modal theories
into neural network ensembles, and prove that the ensemble computes a semantics of the
theory. Section 5 concludes the paper and discusses directions for future work.

2 Background

In this section, we present some basic concepts of artificialneural networks and intuition-
istic programs used throughout the paper. We concentrate onensembles of single hidden
layer feedforward networks, and on recurrent networks typically with feedback only from
the output to the input layer. Feedback is used with the sole purpose of denoting that the
output of a neuron should serve as the input of another neuronwhen we run the network,
i.e. the weight of any feedback connection is fixed at1. We usebipolar semi-linear acti-
vation functionsh(x) = 2

1+e−βx − 1 with inputs in{−1, 1}. Throughout, we will use1 to
denote truth-valuetrue, and−1 to denote truth-valuefalse.

Intuitionistic logic was originally developed by Brouwer,and later by Heyting and Kol-
mogorov [2]. In intuitionistic logics, a statement that there exists a proof of a proposition
x is only made if there is a constructive method of the proof ofx. One of the consequences
of Brouwer’s ideas is the rejection of the law of the excludedmiddle, namelyα∨¬α, since
one cannot always state that there is a proof ofα or of its negation, as accepted in classi-
cal logic and in (classical) mathematics. The development of these ideas and applications
in mathematics has led to developments inconstructivemathematics and has influenced



several lines of research on logic and computing science [2].

An intuitionistic modal languageL includes propositional letters (atoms)p, q, r..., the con-
nectives¬, ∧, an intuitionistic implication⇒, thenecessity(¤) andpossibility(♦) modal
operators, where an atom will be necessarily true in a possible world if it is true in every
world that is related to this possible world, while it will bepossibly true if it is true in some
world related to this world. Formally, we interpret the language as follows, where formulas
are denoted byα, β, γ...

Definition 1 (Kripke Models for Intuitionistic Modal Logic) Let L be an intuitionistic
language. Amodel for L is a tupleM = 〈Ω,R, v〉 whereΩ is a set of worlds,v is a
mapping that assigns to eachω ∈ Ω a subset of the atoms ofL, andR is a reflexive,
transitive, binary relation overΩ, such that: (a)(M, ω) |= p iff p ∈ v(ω) (for atomp);
(b) (M, ω) |= ¬α iff for all ω′ such thatR(ω, ω′), (M, ω′) 6² α; (c) (M, ω) |= α ∧ β iff
(M, ω) |= α and(M, ω) |= β; (d) (M, ω) |= α ⇒ β iff for all ω′ with R(ω, ω′) we have
(M, ω′) |= β whenever we have(M, ω′) |= α; (e) (M, ω) |= ¤α iff for all ω′ ∈ Ω if
R(ω, ω′) then(M, ω′) |= α; (f) (M, ω) |= ♦α iff there existsω′ ∈ Ω such thatR(ω, ω′)
and(M, ω′) |= α.

We now definelabelled intuitionistic programsas sets of intuitionistic rules, where each
rule is labelled by the world at which it holds, similarly to Gabbay’s Labelled Deductive
Systems [8].

Definition 2 (Labelled Intuitionistic Program) A Labelled Intuitionistic Program is a finite
set of rulesC of the formωi : A1, ..., An ⇒ A0 (where “,” abbreviates “∧”, as usual),
and a finite set of relationsR between worldsωi (1 ≤ i ≤ m) in C, whereAk (0 ≤ k ≤ n)
are atoms andωi is a label representing a world in which the associated rule holds.

To deal with intuitionistic negation, we adopt the approachof [10], as follows. We rename
any negative literal¬A as an atomA′ not present originally in the language. This form of
renaming allows our definition of labelled intuitionistic programs above to consider atoms
only. For example, givenA1, ..., A

′

k, ..., An ⇒ A0, whereA′

k is a renaming of¬Ak, an
interpretation that assigns true toA′

k represents that¬Ak is true; it does not represent that
Ak is false. Following Definition 1 (intuitionistic negation), A′ will be true in a worldωi if
and only ifA does not hold in every worldωj such thatR(ωi, ωj).
Finally, we extend labelled intuitionistic programs to include modalities.

Definition 3 (Labelled Intuitionistic Modal Program) A modal atomis of the formMA
whereM ∈ {¤,♦} andA is an atom. A Labelled Intuitionistic Modal Program is a finite
set of rulesC of the formωi : MA1, ...,MAn ⇒ MA0, whereMAk (0 ≤ k ≤ n) are
modal atoms andωi is a label representing a world in which the associated rule holds, and
a finite set of (accessibility) relationsR between worldsωi (1 ≤ i ≤ m) in C.

3 Motivating Scenario

In this section, we consider an archetypal testbed for distributed knowledge representation,
namely, thewise men puzzle[7], and model it intuitionistically in a neural network ensem-
ble. Our aim is to illustrate the combination of neural networks and intuitionistic modal
reasoning. The formalisation of our computational model will be given in Section 4.

A certain king wishes to test his three wise men. He arranges them in a circle so that they
can see and hear each other. They are all perceptive, truthful and intelligent, and this is
common knowledge in the group. It is also common knowledge among them that there are
three red hats and two white hats, and five hats in total. The king places a hat on the head



of each wise man in a way that they are not able to see the colourof their own hats, and
then asks each one whether they know the colour of the hats on their heads.

The puzzle illustrates a situation in which intuitionisticimplication and intuitionistic nega-
tion occur. Knowledge evolves in time, with the current knowledge persisting in time. For
example, at the first round it is known that there are at most two white hats on the wise
men’s heads. Then, if the wise men get to a second round, it becomes known that there is
at most one white hat on their heads.1 This new knowledge subsumes the previous knowl-
edge, which in turn persists. This means that ifA ⇒ B is true at a worldt1 thenA ⇒ B
will be true at a worldt2 that is related tot1 (intuitionistic implication). Now, in any sit-
uation in which a wise man knows that his hat is red, this knowledge - constructed with
the use of sound reasoning processes - cannot be refuted. In other words, in this puzzle, if
¬A is true at worldt1 thenA cannot be true at a worldt2 that is related tot1 (intuitionistic
negation).

We model the wise men puzzle by constructing the relative knowledge of each wise man
along time points. This allows us to explicitly represent the relativistic notion of knowl-
edge, which is a principle of intuitionistic reasoning. Forsimplicity, we refer to wise man
1 (respectively, 2 and 3) as agent 1 (respectively, 2 and 3). The resulting model is a two-
dimensional network ensemble (agents× time), containing three networks in each dimen-
sion. In addition topi - denoting the fact that wise mani wears a red hat - to model each
agent’s individual knowledge, we need to use a modalityKj , j ∈ {1, 2, 3}, which repre-
sents the relative notion of knowledge at each time pointt1, t2, t3. Thus,Kjpi denotes the
fact that agentj knows that agenti wears a red hat. TheK modality above corresponds to
the¤ modality in intuitionistic modal reasoning, as customary in the logics of knowledge
[7], and as exemplified below.

First, we model the fact that each agent knows the colour of the others’ hats. For example,
if wise man 3 wears a red hat (neuronp3 is active) then wise man 1 knows that wise man
3 wears a red hat (neuronKp3 is active for wise man 1). We then need to model the
reasoning process of each wise man. In this example, let us consider the case in which
neuronsp1 andp3 are active. For agent 1, we have the rulet1 : K1¬p2 ∧K1¬p3 ⇒ K1p1,
which states that agent 1 can deduce that he is wearing a red hat if he knows that the other
agents are both wearing white hats. Analogous rules exist for agents 2 and 3. As before,
the implication is intuitionistic, so that it persists att2 andt3 as depicted in Figure 1 for
wise man 1 (represented via hidden neuronh1 in each network). In addition, according to
the philosophy of intuitionistic negation, we may only conclude that agent 1 knows¬p2, if
in every world envisaged by agent 1,p2 is not derived. This is illustrated with the use of
dotted lines in Figure 1, in which, e.g., if neuronKp2 is not active att3 then neuronK¬p2

will be active att2. As a result, the network ensemble will never derivep2 (as one should
expect), and thus it will deriveK1¬p2 andK3¬p2.2

4 Connectionist Intuitionistic Modal Reasoning

The wise men puzzle example of Section 3 shows that simple, single-hidden layer neural
networks can be combined in a modular structure where each network represents a possible
world in the Kripke structure of Definition 1. The way that thenetworks should then be
inter-connected can be defined by following a semantics for⇒ and¬, and for¤ and♦ from
intuitionistic logic. In this section, we see how exactly weconstruct a network ensemble

1This is because if there were two white hats on their heads, one of them wouldhave known (and
have said), in the first round, that his hat was red, for he would have been seeing the other two with
white hats.

2To complete the formalisation of the problem, the following rules should also hold att2 (and at
t3): K1¬p2 ⇒ K1p1 andK1¬p3 ⇒ K1p1. Analogous rules exist for agents 2 and 3.
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Figure 1: Wise men puzzle: Intuitionistic negation and implication.

given an intuitionistic modal program. We introduce a translation algorithm, which takes
the program as input and produces the ensemble as output by setting the initial architecture,
set of weights, and thresholds of the networks according to aKripke semantics for the
program. We then prove that the translation is correct, and thus that the network ensemble
can be used to compute the logical consequences of the program in parallel.

Before we present the algorithm, let us illustrate informally how⇒, ¬, ¤, and♦ are repre-
sented in the ensemble. We follow the key idea behindConnectionist Modal Logics(CML)
to represent Kripke models in neural networks [6]. Each possible world is represented by
a single hidden layer neural network. In each network, inputand output neurons represent
atoms or modal atoms of the formA, ¬A, ¤A, or ♦A, while each hidden neuron encodes
a rule. For example, in Figure 1, hidden neuronh1 encodes a rule of the formA∧B ⇒ C.
Thresholds and weights must be such that the hidden layer computes a logicaland of the
input layer, while the output layer computes a logicalor of the hidden layer.3 Furthermore,
in each network, each output neuron is connected to its corresponding input neuron with a
weight fixed at1.0 (as depicted in Figure 1 forK¬p2 andK¬p3), so that chains of the form
A ⇒ B andB ⇒ C can be represented and computed. This basically characterises C-ILP
networks [3]. Now, in CML, we allow for an ensemble of C-ILP networks, each network
representing knowledge in a (learnable) possible world. Inaddition, we allow for a number
of fixed feedforward and feedback connections to occur amongdifferent networks in the
ensemble, as shown in Figure 1. These are defined as follows: in the case of¤, if neuron
¤A is activated (true) in network (world)ωi thenA must be activated in every network
ωj that is related toωi (this is analogous to the situation in which we activateK1p3 and
K2p3 wheneverp3 is active). Dually, ifA is active in everyωj then¤A must be activated

3For example, ifA ∧ B ⇒ D andC ⇒ D then a hidden neuronh1 is used to connectA andB
to D, and a hidden neuronh2 is used to connectC to D such that ifh1 or h2 is activated thenD is
activated.



in ωi (this is done with the use of feedback connections and a hidden neuron that computes
a logicaland, as detailed in the algorithm below). In the case of♦, if ♦A is activated in
networkωi thenA must be activated in at least one networkωj that is related toωi (we do
this by choosing an arbitraryωj to makeA active). Dually, ifA is activated in anyωj that is
related toωi then♦A must be activated inωi (this is done with the use of a hidden neuron
that computes a logicalor, also as detailed in the algorithm below). Now, in the case of⇒,
according to the semantics of intuitionistic implication,ωi : A ⇒ B andR(ωi, ωj) imply
ωj : A ⇒ B. We implement this by copying the neural representation ofA ⇒ B from
ωi to ωj , as done viah1 in Figure 1. Finally, in the case of¬, we need to make sure that
¬A is activated inωi if, for everyωj such thatR(ωi, ωj), A is not active inωj . This is im-
plemented with the use of negative weights (to account for the fact that the non-activation
of a neuron needs to activate another neuron), as depicted inFigure 1 (dashed arrows), and
detailed in the algorithm below.

We are now in a position to introduce theIntuitionistic Modal Algorithm. Let P =
{P1, ...,Pn} be a labelled intuitionistic modal program with rules of theform ωi :
MA1, ..., MAk → MA0, where eachAj (0 ≤ j ≤ k) is an atom andM ∈ {¤,♦},
1 ≤ i ≤ n. Let N = {N1, ...,Nn} be a neural network ensemble with each networkNi

corresponding to programPi. Let q denote the number of rules occurring inP. Consider
that the atoms ofPi are numbered from1 to ηi such that the input and output layers ofNi

are vectors of lengthηi, where the j-th neuron represents the j-th atom ofPi. In addition,
let Amin denote the minimum activation for a neuron to be consideredactive (or true),
Amin ∈ (0, 1); for each rulerl in each programPi, let kl denote the number of atoms in
the body of rulerl, and letµl denote the number of rules inPi with the same consequent
asrl (including rl). Let MAXrl

(kl, µl) denote the greater ofkl andµl for rule rl, and
let MAXP(k1, ..., kq, µ1, ..., µq) denote the greatest ofk1, ..., kq, µ1, ..., µq for program
P. Below, we usek as a shorthand fork1, ..., kq, andµ as a shorthand forµ1, ..., µq. The
equations in the algorithm come from the proof of Theorem 1, given in the sequel.

Intuitionistic Modal Algorithm

1. Rename each modal atomMAj by a new atom not occurring inP of the formA¤
j if M = ¤, or

A♦
j if M = ♦;

2. For each rulerl of the formA1, ..., Ak ⇒ A0 in Pi (1 ≤ i ≤ n) such thatR(ωi, ωj), do: add a
ruleA1, ..., Ak ⇒ A0 to Pj (1 ≤ j ≤ n).

3. CalculateAmin > (MAXP(k,µ, n) − 1)Á(MAXP(k,µ, n) + 1);

4. CalculateW ≥ (2Áβ)·(ln (1 + Amin)−ln (1 − Amin))Á(MAXP(k,µ)·(Amin − 1)+Amin+
1);

5. For each rulerl of the formA1, ..., Ak ⇒ A0 (k ≥ 0) in Pi (1 ≤ i ≤ n), do:

(a) Add a neuronNl to the hidden layer of neural networkNi associated withPi; (b) Connect each
neuronAi (1 ≤ i ≤ k) in the input layer ofNi to Nl and set the connection weight toW ; (c)
ConnectNl to neuronA0 in the output layer ofNi and set the connection weight toW ; (d) Set the
thresholdθl of Nl to θl = ((1 + Amin) · (kl − 1) Á2)W ; (e) Set the thresholdθA0

of A0 in the
output layer ofNi to θA0

= ((1 + Amin) · (1 − µl)Á2)W. (f) For each atom of the formA′ in rl,
do:

(i) Add a hidden neuronNA′ to Ni; (ii) Set the step functions(x) as the activation function of
NA′ ;4 (iii) Set the thresholdθA′ of NA′ such thatn − (1 + Amin) < θA′ < nAmin; (iv) For each

4Any hidden neuron created to encode negation (such ash4 in Figure 1) shall have a non-linear
activation functions(x) = y, wherey = 1 if x > 0, andy = 0 otherwise. Such neurons en-
code (meta-level) knowledge about negation, while the other hidden neurons encode (object-level)
knowledge about the problem domain. The former are not expected to be trained by examples and,
as a result, the use of the step function will simplify the algorithm. The latter areto be trained, and
therefore require a differentiable, semi-linear activation function.



networkNj corresponding to programPj (1 ≤ j ≤ n) in P such thatR(ωi, ωj), do: Connect the
output neuronA of Nj to the hidden neuronNA′ of Ni and set the connection weight to−1; and
Connect the hidden neuronNA′ of Ni to the output neuronA′ of Ni and set the connection weight
to W I such thatW I > h−1(Amin) +µA′ .W + θA′ .

6. For each output neuronA♦
j in networkNi, do:

(a) Add a hidden neuronAM
j and an output neuronAj to an arbitrary networkNz such that

R(ωi, ωz); (b) Set the step functions(x) as the activation function ofAM
j , and set the semi-linear

functionh(x) as the activation function ofAj ; (c) ConnectA♦
j in Ni to AM

j and set the connection
weight to1; (d) Set the thresholdθM of AM

j such that−1 < θM < Amin; (e) Set the thresholdθAj

of Aj in Nz such thatθAj = ((1 + Amin) · (1 − µAj )Á2)W ; (f) ConnectAM
j to Aj in Nz and set

the connection weight toW M > h−1(Amin) + µAj W + θAj .

7. For each output neuronA¤
j in networkNi, do:

(a) Add a hidden neuronAM
j to eachNu (1 ≤ u ≤ n) such thatR(ωi, ωu), and add an output

neuronAj to Nu if Aj /∈ Nu; (b) Set the step functions(x) as the activation function ofAM
j , and

set the semi-linear functionh(x) as the activation function ofAj ; (c) ConnectA¤
j in Ni to AM

j and
set the connection weight to1; (d) Set the thresholdθM of AM

j such that−1 < θM < Amin; (e) Set
the thresholdθAj of Aj in eachNu such thatθAj = ((1 + Amin) · (1 − µAj )Á2)W ; (f) Connect
AM

j to Aj in Nu and set the connection weight toW M > h−1(Amin) + µAj W + θAj .

8. For each output neuronAj in networkNu such thatR(ωi, ωu), do:
(a) Add a hidden neuronA∨

j to Ni; (b) Set the step functions(x) as the activation function ofA∨
j ;

(c) For each output neuronA♦
j in Ni, do:

(i) ConnectAj in Nu to A∨
j and set the connection weight to1; (ii) Set the thresholdθ∨ of A∨

j such
that−nAmin < θ∨ < Amin − (n−1); (iii) ConnectA∨

j to A♦
j in Ni and set the connection weight

to W M > h−1(Amin) + µAj W + θAj .

9. For each output neuronAj in networkNu such thatR(ωi, ωu), do:
(a) Add a hidden neuronA∧

j to Ni; (b) Set the step functions(x) as the activation function ofA∧
j ;

(c) For each output neuronA¤
j in Ni, do:

(i) ConnectAj in Nu to A∧
j and set the connection weight to1; (ii) Set the thresholdθ∧ of A∧

j such
thatn − (1 + Amin) < θ∧ < nAmin; (iii) ConnectA∧

j to A¤
j in Ni and set the connection weight

to W M > h−1(Amin) + µAj W + θAj .

Finally, we prove thatN is equivalent toP.

Theorem 1 (Correctness of Intuitionistic Modal Algorithm) For any intuitionistic modal
programP there exists an ensemble of neural networksN such thatN computes the intu-
itionistic modal semantics ofP.
Proof The algorithm to build each individual network in the ensemble is that of C-ILP,
which we know is provably correct [3]. The algorithm to include modalities is that of
CML, which is also provably correct [6]. We need to consider when modalities and intu-
itionistic negation are to be encoded together. Consider anoutput neuronA0 with neurons
M (encoding modalities) and neuronsn (encoding negation) among its predecessors in a
network’s hidden layer. There are four cases to consider. (i) Both neuronsM and neurons
n are not activated: since the activation function of neuronsM andn is the step function,
their activation iszero, and thus this case reduces to C-ILP. (ii) Only neuronsM are acti-
vated: from the algorithm above,A0 will also be activated (with minimum input potential
WM + ς, whereς ∈ R). (iii) Only neuronsn are activated: as before,A0 will also be
activated (now with minimum input potentialW I + ς). (iv) Both neuronsM and neurons
n are activated: the input potential ofA0 is at leastWM + W I + ς. SinceWM > 0 and
W I > 0, and since the activation function ofA0, h(x), is monotonically increasing,A0

will be activated whenever bothM andn neurons are activated. This completes the proof.



5 Concluding Remarks

In this paper, we have presented a new model of computation that integrates neural net-
works and constructive, intuitionistic modal reasoning. We have defined labelled intu-
itionistic modal programs, and have presented an algorithmto translate the intuitionistic
theories into ensembles of C-ILP neural networks, and showed that the ensembles com-
pute a semantics of the corresponding theories. As a result,each ensemble can be seen as a
new massively parallel model for the computation of intuitionistic modal logic. In addition,
since each network can be trained efficiently using, e.g., backpropagation, one can adapt the
network ensemble by training possible world representations from examples. Work along
these lines has been done in [4, 5], where learning experiments in possible worlds settings
were investigated. As future work, we shall consider learning experiments based on the
constructive model introduced in this paper. Extensions ofthis work also include the study
of how to represent other non-classical logics such as branching time temporal logics, and
conditional logics of normality, which are relevant for cognitive and neural computation.
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