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Abstract

We present a new connectionist model for constructive,itinhistic
modal reasoning. We use ensembles of neural networks tesemtrin-
tuitionistic modal theories, and show that for each intuiistic modal
program there exists a corresponding neural network ensehdt com-
putes the program. This provides a massively parallel mfmteihtu-
itionistic modal reasoning, and sets the scene for intedre¢asoning,
knowledge representation, and learning of intuitionigtaories in neural
networks, since the networks in the ensemble can be trayegamples
using standard neural learning algorithms.

1 Introduction

Automated reasoning and learning theory have been theauddjmtensive investigation

since the early developments in computer science [14]. Mewevhile (machine) learn-

ing has focused mainly on quantitative and connectionipt@gches [16], the reasoning
component of intelligent systems has been developed mhbinfprmalisms of classical

and non-classical logics [7, 9]. More recently, the rectigniof the need for systems that
integrate reasoning and learning into the same foundadimhthe evolution of the fields of
cognitive and neural computation, has led to a number ofqeals that attempt to integrate
reasoning and learning [1, 3, 12, 13, 15].

We claim that an effective integration of reasoning andriigey can be obtained by neural-
symbolic learning systems [3, 4]. Such systems concerngplécation of problem-specific
symbolic knowledge within the neurocomputing paradigmimggrating logic and neural



networks, they may providé)(a sound logical characterisation of a connectionist syste
(73) a connectionist (parallel) implementation of a logic, ©§)(a hybrid learning system
bringing together advantages from connectionism and slimi@asoning.

Intuitionistic logical systems have been advocated by memgroviding adequate logical
foundations for computation (see [2] for a survey). We argherefore, that intuitionism
could also play an important part in neural computation.his paper, we follow the re-
search path outlined in [4, 5], and develop a computatiormalehfor integrated reasoning,
representation, and learning of intuitionistic modal kiemlge. We concentrate on reason-
ing and knowledge representation issues, which set the $oeaonnectionist intuitionistic
learning, since effective knowledge representation shptgcede learning [15]. Still, we
base the representation on standard, simple neural neawchitectures, aiming at future
work on experimental learning within the model proposecther

A key contribution of this paper is the proposal to shift thaion of logical implication
(and negation) in neural networks from the standard notiamplication as a partial func-
tion from input to output (and of negation as failure to aatié&va neuron), to an intuitionistic
notion which we will see can be implemented in neural netwifwe make use of network
ensembles. We claim that the intuitionistic interpretafictroduced here will make sense
for a number of problems in neural computation in the sametivalyintuitionistic logic is
more appropriate than classical logic in a number of contjmutal settings. We will start
by illustrating the proposed computational model in an appate constructive reasoning,
distributed knowledge representation scenario, namedyywise men puzzIlg’]. Then, we
will show how ensembles ofonnectionist Inductive Learning and Logic Programming
(C-ILP) networks [3] can compute intuitionistic modal krledge. The networks are set
up by anintuitionistic Modal Algorithmintroduced in this paper. A proof that the algorithm
produces a neural network ensemble that computes a semafitie associated intuitionis-
tic modal theory is then given. Furthermore, the networkh@éensemble are kept simple
and in a modular structure, and may be trained from exampitsthe use of standard
learning algorithms such dmckpropagatioj11].

In Section 2, we present the basic concepts of intuitianistasoning used in the paper. In
Section 3, we motivate the proposed model using the wise men@ In Section 4, we
introduce thdntuitionistic Modal Algorithm which translates intuitionistic modal theories
into neural network ensembles, and prove that the ensernbiputes a semantics of the
theory. Section 5 concludes the paper and discusses dimedtr future work.

2 Background

In this section, we present some basic concepts of artifigiatal networks and intuition-
istic programs used throughout the paper. We concentraemsembles of single hidden
layer feedforward networks, and on recurrent networkscify with feedback only from
the output to the input layer. Feedback is used with the satpgse of denoting that the
output of a neuron should serve as the input of another neuhem we run the network,
i.e. the weight of any feedback connection is fixed .aWWe usebipolar semi-linear acti-
vation functionsh(z) = ﬁ — 1 with inputs in{—1, 1}. Throughout, we will usé to
denote truth-valuerue, and—1 to denote truth-valugalse.

Intuitionistic logic was originally developed by Brouwemd later by Heyting and Kol-
mogorov [2]. In intuitionistic logics, a statement thatthexists a proof of a proposition
x is only made if there is a constructive method of the proaf.obne of the consequences
of Brouwer's ideas is the rejection of the law of the exclud&addle, namelyx vV —«, since
one cannot always state that there is a proaf @fr of its negation, as accepted in classi-
cal logic and in (classical) mathematics. The developmétitese ideas and applications
in mathematics has led to developmentamstructivemathematics and has influenced



several lines of research on logic and computing science [2]

An intuitionistic modal languagé€ includes propositional letters (atoms), ..., the con-
nectives—, A, an intuitionistic implication=-, thenecessityJ) andpossibility (<) modal
operators, where an atom will be necessarily true in a plesgibrld if it is true in every
world that is related to this possible world, while it will pessibly true if it is true in some
world related to this world. Formally, we interpret the laage as follows, where formulas
are denoted by, 3, ...

Definition 1 (Kripke Models for Intuitionistic Modal Logif Let £ be an intuitionistic
language. Amodelfor £ is a tuple M = (2, R,v) where( is a set of worldsy is a
mapping that assigns to each € Q a subset of the atoms df, and R is a reflexive,
transitive, binary relation ovef?, such that: (a)(M,w) = piff p € v(w) (for atomp);

(b) (M, w) | —a iff for all ' such thatR(w,w’), (M,w') # a; (€) (M,w) = a A Giff

(M,w) Eaand(M,w) E G; (d) (M,w) E a = giff for all " with R(w,w’) we have
(M,w") = B whenever we haveM,w’) = «; (€) (M,w) = Oa iff for all ' € Qif

R(w,w') then(M,w’) E a; () (M,w) = Oa iff there existsy’” € Q such thatR (w,w’)

and(M,w') = a.

We now defindabelled intuitionistic programss sets of intuitionistic rules, where each
rule is labelled by the world at which it holds, similarly teaBbay’s Labelled Deductive
Systems [8].

Definition 2 (Labelled Intuitionistic PrograjmA Labelled Intuitionistic Program is a finite
set of rulesC of the formw; : A4, ..., A,, = Ao (where “” abbreviates “A”, as usual),
and a finite set of relation® between worlds); (1 < i < m)in C, whered; (0 < k < n)
are atoms and; is a label representing a world in which the associated rudédb.

To deal with intuitionistic negation, we adopt the approatfi0], as follows. We rename
any negative literab A as an atom!’ not present originally in the language. This form of
renaming allows our definition of labelled intuitionistioggrams above to consider atoms
only. For example, givetdy, ..., 4, ..., A, = Ao, whereA] is a renaming of-A4;, an
interpretation that assigns true &), represents that Ay, is true; it does not represent that
Ay, is false. Following Definition 1 (intuitionistic negatign}’ will be true in a worldw; if
and only if A does not hold in every worlg; such thatR (w;, w;).

Finally, we extend labelled intuitionistic programs tolumbe modalities.

Definition 3 (Labelled Intuitionistic Modal ProgramA modal atomis of the formM A
whereM € {0, 0} and A is an atom. A Labelled Intuitionistic Modal Program is a fnit
set of rulesC' of the formw; : M Ay,..., MA,, = MAy, whereM A, (0 < k < n) are
modal atoms and; is a label representing a world in which the associated rudé&ls, and
a finite set of (accessibility) relatiorf® between worldsy; (1 <i <m)inC.

3 Motivating Scenario

In this section, we consider an archetypal testbed foridiged knowledge representation,
namely, thewvise men puzzlg’], and model it intuitionistically in a neural network eams-
ble. Our aim is to illustrate the combination of neural natkgoand intuitionistic modal
reasoning. The formalisation of our computational moddlllvé given in Section 4.

A certain king wishes to test his three wise men. He arrarigemtin a circle so that they
can see and hear each other. They are all perceptive, trugfd intelligent, and this is

common knowledge in the group. It is also common knowledgmaithem that there are
three red hats and two white hats, and five hats in total. Thg glaces a hat on the head



of each wise man in a way that they are not able to see the colbtlieir own hats, and
then asks each one whether they know the colour of the hatearheads.

The puzzle illustrates a situation in which intuitionigtigplication and intuitionistic nega-
tion occur. Knowledge evolves in time, with the current kiexdlge persisting in time. For
example, at the first round it is known that there are at mostwiite hats on the wise
men’s heads. Then, if the wise men get to a second round, dnfees known that there is
at most one white hat on their hedd$his new knowledge subsumes the previous knowl-
edge, which in turn persists. This means thad i B is true at a world; thenA = B
will be true at a world; that is related ta; (intuitionistic implication). Now, in any sit-
uation in which a wise man knows that his hat is red, this kedge - constructed with
the use of sound reasoning processes - cannot be refutetheinveords, in this puzzle, if
—A is true at worldt; then A cannot be true at a world that is related te; (intuitionistic
negation).

We model the wise men puzzle by constructing the relativerkege of each wise man
along time points. This allows us to explicitly represers tklativistic notion of knowl-
edge, which is a principle of intuitionistic reasoning. Banplicity, we refer to wise man
1 (respectively, 2 and 3) as agent 1 (respectively, 2 and B§. résulting model is a two-
dimensional network ensemble (agertsime), containing three networks in each dimen-
sion. In addition tg; - denoting the fact that wise marwears a red hat - to model each
agent’s individual knowledge, we need to use a moddiity j € {1, 2, 3}, which repre-
sents the relative notion of knowledge at each time pQint, t;3. Thus,K ;p; denotes the
fact that agenj knows that agentwears a red hat. ThE modality above corresponds to
the [ modality in intuitionistic modal reasoning, as customaryhe logics of knowledge
[7], and as exemplified below.

First, we model the fact that each agent knows the colourebthers’ hats. For example,
if wise man 3 wears a red hat (neurppis active) then wise man 1 knows that wise man
3 wears a red hat (neuralips is active for wise man 1). We then need to model the
reasoning process of each wise man. In this example, let nsidsy the case in which
neurong, andps are active. For agent 1, we have the ryle K1 —ps A K1—p3 = Kip1,
which states that agent 1 can deduce that he is wearing a réchkanows that the other
agents are both wearing white hats. Analogous rules exisgigents 2 and 3. As before,
the implication is intuitionistic, so that it persistsfatand¢; as depicted in Figure 1 for
wise man 1 (represented via hidden neulgrnn each network). In addition, according to
the philosophy of intuitionistic negation, we may only chuue that agent 1 knowsps, if

in every world envisaged by agent, is not derived. This is illustrated with the use of
dotted lines in Figure 1, in which, e.g., if neuréfp, is not active at3 then neuron —p,

will be active att,. As a result, the network ensemble will never degiyeas one should
expect), and thus it will derivé’; =p, and K3 —po.2

4 Connectionist Intuitionistic Modal Reasoning

The wise men puzzle example of Section 3 shows that simpigleshidden layer neural
networks can be combined in a modular structure where edslorierepresents a possible
world in the Kripke structure of Definition 1. The way that thetworks should then be
inter-connected can be defined by following a semanticssfand-, and forCl and¢ from
intuitionistic logic. In this section, we see how exactly e@nstruct a network ensemble

1This is because if there were two white hats on their heads, one of them haddknown (and
have said), in the first round, that his hat was red, for he would haege beeing the other two with
white hats.

2To complete the formalisation of the problem, the following rules should aj&bat¢, (and at
t3): K1—p2 = Kip1 andK;—p3 = Kip:. Analogous rules exist for agents 2 and 3.
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Figure 1: Wise men puzzle: Intuitionistic negation and iicgion.

given an intuitionistic modal program. We introduce a tfatisn algorithm, which takes
the program as input and produces the ensemble as outpuiting $ke initial architecture,
set of weights, and thresholds of the networks according koigke semantics for the
program. We then prove that the translation is correct, hod that the network ensemble
can be used to compute the logical consequences of the pragraarallel.

Before we present the algorithm, let us illustrate infodgnabw =, —, [, and¢) are repre-
sented in the ensemble. We follow the key idea bekindnectionist Modal Logic&CML)

to represent Kripke models in neural networks [6]. Each ibtessvorld is represented by
a single hidden layer neural network. In each network, irgmat output neurons represent
atoms or modal atoms of the forrh, — A, [JA, or O A, while each hidden neuron encodes
arule. For example, in Figure 1, hidden neutqrencodes a rule of the forkd A B = C.
Thresholds and weights must be such that the hidden layepuies a logicahnd of the
input layer, while the output layer computes a logimabf the hidden layet. Furthermore,

in each network, each output neuron is connected to its gporaling input neuron with a
weight fixed afl.0 (as depicted in Figure 1 fdk —p, and K —ps), so that chains of the form
A = BandB = C can be represented and computed. This basically charstetHILP
networks [3]. Now, in CML, we allow for an ensemble of C-ILPtwerks, each network
representing knowledge in a (learnable) possible worléditition, we allow for a number
of fixed feedforward and feedback connections to occur antiiferent networks in the
ensemble, as shown in Figure 1. These are defined as follaviise icase of], if neuron
A is activated {rue) in network (world)w; then A must be activated in every network
w; that is related tav; (this is analogous to the situation in which we activaigps and
K>ps whenevemps is active). Dually, ifA is active in everyw; thenJA must be activated

3For example, ifA A B = D andC = D then a hidden neurohy, is used to connecd and B
to D, and a hidden neurol, is used to connec?' to D such that ifh, or he is activated therD is
activated.



in w; (this is done with the use of feedback connections and a hiddaron that computes
a logicaland, as detailed in the algorithm below). In the case)off ¢ A is activated in
networkw; thenA must be activated in at least one networkthat is related taw; (we do
this by choosing an arbitraty; to makeA active). Dually, ifA is activated in any; that is
related tow; then{ A must be activated iw; (this is done with the use of a hidden neuron
that computes a logicalr, also as detailed in the algorithm below). Now, in the case-of
according to the semantics of intuitionistic implication,: A = B andR(w;,w;) imply
w; + A = B. We implement this by copying the neural representatiod & B from
w; to wj, as done viak; in Figure 1. Finally, in the case of, we need to make sure that
—A is activated iny; if, for everyw; such thatR (w;, w;), A is not active inv;. This is im-
plemented with the use of negative weights (to account ferfalt that the non-activation
of a neuron needs to activate another neuron), as depictgdure 1 (dashed arrows), and
detailed in the algorithm below.

We are now in a position to introduce thetuitionistic Modal Algorithm Let P =
{P1,...,P,} be a labelled intuitionistic modal program with rules of tfeem w;
MA,, ..., MA, — MA,, where eachd; (0 < j < k) is an atom andV/ € {{J,{},

1 <i<n LetN = {N,...,N,} be aneural network ensemble with each netwitk
corresponding to program;. Let g denote the number of rules occurringZn Consider
that the atoms oP; are numbered fror to n; such that the input and output layers/df
are vectors of length;, where the j-th neuron represents the j-th atorfPpfin addition,
let A,,;, denote the minimum activation for a neuron to be considexive (or true),
Apin € (0,1); for each ruler; in each progran®;, let k; denote the number of atoms in
the body of ruler;, and lety; denote the number of rules #; with the same consequent
asr; (includingr;). Let M AX,, (k;, ) denote the greater df, andy, for rule r;, and
let MAXp(k, ..., kg, i1, ..., fiq) denote the greatest @i, ..., kq, p1, ..., ug fOr program
P. Below, we useék as a shorthand fok, ..., k,, andu as a shorthand fqu,, ..., pq. The
equations in the algorithm come from the proof of Theoremiviergin the sequel.

Intuitionistic Modal Algorithm

1. Rename each modal atoli A; by a new atom not occurring iR of the formA‘];' if M =0, or
AS it M = ¢;
> ;

2. For each rule; of the form A, ..., Ay = Ao in P; (1 < ¢ < n) such thatR (w;,w;), do: add a
I'U|eAl7 ,Ak = Ao to P7 (1 S j S n).

3. Calculatednin > (MAXp(k,pu,n) — 1)/ (MAXp(k,pu,n) + 1);

4. CalCUlateVV 2 (2/6)(111 (1 + Amin)_ln (1 - Amin))/(MAXP (ky,u)'(Alnin - 1)+Amin+
1);

5. For each rule; of the form A, ..., A, = Ao (k> 0)inP; (1 <1i < n),do:

(a) Add a neuronV; to the hidden layer of neural netwoi; associated withP;; (b) Connect each
neuronA; (1 < i < k) in the input layer of\; to N; and set the connection weight t’; (c)
ConnectN; to neuronAy in the output layer of\; and set the connection weight ¥; (d) Set the
thresholdd; of N; to 6, = ((1 4+ Amin) - (k1 — 1) /2)W; (e) Set the threshold,, of Ao in the
output layer ofN; t0 04, = ((1 + Amin) - (1 — ), 2)W. (f) For each atom of the forml’ in 7,
do:

(i) Add a hidden neuronV4: to Aj;; (i) Set the step functios(x) as the activation function of
N 403 (iii) Set the threshold 4/ of N 4/ such thaty — (1 + Amin) < 04r < NAmin; (V) For each

“Any hidden neuron created to encode negation (sudh, as Figure 1) shall have a non-linear
activation functions(z) = y, wherey = 1if z > 0, andy = 0 otherwise. Such neurons en-
code (meta-level) knowledge about negation, while the other hiddemmeencode (object-level)
knowledge about the problem domain. The former are not expectesl traibed by examples and,
as a result, the use of the step function will simplify the algorithm. The lattetodpe trained, and
therefore require a differentiable, semi-linear activation function.



network \; corresponding to program; (1 < j < n) in P such thatR (w;,w;), do: Connect the
output neuronA of N; to the hidden neuroV 4, of N; and set the connection weight tel; and
Connect the hidden neura¥i,, of N; to the output neuroml’ of A; and set the connection weight
to W' such that?? > b= (Anmin) +ppar. W + 4.

6. For each output neuroAj.> in network \V;, do:

(@) Add a hidden neuromj-” and an output neuronl; to an arbitrary network\, such that
R(ws,w:); (b) Set the step functios(z) as the activation function aft}’, and set the semi-linear
functionh(x) as the activation function od;; (c) ConnectA? in \V; to A}" and set the connection
weight to1; (d) Set the threshold of A} such that-1 < 6™ < A,.in; (e) Set the thresholla
of A; in N suchthatia, = ((1+ Amin) - (1 — pa,)/2)W; (f) Connectd}’ to 4; in V. and set
the connection weight to* > h™" (Amin) 4 pa, W + 6.4, .

7. For each output neurad’’ in network\;, do:

(a) Add a hidden neuror}’ to eachV,, (1 < u < n) such thatR (w;,w.), and add an output
neuronA; to N, if A; ¢ N,; (b) Set the step functios(z) as the activation function of?, and
set the semi-linear functiol(z) as the activation function od;; (c) Connect‘AJD in \V; to A} and
set the connection weight tig (d) Set the thresholé of A} such that-1 < 6™ < A,.in; (€) Set
the threshold 4, of A; in eachV, such thaBa, = ((1 + Amin) - (1 — pa,)2)W; (f) Connect
A} to 4; in NV, and set the connection weight¥6 " > k™" (Amin) + pa, W + 04;.

8. For each output neurad; in network \V,, such thatR (w;, w.,), do:
(a) Add a hidden neurort} to AV;; (b) Set the step functios(z) as the activation function of}’;

(c) For each output neuromj.> in \V;, do:

(i) Connect4; in \V,, to A} and set the connection weightp(ii) Set the threshold@” of A} such
that—nAmin < 0¥ < Apmin — (n— 1); (i) ConnectA} to Af in V; and set the connection weight
to W™ > b7 (Amin) + pa, W + 04, .

9. For each output neurad; in network A, such thatR (w;, w.,), do:
(a) Add a hidden neuror} to AV;; (b) Set the step functios(z) as the activation function of};

(c) For each output neuer]D in \V;, do:

(i) ConnectA4; in \V,, to A} and set the connection weightIp(ii) Set the threshold” of A} such
thatn — (1 + Amin) < 0" < nApin; (i) ConnectAJA to AjD in \V; and set the connection weight
to W™ > b7 (Amin) + pa, W + 04, .

Finally, we prove thatV is equivalent tdP.

Theorem 1 (Correctness of Intuitionistic Modal Algorithntor any intuitionistic modal
program”P there exists an ensemble of neural netwokksuch that\ computes the intu-
itionistic modal semantics ¢?.

Proof The algorithm to build each individual network in the ens&nib that of C-ILP,
which we know is provably correct [3]. The algorithm to indu modalities is that of
CML, which is also provably correct [6]. We need to considérew modalities and intu-
itionistic negation are to be encoded together. Consideoatput neurond, with neurons

M (encoding modalities) and neurons(encoding negation) among its predecessors in a
network’s hidden layer. There are four cases to considgB¢th neurons\/ and neurons

n are not activated: since the activation function of neurdisandn is the step function,
their activation iszero, and thus this case reduces to C-ILR) Only neurons\/ are acti-
vated: from the algorithm abovel, will also be activated (with minimum input potential
WM + ¢, wheres € R). (i4i) Only neurons: are activated: as befored, will also be
activated (now with minimum input potential? + ¢). (iv) Both neurons\/ and neurons

n are activated: the input potential of, is at leastiV™ + W' + ¢. SinceW™ > (0 and
W1 > 0, and since the activation function dfy, (), is monotonically increasing4

will be activated whenever botl andn neurons are activated. This completes the proof.



5 Concluding Remarks

In this paper, we have presented a new model of computatatnintegrates neural net-
works and constructive, intuitionistic modal reasoning.e Wave defined labelled intu-
itionistic modal programs, and have presented an algortthimanslate the intuitionistic
theories into ensembles of C-ILP neural networks, and stdwat the ensembles com-
pute a semantics of the corresponding theories. As a resulh ensemble can be seen as a
new massively parallel model for the computation of intritstic modal logic. In addition,
since each network can be trained efficiently using, e.gkfr@pagation, one can adapt the
network ensemble by training possible world represematicom examples. Work along
these lines has been done in [4, 5], where learning expetiniepossible worlds settings
were investigated. As future work, we shall consider leagréxperiments based on the
constructive model introduced in this paper. Extensiorthisfwork also include the study
of how to represent other non-classical logics such as biagdime temporal logics, and
conditional logics of normality, which are relevant for cdtiye and neural computation.

Acknowledgments
Artur Garcez is partly supported by the Nuffield Foundation and The Regeiety. Luis Lamb is

partly supported by the Brazilian Research Council CNPq and by the SA#pH FAPERGS foun-
dations.

References
[1] A.Browne and R. Sun. Connectionist inference modilsural Networks14(10):1331-1355,
2001.

[2] D. Van Dalen. Intuitionistic logic. In D. M. Gabbay and F. Guenthnelit@s, Handbook of
Philosophical Logi¢cvolume 5. Kluwer, 2nd edition, 2002.

[3] A.S. d’Avila Garcez, K. Broda, and D. M. Gabbayeural-Symbolic Learning Systems: Foun-
dations and ApplicationsPerspectives in Neural Computing. Springer-Verlag, 2002.

[4] A.S. dAvila Garcez and L. C. Lamb. Reasoning about time and#edge in neural-symbolic
learning systems. IAdvances in Neural Information Processing SystemsPt6ceedings of
NIPS 2003, pages 921-928, Vancouver, Canada, 2004. MIE.Pres

[5] A.S.dAvila Garcez, L. C. Lamb, K. Broda, and D. M. Gabbaypplying connectionist modal
logics to distributed knowledge representation problermernational Journal on Atrtificial
Intelligence Tools13(1):115-139, 2004.

[6] A.S. d’Avila Garcez, L. C. Lamb, and D. M. Gabbay. Connectibniedal logics.Theoretical
Computer Science~orthcoming.

[7] R. Fagin, J. Halpern, Y. Moses, and M. Var@easoning about KnowledgMIT Press, 1995.
[8] D. M. Gabbay.Labelled Deductive SystemSlarendom Press, Oxford, 1996.

[9] D. M. Gabbay, C. Hogger, and J. A. Robinson, editdiandbook of Logic in Artificial Intelli-
gence and Logic Programmingolume 1-5, Oxford, 1994-1999. Clarendom Press.

[10] M. Gelfond and V. Lifschitz. Classical negation in logic programd disjunctive databases.
New Generation Computing:365-385, 1991.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning repnest@ons by back-
propagating errordNature 323:533-536, 1986.

[12] L. Shastri. Advances in SHRUTI: a neurally motivated model ddtienal knowledge rep-
resentation and rapid inference using temporal synchraxpgplied Intelligence 11:79-108,
1999.

[13] G. G. Towell and J. W. Shavlik. Knowledge-based artificial nenetworks. Artificial Intelli-
gence 70(1):119-165, 1994.

[14] A. M. Turing. Computer machinery and intelligenddind, 59:433-460, 1950.
[15] L. G. Valiant. Robust logicsArtificial Intelligence 117:231-253, 2000.
[16] V. Vapnik. The nature of statistical learning theargpringer-Verlag, 1995.



