
Reasoning about Requirements Evolution using

Clustered Belief Revision

O. Rodrigues1, A. d’Avila Garcez2, and A. Russo3

1 Dept of Computer Science, King’s College London, UK odinaldo@dcs.kcl.ac.uk
2 Department of Computing, City University London, UK, aag@soi.city.ac.uk
3 Department of Computing, Imperial College London, UK, ar3@doc.ic.ac.uk

Abstract. During the development of system requirements, software
system specifications are often inconsistent. Inconsistencies may arise
for different reasons, for example, when multiple conflicting viewpoints
are embodied in the specification, or when the specification itself is at
a transient stage of evolution. We argue that a formal framework for
the analysis of evolving specifications should be able to tolerate incon-
sistency by allowing reasoning in the presence of inconsistency without
trivialisation, and circumvent inconsistency by enabling impact analyses
of potential changes to be carried out. This paper shows how clustered
belief revision can help in this process.

1 Introduction

Conflicting viewpoints inevitably arise in the process of requirements analysis.
Conflict resolution, however, may not necessarily happen until later in the de-
velopment process. This highlights the need for requirements engineering tools
that support the management of inconsistencies [12, 17].

Many formal methods of analysis and elicitation rely on classical logic as
the underlying formalism. Model checking, for example, typically uses temporal
operators on top of classical logic reasoning [10]. This facilitates the use of well-
behaved and established proof procedures. On the other hand, it is well known
that classical logic theories trivialise in the presence of inconsistency and this is
clearly undesirable in the context of requirements engineering, where inconsis-
tency often arises [6].

Paraconsistent logics [3] attempt to ameliorate the problem of theory trivial-
isation by weakening some of the axioms of classical logic, often at the expense
of reasoning power. While appropriate for concise modelling, logics of this kind
are too weak to support practical reasoning and the analysis of inconsistent
specifications.

Clustered belief revision [15] takes a different view and uses theory priori-
tisation to obtain plausible (i.e., non trivial) conclusions from an inconsistent
theory, yet exploiting the full power of classical logic reasoning. This allows the
requirements engineer to analyse the results of different possible prioritisations
by reasoning classically, and to evolve specifications that contain conflicting view-
points in a principled way. The analysis of user-driven cluster prioritisations can



2

also give stakeholders a better understanding of the impact of certain changes
in the specification.

In this paper, we investigate how clustered belief revision can support re-
quirements analysis and evolution. In particular, we have developed a tool for
clustered revision that translates requirements given in the form of “if then else”
rules into the (more efficient) disjunctive normal form (DNF) for classical logic
reasoning and cluster prioritisation. We have then used a simplified version of
the light control case study [9] to provide a sample validation of the clustered
revision framework in requirements engineering.

The rest of the paper is organised as follows. In Section 2, we present the
clustered revision framework. In Section 3, we apply the framework to the sim-
plified light control case study and discuss the results. In Section 4, we discuss
related work and, in Section 5, we conclude and discuss directions for future
work.

2 Clustered Belief Revision

Clustered belief revision [15] is based on the main principles of the well estab-
lished field of belief revision [1, 7], but has one important feature not present
in the original work: the ability to group sentences with a similar role into a
cluster. As in other approaches [11, 8], extra-logical information is used to help
in the process of conflict resolution. Within the context of requirements evolu-
tion, such extra-logical information is a (partial) ordering relation on sentences,
expressing the relative level of preference of the engineer on the requirements
being formalised. In other words, less preferred requirements are the ones the
engineer is prepared to give up first (as necessary) during the process of conflict
resolution.

The formalism uses sentences in DNF in order to make the deduction and
resolution mechanisms more efficient. The resolution extends classical deduction
by using the extra-logical information to decide how to solve the conflicts. A clus-
ter can be resolved and simplified into a single sentence in DNF. Clusters can
be embedded in other clusters and priorities between clusters can be specified in
the same way as priorities can be specified within a single cluster. The embed-
ding allows for the representation of complex structures which can be useful in
the specification of requirements in software engineering. The behaviour of the
selection procedure in the deduction mechanism – that makes the choices in the
resolution of conflicts – can be tailored according to the ordering of individual
clusters and the intended local interpretation of that ordering.

Our approach has the following main characteristics: i) it allows users to
specify clusters of sentences associated with some (possibly incomplete) priority
information; ii) it resolves conflicts within a cluster by taking into account the
priorities specified by the user and provides a consistent conclusion whenever
possible; iii) it allows clusters to be embedded in other clusters so that complex
priority structures can be specified; and finally iv) it combines the reasoning
about the priorities with the deduction mechanism itself in an intuitive way.

In the resolution of a cluster, the main idea is to specify a deduction mecha-
nism that reasons with the priorities and computes a conclusion based on these



3

priorities. The priorities themselves are used only when conflicts arise, in which
case sentences associated with higher priorities are preferred to those with lower
priorities. The prioritisation principle (PP) used here is that “a sentence with
priority x cannot block the acceptance of another sentence with priority higher
than x”. In the original AGM theory of belief revision, the prioritisation principle
exists implicitly but is only applied to the new information to be incorporated.

We also adopt the principle of minimal change (PMC) although to a limited
extent. In the original AGM theory PMC requires that old beliefs should not
be given up unless this is strictly necessary in order to repair the inconsistency
caused by the new belief. In our approach, we extend this idea to cope with
several levels of priority by stating that “information should not be lost unless
it causes inconsistency with information conveyed by sentences with higher pri-
ority” (PMC≤). As a result, when a cluster is provided without any relative
priority between its sentences, the mechanism behaves in the usual way and
computes a sentence whose models are logically equivalent to the models of the
(union of) the maximal consistent subsets of the cluster. On the other extreme,
if the sentences in the cluster are linearly prioritised, the mechanism behaves in
a way similar to Nebel’s linear prioritised belief bases [11].

Unfortunately, we do not have enough space to present the full formalism of
clustered belief revision and its properties here. Further details can be found in
[15]. The main idea is to associate labels of set J to propositional formulae via
a function f and define a partial order ≤ on J according to the priorities one
wants to express. ≤ is then extended to the power set of J in the following way.4

Definition 1. Let B = 〈J ,≤, f〉 be a cluster of sentences and X, Y ∈ 2J . X �
Y iff either i) Y = ∅; or ii) ∃x ∈ X, ∃y ∈ Y , s.t. x ≤ y and X −{x} � Y −{y};
or iii) ∃x ∈ X, ∃Y ′ ⊆ Y , s.t. Y ′ 	= ∅ and ∀y ∈ Y ′.x < y and X −{x} � Y −Y ′.

The ordering above is intended to extend the user’s original preference rela-
tion ≤ on the set of requirements to the power set of these requirements. This
allows one to compare how subsets of the original requirements relate to each
other with respect to the preferences stated by the user on the individual re-
quirements. Other extensions of ≤ to J could be devised according to the needs
of specific applications.

A separate mechanism selects some sets in 2J according to some criteria. For
our purposes here, this mechanism calculates the sets in 2J that are associated
with consistent combination of sentences.5 In order to choose the best consistent
sets (according to ≤), we use the ordering �, i.e., we take the minimal elements
in 2J that are consistent. Since � forms a lattice on 2J , where J is always
the minimum, if the labelled belief base is consistent, the choice of the best

4 In the full formalism, the function f can map an element x of J to another cluster as
well, creating nested revision levels, i.e., when the object mapped to x by f , namely
f(x), is not a sentence, f(x) is recursively resolved first.

5 As suggested about the extension of ≤, this selection procedure can be tailored to
fit other requirements. One may want for instance to select amongst the subsets of
J those that satisfy a given requirement.



4

consistent sets will give just J itself. Otherwise, this choice will identify some
subsets of J according to ≤. The search for consistent combinations of sentences
and minimal elements of � can be combined and optimised (see [14]).
Example 1. Consider the cluster C defined by the set J = {x, w, y, z}; the partial
order ≤ on J given in the middle of Figure 1, where an arrow from a to b indicates
priority of a over b; and the following function f : f(x) = p ∧ q, f(w) = ¬p ∨ r,
f(y) = ¬r ∨ ¬s and f(z) = ¬q ∨ s.

The sentences above taken conjunctively are inconsistent, so we look for
consistent subsets of the base. It can be shown that the maximal consistent
subsets of {p∧ q,¬p∨ r,¬r ∨¬s,¬q ∨ s} will be those associated with the labels
in the sets {x, w, y}, {x, y, z}, {x, w, z} and {w, y, z}. According to the ordering
�, amongst these {x, w, y} and {x, y, z} are the ones which best verify PMC≤.
The sets {w, y, z} and {x, w, z} do not verify PP. In fact, {w, y, z} has lower
priority even than {x} since it does not contain the label x associated with the
most important sentence in J . {x, w, z} on the other hand is strictly worse than
{x, w, y}, since the latter contains y which is strictly better than z according
to ≤. The resolution of C would produce a result which accepts the sentences
associated with x and y and includes the consequences of the disjunction of the
sentences associated with w and z. This signals that whereas it is possible to
consistently accept the sentences associated with x and y, it is not possible to
consistently include both the sentences associated with w and z. Not enough
information is given in ≤ in order to make a choice between w and z and hence
their disjunction is taken instead.

≤

z

y
�

x�

�

∅

{z}
�

{y}
�

{y, z}
�

{x}
�

{x, z}
�

{x, y}
�

{x, y, z}
�

≤

z

w y
�

��� ���
x

{w} {z}

{y}

{y, z}{w, y}

{w, z}

�

∅

{w, y, z}

{x}

{x, z}

{x, y}

{x, w}

{x, w, z}

{x, y, z}{x, w, y}

{x, w, y, z}

≤

y z

��� ��	
x

�

∅

��	 ���
{y} {z}

��� ��	
{y, z}

{x}
�

��	 ���
{x, y} {x, z}

��� ��	
{x, y, z}

Fig. 1. Examples of orderings ≤ and the corresponding final ordering �.

3 The Light Control Example

In what follows, we adapt and simplify the Light Control Case Study (LCS)
[13] in order to illustrate the relevant aspects of our revision approach. LCS



5

describes the behaviour of light settings in an office building. We consider two
possible light scenes: the default light scene and the chosen light scene. Office
lights are set to the default level upon entry of a user, who can then override
this setting to a chosen light scene.

If an office is left unoccupied for more than t1 minutes, the system turns the
office’s lights off. When an unoccupied office is reoccupied within t2 minutes, the
light scene is re-established according to its immediately previous setting. The
value of t1 is set by the facilities’ manager whereas the value of t2 is set by the
office user [9]. For simplicity, our analysis does not take into account how these
two times relate.

A dictionary of the symbols used in the LCS case study is given in Table 1.
As usual, unprimed literals denote properties of a given state of the system, and
primed literals denote properties of the state immediately after (e.g., occ denotes
that the office is occupied at time t and occ′ that the office is occupied at time
t + 1).

prop. meaning prop. meaning

occ the office is occupied ui a user enters an unoccupied office
uo a user leaves an office unoccupied e ti ti minutes have elapsed
t unocc unoccupied office for t < t2 mins unocc unoccupied office for t ≥ t1 mins
us lig office lights as set by the user df lig office lights in default setting
alm the alarm is activated dark office lights are off

glux1 day light level is greater or equal to the light level required by the chosen
or default light scene (lux1)

glux2 day light level is greater or equal to the maximum luminosity achievable
by the office lights (lux2)

Table 1. Dictionary of symbols used in the specification.

A partial specification of the LCS is given below:

Behaviour rules
r1 : ui → occ′

r2 : occ ∧ uo ∧ ¬e t2 → t unocc′

r3 : t unocc ∧ e t1 → unocc′

r4 : t unocc ∧ ui → occ′

r5 : unocc → dark′

r6 : t unocc ∧ ui → us lig′

r7 : ui → df lig′

Safety rules
s1 : alm ∧ ¬e t3 → df lig′

s2 : alm ∧ e t3 → dark′

s3 : df lig ↔ ¬dark

s4 : df lig′ ↔ ¬dark′

Economy rules
e1 : glux1 ∧ (us lig ∨ df lig) → dark′

e2 : glux2 → dark′

We assume that LCS should satisfy two types of properties: safety properties
and economy properties.

The following are safety properties: i) the lights are not off in the default
light scene; ii) if the fire alarm (alm) is triggered, the default light scene must
be re-established in all offices; and iii) t3 minutes after the alarm is triggered,
all lights must be turned off (i.e., only emergency lights must be on). The value
of t3 is set by the facilities manager. The above requirements are represented by
rules s1 to s4.



6

The economy properties include the fact that, whenever possible, the system
ought to use natural light to achieve the light levels required by the office light
scenes. Sensors can check i) whether the luminosity coming from the outside is
enough to surpass the luminosity required by the current light scene; and ii)
whether the luminosity coming from the outside is greater than the maximum
luminosity achievable by the office lights. The latter is useful because it can be
applied independently of the current light scene in an office. Let lux1 denote the
luminosity required by the current light scene, and lux2 the maximum luminosity
achievable by the office lights. i) if the natural light is at least lux1 (glux1) and
the office is in the chosen or default light scene, then the lights must be turned
off; and ii) if the natural light is at least lux2 (glux2), then the lights must be
turned off. This is represented by rules e1 and e2.

Now, consider the following scenario. On a bright Summer’s day, John is
working in his office when suddenly the fire alarm goes off. He leaves the office
immediately. Once outside the building, he realises that he left his briefcase
behind and decides to go back to fetch it. By the time he enters his office, more
than t3 minutes have elapsed. This situation can be formalised as follows:

i1: John enters the office (ui), i2: the alarm is sounding (alm)
i3: t3 minutes or more have elapsed since the alarm went off (e t3)
i4: daylight provides luminosity enough to dispense with artificial lighting (glux2)

We get inconsistency in two different ways:

1. Because John walks in the office (i1), lights go to the default setting (r7).
By s4, the lights must be on in this setting. This contradicts s2, which states
that lights should be turned off t3 minutes after the alarm goes off.

ui (i1), alm (i2), e t3 (i3), df lig′ → ¬dark′ (s4), ui → df lig′ (r7),
alm ∧ e t3 → dark′ (s2)

2. Similarly, as John walks in the office (i1), lights go to the default setting (r7).
Therefore lights are turned on (s4). However, by e2, this is not necessary,
since it is bright outside and the luminosity coming through the window is
higher the maximum luminosity achievable by the office lights (glux2).
ui (i1), glux2 (i4), df lig′→¬dark′ (s4), ui→df lig′ (r7), glux2→dark′ (e2)

This is a situation where inconsistency on the light scenes occur due to viola-
tions of safety and economy properties. We need to reason about how to resolve
the inconsistency. Using clustered belief revision, we can arrange the components
of the specification in different priority settings, by grouping rules in clusters,
e.g., a safety cluster, an economy cluster, etc. It is possible to prioritise the clus-
ters internally as well, but this is not considered here for reasons of space and
simplicity.

The organisation of the information in each cluster can be done independently
but the overall prioritisation of the clusters at the highest level requires input
from all stakeholders. For example, in the scenario described previously, we might
wish to prioritise safety rules over the other rules of the specification and yet not
have enough information from stakeholders to decide on the relative strength of



7

economy rules. In this case, we would ensure that the specification satisfies the
safety rules but not necessarily the economy ones.

economy

update

behaviour economy

behaviour

update

safetybehaviour

safety safety

update

economy

(L1) (L2) (L3)

update

behaviour

update

economyeconomy

safety safetybehaviour

(P1) (P2)

Fig. 2. Linearly (L1, L2 and L3) and partially (P1 and P2) ordered clusters.

Let us assume that sensor and factual information is correct and therefore
not subject to revision. We combine this information in a cluster called “update”
and give it highest priority. In addition, we assume that safety rules must have
priority over economy rules. At this point, no information on the relative priority
of behaviour rules is available. With this in mind, it is possible to arrange the
clusters with the update, safety, behaviour and economy rules as depicted in
Figure 2. Prioritisations L1, L2 and L3 represent all possible linear arrangements
of these clusters with the assumptions mentioned above, whereas prioritisations
P1 and P2 represent the corresponding partial ones.

The overall result of the clustered revision will be consistent as long as the
cluster with the highest priority (factual and sensor information) is not itself
inconsistent. When the union of the sentences in all clusters is indeed inconsis-
tent, in order to restore consistency, some rules may have to be withdrawn. For
example, take prioritisation L1. The sentences in the safety cluster are consistent
with those in the update cluster; together, they conflict with behaviour rule r7

(see Figure 3). Since r7 is in a cluster with lower priority in L1, it cannot be
consistently kept and it is withdrawn from the intermediate result. The final step
is to incorporate what can be consistently accepted from the economy cluster.
For example, rule e1 is consistent with the (partial) result given in Figure 3 and
is therefore included in the revised specification, and similarly for rule e2.

update + safety include (in DNF): ui ∧ alm ∧ e t3 ∧ glux2 ∧ dark′ ∧ ¬df lig′

behaviour includes (in DNF): ¬ui ∨ df lig′

result 1: ui ∧ alm ∧ e t3 ∧ glux2 ∧ dark′ ∧ ¬df lig′

Fig. 3. Conflict with behaviour rule r7.

Notice however, that r7 might be kept given a different arrangement of the
priorities. The refinement process occurs by allowing one to reason about these
different arrangements and the impact on the rules in the current specification
without trivialising the results. Eventually, one aims to reach a final specification
that is consistent regardless of the priorities between the clusters, i.e., consistent
in the classical logic sense, although this is not essential in our framework.



8

Prioritisations L2 and P2 give the same results as L1, i.e., withdrawal of r7

is recommended. On the other hand, in prioritisation L3, the sentence in the
behaviour cluster is consistent with those in the update cluster; together, they
conflict with safety rule s4 (see Figure 4). Since the safety cluster is given lower
priority in L3, both sentences s2 and s4 cannot be consistently kept. One has
to give up either s2 or s4. However, if s4 were to be kept, then e2 would also
have to be withdrawn. Minimal change to the specification forces us to keep s2

instead, as it allows for the inclusion of e2.

update + behaviour include (in DNF): ui ∧ alm ∧ e t3 ∧ glux2 ∧ df lig′

safety includes (in DNF): ((¬df lig′ ∧ dark′) ∨ (¬df lig′ ∧ ¬alm)∨
(¬dark′ ∧ ¬alm) ∨ (¬df lig′ ∧ ¬e t3)∨
(¬dark′ ∧ ¬e t3))

result 2: ui ∧ alm ∧ e t3 ∧ glux2 ∧ df lig′ ∧ dark′

Fig. 4. Conflict with safety rule s4.

Finally, prioritisation P1 offers a choice between the sets of clusters {update,
safety, economy} and {update, behaviour, economy}. The former corresponds to
withdrawing r7 (reasoning in the same way as for L1, L2 and P2), whereas the
latter corresponds to withdrawing s4 as in the case of L3.

In summary, from the five different cluster prioritisations analysed, a recom-
mendation was made to withdraw a behaviour rule in three of them, to withdraw
a safety rule in one of them, and to withdraw either a behaviour or a safety rule
in one of them. From these results and the LCS context, the withdrawal of
behaviour rule r7 seems more plausible. In more complicated cases, a decision
support system could be used to help the choice of recommendations made by
the clustered revision framework.

4 Related Work

A number of logic-based approaches for handling inconsistency and evolving re-
quirements specifications have been proposed in the literature. Zowghi and Offen
[18] proposed belief revision for default theories as a formal approach for resolv-
ing inconsistencies. Specifications are formalised as default theories where each
requirement may be defeasible or non-defeasible, each kind assumed to be con-
sistent within itself. Inconsistencies introduced by an evolutionary change are
resolved by performing a revision operation over the entire specification. Defea-
sible information that is inconsistent with non-defeasible information is not used
in the reasoning process and thus does not trigger a revision. Similarly, in our
approach, requirements with lower priority that are inconsistent with require-
ments with higher priority are not considered in the computation of the revised
specification. However, in our approach, the use of different levels of priority en-
ables the engineer to fine-tune the specification and reason with different levels
of defeasibility.

In [16], requirements are assumed to be defeasible, having an associated pref-
erence ordering relation. Conflicting defaults are resolved not by changing the



9

specification but by considering only scenarios or models of the inconsistent spec-
ification that satisfy as much of the preferrable information as possible. Whereas
Ryan’s representation of priorities is similar to our own, we use classical logic
entailment as opposed to Ryan’s natural entailment and the priorities in our
framework are used only in the solution of conflicts. Moreover, the use of clus-
ters in our approach provides the formalisation of requirements with additional
dimensions, enabling a more refined reasoning process about inconsistency.

In [4], a logic-based approach for reasoning about requirements specifications
based on the construction of goal tree structures is proposed. Analyses of the
consequences of alternative changes are carried out by investigating which goals
would be satisfied and which would not, after adding or removing facts from
a specification. In a similar fashion, our approach supports the evaluation of
consequences of evolutionary changes by checking which requirements are lost
and which are not after adding or deleting a requirement.

Moreover, other techniques have been proposed for managing inconsistency
in specifications. In [2], priorities are used but only in subsets of a knowledge
base which are responsible for inconsistency. Some inference mechanisms are
proposed for locally handling inconsistent information using these priorities. Our
approach differs from that work in that the priorities are defined independently
of the inconsistency and thus facilitating a richer impact analysis on the overall
specification. Furthermore, priorities there can only be specified at the same
level within the base, whereas we allow for more complex representations (e.g.,
between and within sub-bases).

Finally, a lot of work has focused on consistency checking, analysis and action
based on pre-defined inconsistency handling rules. For example, in [5], consis-
tency checking rules are combined with pre-defined lists of possible actions, but
with no policy or heuristics on how to choose among alternative actions. The en-
tire approach relies on taking decisions based on an analysis of the history of the
development process (e.g., past inconsistencies and past actions). Differently, our
approach provides a formal support for analysing the impact of changes over the
specification by allowing the engineer to perform if questions on possible changes
and to check the effect that these changes would have in terms of requirements
that are lost or preserved.

5 Conclusions & Future Work

In this paper, we have shown how clustered belief revision can be used to analyse
the results of different prioritisations on requirements reasoning classically, and
to evolve specifications that contain conflicting viewpoints in a principled way.
A simplified version of the light control case study was used to provide an early
validation of the framework. We believe that this approach gives the engineer
more freedom to make appropriate choices on the evolution of the requirements,
while at the same time offering rigourous means for evaluating the consequences
that such choices have on the specification.

Our approach provides not only a technique for revising requirements speci-
fications using priorities, but also a methodology for handling evolving require-
ments. The emphasis of the work is on the use of priorities for reasoning about



10

potentially inconsistent specifications. The same technique can be used to check
the consequences of a given specification and to reason about “what if” questions
that arise during evolutionary changes.

A number of heuristics about the behaviour of the ordering � have been
investigated in [14]. The use of DNF greatly simplifies the reasoning, but the
conversion to DNF sometimes generates complex formulae making the reasoning
process computationally more expensive. To improve scalability of the approach,
these formulae should be as simple as possible. This simplification could be
achieved by using Karnaugh maps to find a “minimal” DNF of a sentence.

References
1. C. A. Alchourrón and D. Makinson. On the logic of theory change: Contraction

functions and their associated revision functions. Theoria, 48:14–37, 1982.
2. S. Benferhat and L. Garcia, Handling Locally Stratified Inconsistent Knowledge

Bases, Studia Logica, 70:77–104, 2002.
3. N. C. A. da Costa, On the theory of inconsistent formal systems. Notre Dame

Journal of Formal Logic, 15(4):497–510, 1974.
4. D. Duffy et al., A Framework for Requirements Analysis Using Automated Reason-

ing, CAiSE95, LNCS 932, Springer, 68–81, 1995.
5. S. Easterbrook and B. Nuseibeh, Using ViewPoints for Inconsistency Management.

In Software Engineering Journal, 11(1): 31-43, BCS/IEE Press, January 1996.
6. A. Finkelstein et. al, Inconsistency handling in multi-perspective specifications,

IEEE Transactions on Software Engineering, 20(8), 569-578, 1994.
7. Peter Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States.

The MIT Press, Cambridge, Massachusetts, London, England, 1988.
8. P. Gärdenfors and D. Makinson. Revisions of knowledge systems using epistemic

entrenchment. TARK II, pages 83–95. Morgan Kaufmann, San Francisco, 1988.
9. C. Heitmeyer and R. Bharadwaj, Applying the SCR Requirements Method to the

Light Control Case Study, Journal of Universal Computer Science, Vol.6(7), 2000.
10. M. R. Huth and M. D. Ryan. Logic in Computer Science: Modelling and Reasoning

about Systems. Cambridge University Press, 2000.
11. B Nebel. Syntax based approaches to belief revision. Belief Revision, 52–88, 1992.
12. B. Nuseibeh, J. Kramer and A. Finkelstein, A Framework for Expressing the Rela-

tionships Between Multiple Views in Requirements Specification, IEEE Transactions
on Software Engineering, 20(10): 760-773, October 1994.

13. S. Queins et al., The Light Control Case Study: Problem Description. Journal of
Universal Computer Science, Special Issue on Requirements Engineering: the Light
Control Case Study, Vol.6(7), 2000.

14. Odinaldo Rodrigues. A methodology for iterated information change. PhD thesis,
Department of Computing, Imperial College, January, 1998.

15. O. Rodrigues, Structured Clusters: A Framework to Reason with Contradictory
Interests, Journal of Logic and Computation, 13(1):69–97, 2003.

16. M. D. Ryan. Default in Specification, IEEE International Symposium on Require-
ments Engineering (RE93), 266–272, San Diego, California, January 1993.

17. G. Spanoudakis and A. Zisman. Inconsistency Management in Software Engineer-
ing: Survey and Open Research Issues, Handbook of Softawre Engineering and
Knowledge Engineering, (ed.) S.K. Chang, pp. 329-380, 2001.

18. D. Zowghi and R. Offen, A Logical Framework for Modeling and Reasoning about
the Evolution of Requirements, Proc. 3rd IEEE International Symposium on Re-
quirements Engineering RE’97, Annapolis, USA, January 1997.


