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Abstract
In this paper we present a machine learning approach for
generating requirements traceability relations. This
approach is based on a new learning algorithm that
produces traceability rules which are able to capture
traceability relations between requirement statements
specified in natural language and object models. The
creation of these traceability rules is informed by
examples of traceability relations which are provided by
the user and is based on a generalisation of other existing
traceability rules.
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1. Introduction
Requirements traceability – that is the ability to relate
requirements specifications with other artefacts created in
the development life-cycle of a software system – has
widely and long been recognised as a significant factor for
efficient software project management and software
systems quality [13][14]. Research into requirements
traceability has been concerned with the study and
definition of different types of traceability relations [2][4]
[12] (e.g. satisfiability and dependency relations) and the
provision of support for generating and maintaining them
in requirements engineering tools [5][9][18].

However, as empirical studies of the traceability needs
and practices of industrial organisations have indicated,
this support is not always satisfactory [14] as most of the
existing approaches and tools assume that traceability
relations are created and maintained manually
[13][14][10]. This makes the establishment of traceability
an error-prone and time consuming task and, as a
consequence, traceability is rarely established.

To address this problem, Zisman et al [20] have
developed a system that automatically generates and
maintains traceability relations of different types between
textual requirement statements and object models

(expressed in UML [8]) based on traceability rules. These
rules specify ways of matching syntactically related words
in the requirements statements with related elements in an
object model (e.g. classes, attributes, operations), and
create traceability relations of different types between
these artefacts when a match is found. The syntactic
relations used in the rules are defined in terms of patterns
of words which have specific grammatical roles in a piece
of text (e.g. noun, verb, adjective etc.). These grammatical
roles are identified using probabilistic grammatical
tagging techniques [3].

Initial experiments with this traceability system have
indicated that, although it is capable of generating
traceability relations at reasonable precision and recall
rates, there is scope for improving its performance with
respect to both these performance criteria [16][17]. In
particular with respect to recall (i.e., the ratio of
traceability relations between artefacts that the system can
capture), we have identified the need to provide support
for generating new traceability rules to capture relations
that existing rules fail to generate. This support becomes
particularly important when trying to deploy the
traceability system in contexts where the involved textual
requirement artefacts are specified using varying
specification styles and practices.

In this paper, we present an approach that addresses
this problem. Our approach is based on a new machine
learning algorithm which, given examples of undetected
traceability relations indicated by the user, tries to
generate new traceability rules capable of capturing these
relations and maintaining them once correctly generated.
The new traceability rules are generated by transforming
existing rules in order to make them match with the given
examples of traceability relations.

The rest of this paper is structured as follows. In
Section 2, we present an overview of the rule-based
requirements traceability system and give examples of
using it to generate traceability relations. In Section 3, we



overview our machine learning approach for generating
new traceability rules. In Section 4, we present the
learning algorithm underpinning this approach. In Section
5, we give examples of generating traceability rules. In
Section 6, we overview related work, and in Section 7 we
summarise our approach and plans for future work on it.

2. Rule-based traceability
The rules which are deployed by the traceability system
in [20] express heuristics that predict how words, which
have specific grammatical roles in a textual requirement
statement and appear in specific syntactic patterns, may
have been modelled in an object model. The grammatical
role of a word in a textual requirement statement is
signified by a part-of-speech tag (POS-tag) that is
generated by a general-purpose probabilistic grammatical
tagger called CLAWS [3].

Figure 1 shows an example of a tagged requirement
statement extracted from the specification of a university
course management system (the POS-tags are highlighted
in the figure). According to the statement, the system
should allow specific types of users to record student
coursework marks. The word "coursework" in this
statement has been identified as a singular common noun
as signified by the tag NN1 that is assigned to it. The
word "record" in the same statement has been identified as
a verb in the infinitive form as signified by the tag VVI
that is assigned to it.

Figure 1. Example of a traceability relation

The general syntactic form of a requirement−to−object
model (RTOM) traceability rule is:

RTOM_RULE RuleId
EXISTS
SEQUENCE(S1, S2, …, Sn) in α;
<e1/t

O
1>, …, <em/tO

m> in OMy

SUCH THAT
p1(f1(•), fL+1(•)) ° … ° pL(fL(•), fL+L(•))
ACTION GENERATE (rw(α.σ,ej))

RTOM_RULE_END

In this syntactic form,

• SEQUENCE(S1, S2, …, Sn) in α  specifies the syntactic
pattern that the rule expects to find in a requirement
statement a. This pattern is defined in terms of the
syntactic items Si (i=1,…,n) which may have one of
the following two forms:

Si = <vi/Ti>:q, or Si = SEQUENCE(Sk, …, Sw): q
where
− vi is a variable that can be matched with a word in α,
− Ti is a set of possible tags that the words which can

be matched with vi should have, and
− q is a qualifier that denotes whether a single (if q =

"1") or multiple occurences (if q = "*") of the item Si

are expected;
• e1,…,em  are variables that take as values elements of an

object model OMy which are of types tO
1,…,tO

m,
respectively;

• fu(•) (u=1,…, 2L) are functions and p1,…, pL are
predicates which are used to specify conditions which
must be satisfied by the words matched with the
variables vi and the object model elements matched
with the variables ei for them to be linked with a
traceability relation (examples of these functions and
predicates are shown in Figure 2);

• ° is the logical "and" or "or" operator; and
• rw(α.σ,ej) is a traceability relation of type rw that can be

created by the rule (σ is a sequence of words in a that
matches with SEQUENCE(S1, S2, …, Sn))

An example of a traceability rule is given below:

RTOM_RULE Rule-1

EXISTS

SEQUENCE(<x1/{VVI}>:1, <x2/{AT1}>:1,

<x3/{NN1}>:1, <x4/{NN1}>:*, <x5/{NN1}>:1) in A1;

<x6/CLASS>, <x7/OPERATION> in OM

SUCH THAT

OPERATION_OF(<x7>,<x6>) and

MEMBER_OF(<x1>,SYNONYMS(STEREOTYPE(<x7>)) and

CONTAINS(NAME(<x7>),<x5>) and

CONTAINS(NAME(<x6>),<x3>) and

(CONTAINS(NAME(<x6>),<x4>) or

CONTAINS(NAME(<x7>),<x4>))

ACTION GENERATE REQUIRES_EXECUTION_OF(A1.σ,<x7>)
RTOM_RULE_END

RS1 = [<The/AT>, <system/NN1>,
<shall/VM>,<allow/VVI>, <the/AT>,
<secretary/NN1>, <of/IO>, <the/AT>,
<course/NN1>, <to/TO>, <record/VVI>, <a/AT1>,
<coursework/NN1>, <mark/NN1>,
<given/VVN>,<to/II>, <a/AT1>, <student/NN1>]

REQUIRES_EXECUTION_OF

InterviewRecommendation
type : String
rationale : String

<<constructor>> create(type : String, rationale : String)
<<get>> getType() : String
<<get>> getRationale() : String
<<set>> modifyRecommendation(type : String, rationale : String)

Interview
date : Date

<<set>> schedule(Date, Interviewer, Applicant)
<<set>> recordRecomendation() : void

1..1

1..1

1..1

1..1
recommendation

Applicant
feeStatus : String

Interviewer

0..*

1..*

+interviewee0..*

+interviewer1..*

Student
ID : String

Module
Coursework

mark : Int

<<set>> setMark(m : Int) : voidn

0..*
1..*

0..*
1..*

1..1

0..*

1..1

0..*

Offer Condition

ConditionalOffer

<<info-output>> printOffer()

1..*1..*

CourseExaminationStatistics

<<info-production>> generateStatisticsReport()



Rule-1 can establish a REQUIRES_EXECUTION_OF
relation between a sequence of words in a requirement
statement and an operation in an object model. A relation
of this type is created if the operationalisation of what is
described by the word sequence (typically an event)
requires the execution of the operation [17].

Figure 2. Predicates and functions used in RTOM
rules

To generate a REQUIRES_EXECUTION_OF relation,
Rule-1 attempts to match a verb phrase that consists of a
verb in the infinitive form (<x1/{VVI}>:1)) followed by
an article (<x2/{AT1}>:1) and a noun (<x5/{NN1}:1>),
which is qualified by one (<x3/{NN1}>:1) or more other
nouns (<x4/{NN1}>:*), with an operation in an object
model.

The matching succeeds if: (i) the verb is a member of
the set of synonyms which are associated with the
stereotype of the operation  (see condition
MEMBER_OF(<x1>,
SYNONYMS(STEREOTYPE(<x7>))), (ii) the noun that
is the object of the verb-phrase (x5) is contained in the
name of the operation (see condition
CONTAINS(NAME(<x7>), <x5>)), (iii) the first noun
that qualifies the object of the verb-phrase (x3) is
contained in the name of the class that defines the
operation (see condition CONTAINS(NAME(<x6>),
<x3>)), and (iv) the additional nouns which qualify the
object of the verb-phrase (if any) are contained in the
name of either the class that defines the operation or the
operation itself  (see condition

(CONTAINS(NAME(<x6>),<x4>) or
CONTAINS(NAME(<x7>),<x4>)).

The satisfaction of the first of these conditions
indicates that the action denoted by the verb is compliant
with the functional role of the operation which is
indicated by the stereotype of it. This is because in UML
[8], a stereotype is used to signify the main functional role
of an operation (for example, operations, which set or
modify the state of class instances are stereotyped as
<<set>> operations). The satisfaction of the other three
conditions increases the possibility of establishing a
matching with an operation that is applied to the feature
signified by the object of the verb-phrase.

Rule-1 succeeds in the case of the sequence of words
<record /VVI>, <a /AT1>, <coursework /NN1>,

<mark /NN1> which appear in the requirement statement
RS1 and the operation setMark(m: Int):void of
the class Coursework in Figure 1. This is because: (a)
the word variables of Rule-1 are  matched with the words
in the above sequence as follows: record[x1], a[x2],
coursework[x3], mark[x5], and (b) assuming that the
verb "record" in RS1 belongs to the set of synonyms of the
stereotype of the operation setMark(m: Int):void
(i.e., <<save>>) the SUCH THAT conditions of Rule-1
are satisfied. The satisfaction of Rule-1 in this case creates
a REQUIRES_EXECUTION_OF relation between the
above sequence of words in RS1 and operation which is
shown in Figure 1.

3. Generation of new RTOM rules
The machine learning approach that we describe in this
paper supports the generation of new RTOM rules to
capture traceability relations which are indicated by the
users of the system but existing rules have failed to
generate. New traceability rules can be created as
generalisations of existing rules using a new machine
learning algorithm that we have developed for this
purpose (i.e., the algorithm GenerateRules in Figure
3). This algorithm gets as input a traceability relation of
the form rw(α.*,ej) that has been identified by the user (we
use a.* in rw(α.*,ej) as the user is not expected to identify
the exact sequence of words within the requirement
statement a that gives rise to the relation) and tries to
generate variants of existing traceability rules that could
capture this relation by generalising their syntactic
patterns.

To do so, GenerateRules firstly identifies all the
rules that can generate traceability relations of the same
type as the relation given by the user. Then, it generates
transformations of the syntactic patterns of these rules that
would make them match with any sequence of tagged
words within the requirement statement α of the given
relation (see first while-loop of the algorithm in Figure 3).
These transformations are generated by the algorithm
FindTrs which is discussed Section 4.

EXAMPLES OF RTOM RULE PREDICATES
ATTRIBUTE_OF(Id1,Id2): This predicate becomes true if Id1

is an attribute is defined in or inherited by the class Id2.
ASSOCIATION_OF(Id1,Id2): This predicate becomes true if
Id1 is an association defined in or inherited by the class Id2.
OPERATION_OF(Id1,Id2): This predicate becomes true if
Id1 is an operation defined in or inherited by the class Id2.
CONTAINS(String1, String2): This predicate becomes true

if String2 is a sub-string of String1.
EQUAL_TO(String1, String2):This predicate becomes

true if String2 is equal to String1.
MEMBER_OF(String1, Set of <String>): This

predicate becomes true if String1 is a member of  the set of
strings Set of <String>.

EXAMPLES OF RTOM RULE FUNCTIONS
Name(Id1): String − This function takes as input a UML

model element identifier and returns the name of this model
element.

Synonym(String1): Set of <String> − This function
takes as input a string that is the name of a UML operation
stereotype and returns the list of verbs that may be used in a
piece of text to signify the primary function of the operations
that have been classified under this stereotype.

Stereotype(Id1): Set of <String> − This function
takes as input the identifier of a UML object model element and
if this identifier identifies an operation in the model, it returns a
set of strings which are the names of the stereotypes of the this
operation.



Figure 3. Traceability rule generation algorithm

From these potential transformations of the syntactic
conditions of the rules, GenerateRules considers only
the ones that transform the original rules into forms which
are satisfied by the artefacts α and ej of the given
traceability relation and, as a consequence, can generate
this relation. To establish this, GenerateRules applies
each transformation and then checks if the conditions in
the SUCH THAT part of the transformed traceability rule
are satisfied by α and ej. The new rules are guaranteed to
be able to capture the traceability relations captured by
the rules they are created from and the new relation that
these rules failed to generate.

Finally, GenerateRules ranks the rules that it
creates in descending order of their generality. The
generality of a new rule R’ is measured by the number of

traceability relations that the rule that R’ was created from
had captured plus one (for the new relation). The
assumption underpinning this approach is that the rules
that have captured more traceability relations are the ones
with the wider applicability to the already seen relations
and, therefore, they are more likely to capture relations
which have not be seen yet (as in reinforcement learning
[6]).

4. Identification of rule transformations
The identification of alternative transformations of
existing traceability rules is carried out by the algorithm
FindTrs that is specified in Figure 4. This algorithm
generates all the possible transformations of the syntactic
pattern SEQUENCE(S1,S2, …, Sn) of a rule R that can
make it match with any sub-sequence of tagged words in
a requirement statement.

These transformations are generated as generalisations
of the syntactic pattern of R which can take one of the
following three forms:
(i) the introduction of a new POS-tag in the set of

possible tags Ti of the word variable vi of a syntactic
item Si (Si = <vi/Ti>:q) in SEQUENCE(S1,S2,…,Sn);

(ii) the modification of an existing compulsory word
variable into a non compulsory one; and

(iii) the introduction of a new non compulsory word
variable in SEQUENCE(S1,S2,…,Sn).

As shown in Figure 4, these transformations are attempted
in the order in which they appear above. The conditions
under which each of them may be carried out are
discussed in the following.

4.1 Introduction of a new POS-tag in the set of
tags of an existing word variable

This form of generalisation may be allowed if FindTrs
encounters a word in a requirement statement whose tag
WT is not a member of the set of possible tags (i.e.,
TAGS) of the current word variable in the syntactic
pattern of a rule. The new tag is inserted in TAGS only if
it can be substituted for at least one of the tags which are
already in it. FindTrs checks if this is the case by
consulting the relation can_substitute.

can_substitute is binary symmetric relation that we
have defined over the set of tags of CLAWS (see [3]) to
represent possible substitutions between these tags in a
piece of text. For example, can_substitute(NN1,NN2) in
the extension of this relation means that a singular
common noun (NN1) can be found in the position of a
plural common noun (NN2) in a piece of text, and
can_substitute(NN1,JJ) means that an adjective (JJ) can
be found in the position of a singular common noun
(NN1).

The substitution expressed by a can_substitute relation
is valid only within specific syntactic patterns.

Algorithm GenerateRules(TR, NR)
Input Variables:
TR;

���������	��
������� � � � ���	��� ��� � ��� ��� �
α � ��� � � !�����"���$#����"���	������%&�'����(�� ) � � �$#��+*$� ��)

Output Variables:
NR; // Ordered list of new rules that can capture TR
Let RULES be the set of rules that can generate a relation of the

same type as TR;
TRULES := {};
For all R in RULES Do

TRSR := {}; SQ := R.SEQUENCE(S1,S2, …, Sn);
Let SN be a linked list with the tagged  terms in the

       artefact α;
Let T be the first tagged term in SN; MaxGenR := 0;
While (T != NIL) Do

Tinit := T; Let V be the first syntactic item in SQ;
FindTrs(R, SQ, SN, V, T, VM, Found_Tr, CS, TransR);���-,.�	���")/0� )1��2$�3)4���"��5����	���")	5 �6�	78��� � ���$)1��2����
���9
��*$� %&�$�3��:�:�� � ��%&���&;<���=78����
2?>�@
If Found_Tr = True then

For all τ in TransR Do
Generate a new rule R' by replacing the syntactic pattern of

R by τ;����
2$��
4A&)4��� � ) 5 � ���'� � � � ����5$�"��BC��*$� �D;3E
If R' is satisfied by SN and ei then

TRULES := TRULES ∪ (R, R');
end if

end for
T := T.next;

end if
end while

end for���9�6�	%����.��2$�3�"��BC��*$� ��)1� �?%���)4
���"%'� �$#F#����"���	��� � � ���6�	%����
NR := empty;
For all (R, R') in TRULES Do

GenR’ = gen (R');��� #���� ��;3E !"� )1��2$�3�$*$7G�$���0��5$�	��� ��� � �6�$)�
��:�� *"�	��%&�'�=;<:�� *")9H
If NR is empty then insert R' into NR;
else

Let CR be the first rule in NR;
While GenR’ < gen(CR) and CR != NIL  Do

CR := rule next to CR in NR;
end while
insert R' before CR in NR;

end if
end for



can_substitute(NN1,JJ), for instance, is valid in the
context of a syntactic pattern where the singular noun
precedes another noun and acts as a qualifier of it. This is
because an adjective may also be found before a noun in a
sentence and in this case it also acts as a qualifier of the
noun (in the requirement statement of Figure 1, for
instance, the adjective "provisional" could replace the
noun "coursework" and act as a qualifier of the noun
"mark"). The same substitution, however, is not valid in
cases where the singular noun appears in the end of a
sentence since an adjective cannot be found in such a
position.

In our approach, such contextual validity conditions
are not explicitly expressed in the can_substitute relation.
They are, however, checked by the algorithm FindTrs.
The substitution of an adjective for a singular noun, for
instance, is accepted only if FindTrs encounters an
example of a traceability relation that involves a
requirement statement which has a sequence of words
demonstrating this possibility and matching with the
entire syntactic pattern of a traceability rule. The
assumption underpinning this approach to ensuring the
validity of the accepted tag set modifications is that both
the requirement statements which are given as input to the
algorithm FindTrs and the syntactic patterns of the
rules which are transformed by this algorithm are
grammatically correct.

The second example in Section 5 demonstrates this
form of generalisation.

4.2 Making a word variable non-compulsory
FindTrs may modify the qualifier q of a compulsory
word variable in a rule and make it non compulsory. This
happens when the algorithm encounters a word in a
requirement statement that should be matched with a
variable but whose tag is neither in the set of possible tags
of this variable nor it can substitute for any of these tags.
In such cases, the variable itself should also not be used in
the SUCH THAT conditions of the rule.

The assumption underpinning this form of
generalisation is that word variables which are not used in
the SUCH THAT conditions of a rule are going to be
matched with semantically insignificant words in
requirement statements and, therefore, their presence is
not important from a semantic point of view.

Clearly, the presence of these variables may be
necessary for the correctness of the syntactic pattern
expected by the  rule. To ensure that this is not the case
for a word variable that is to become non-compulsory,
FindTrs accepts this form of generalisation as part of a
rule transformation only if the transformation in its final
form (i.e., the form that it takes when the algorithm
terminates) makes the rule match with a sequence of
words in the requirement statement that prompted the
change.

An example of this form of rule generalisation is given in
Section 5 (see Example 1 in this section).

4.3 Introduction of new non-compulsory variable
in the syntactic pattern of a rule

This form of generalisation may be allowed when
FindTrs encounters a word in a requirement statement
whose tag WT: (a) does not belong to the set of tags of
the current word variable of a rule, and (b) cannot be
substituted for any of these tags.

In such cases, if WT is a tag that can be associated
only with words which cannot be used in the SUCH
THAT conditions of traceability rules, FindTrs inserts a
new non-compulsory word variable in the transformation
that is currently under development and puts WT in the
set of possible tags of this variable (the new variable is
placed before the current word variable of the rule that is
being transformed).

The tags which cannot be associated with words that
may appear in the SUCH THAT conditions of rules are
those which signify: articles (e.g. the/AT, a/AT1); various
forms of determiners (e.g. much/DA1, all/DB); various
forms of syntactic conjunctions (e.g., and/CS, but/CCB,
unless/CS); prepositions (e.g., with/IW, of/IO);
comparative, superlative and catenative adjectives (e.g.,
better/JJR, best/JJT, willing/JK); various forms of
numbers; pronouns (e.g., his/APPGE, he/PPHS1); and
adverbs (e.g., very/RG, why/RRQ). These tags are defined
as elements of a set called NOT_SEMANTIC_TAGS
which is made available to FindTrs as background
knowledge (see Figure 4).

An example of a rule transformation that includes a
new non-compulsory word variable is given in Section 5
(see Example 1 in that section).

5. Examples of rule transformations
In this section, we present two examples of rule
transformations which are generated by the algorithms
GenerateRules and FindTrs.

Example 1: Our first example demonstrates the change of
a compulsory variable in the syntactic pattern of a rule
into a non-compulsory one, and the introduction of a new
non-compulsory variable to a rule.

Suppose that the user indicates the existence of a
REQUIRES_EXECUTION_OF relation between the
requirement statement:

RS2 = [<The/AT> <system/NN1> <shall/VM>
<allow/VVI> <an/AT1> <interviewer/NN1>
<to/TO> <change/VVI> <his/her/APPGE>
<interview/NN1> <recommendation/NN1>
<for/IF> <an/AT1> <applicant/NN1>]



Algorithm FindTrs (R, SQ, RS, V, T, VM, M, CS, S)
Input Variables:
R:

���-,.2$� ���	��
������� � � � � ��*$� �9�����$�9���	���") 5 �6�	78��% ; �
SQ:

���-,.2$�3)4���6*"���"
�3��5$)	���$����
4� � 
�� ����78)���5$�F��*$� �D; �
RS:

����� �	��� � ) ��������78���$�"�	��:$� ��)4���$����% ��)��D� � ) �
���9��5�����#�#���%&BF�6�	%�) �

V:
����� *"�	�	���$�")	���$����
4� � 
1� ����7 � � >�� �	��
� (��,"���D>���� �

T:
����� *"�	�	���$�$����#�#���%&BF�6�	%&� � ;9> � , 
� ����� ,��

VM:
���

A variable indicating if a match has���
already

�$����� 5 ��*$�"%&5 �6�.��2$�3)	���$����
4� � 
������	7 �
Output Variables:
M:

��� � ����� ����� �9��2$���$� �"%'� 
������)1� 5$�F7G����
2 � )15 ��*$�"%
S:

���3>'���"��5����	���") 5 �6�	7G��� � ���")1��2$���$78���D�$�3��:�:�� � ��%&���
���3>�� ���=78����
2?;->

CS:
����� *"�	�	���$�") *$��) � � � *$� � ���

WT := T.Tags; TAGS := V.Tags; q:= V.q;
If (T != NIL) and (V != NIL) and (M != False) then
If (WT ∉ TAGS) then

If q = "*" then 
�����=��5 � � )1� 7G*$� � � ���6

 *"�	�	���"
� �����

If  VM = False then 
������� )��D�"���"78����
2$��%=�����

���9
�	�������9�+�	���") 5 �6�	78��� � �6�$)1BD� ��2��=�"���"7G����
2$��%

S1 := CS ∪ {<x/TAGS>:q};
VM1 := False;
M1 := True;
FindTrs (R, SQ, RS, V.next, T, VM1, M1, S1, S);
If exists VT in TAGS and can_substitute (VT,WT) 
then���9
�	�������9�+�	���") 5 �6�	78��� � �6�$)1BD� ��2��=78����
2$��%

        TAGS’ := TAGS ∪ {WT};
        CS := CS ∪ {<x/TAGS’>:q};
           VM := True;

M2 := True;
FindTrs (R, SQ, RS, V, T.next, VM, M2, CS, S);

     else 
����� ,G
���"�"���")	*��$) � � � *$���95 �6�0�D����#D� � ,"���D>

        If (WT ∈ NOT_SEMANTIC_TAGS) then
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���&�$�-*")4��%&� �
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             CS := CS ∪ {<y/WT>*};
             VM := True;

FindTrs (R, SQ, RS, V, T.next, VM, M, CS, S);
           else 

����� ,G78���D�$�9*")4��%&� � >��!��� , ���-, 
�6�"%�)
M := False;

end if
end if
If (M1 != True) and (M2 != True) then

M :=False
end if

else 
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S1 := CS; VM1 := False; M1 := True;
FindTrs (R, SQ, RS, V.next, T, VM1, M1, S1, S);���9
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If exists Y in CS such that Y.Var = V.Var then

TAGS := Y.Tags;
end if
If (WT ∉ TAGS) then

If exists VT in TAGS and can_substitute (VT, WT)
then

        TAGS’ := TAGS ∪ {WT};
If exists Y in CS such that Y.Var = V.Var then

replace Y in CS with <x/TAGS’>:q;
else

        CS := CS ∪ {<x/TAGS’>:q};
end if
M2 := True;

FindTrs (R, SQ, RS, V, T.next, VM, M2, CS, S);
     else 
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        if (WT ∈ NOT_SEMANTIC_TAGS) then
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             CS := CS U {<y/WT>*};

M2 := True;
FindTrs (R, SQ, RS, V, T.next, VM, M2, CS, S);

         end if
end if

else 
����� ,
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M2 := True;
FindTrs (R, SQ, RS, V, T.next, VM, M2, CS, S);

end if
If (M1 != True) and (M2 != True) then

M :=False
end if

end if
else 
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If exists VT in TAGS and can_substitute (VT, WT)
then

        TAGS’ := TAGS ∪ {WT};
        CS := CS ∪ {<x/TAGS’>:q};
      VM := False;

FindTrs (R, SQ, RS, V.next, T.next, VM, M, CS, S);
else

if x is not used in R’s SUCH THAT conditions then���378��A'�9(��F�"���?
�67G:'*$� )4�6�+� �����
             CS := CS ∪ {<x/TAGS>*};

FindTrs (R, SQ, RS, V.next, T, VM, M, CS, S);
else

        If (WT ∈ NOT_SEMANTIC_TAGS) then����� , � )��"���"�D����#���5'� ����78)1��2$���"
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             CS := CS ∪ {<y/WT>*};
             VM := True;

FindTrs (R, SQ, RS, V, T.next, VM, M, CS, S);
             else

M := False;
end if

end if
end if

end if
else  
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∈

,"���D>
If q = "*" then 
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S1 := CS; VM1 := False; M1 := True;
FindTrs (R, SQ, RS, V.next, T, VM1, M1, S1, S);���9
�	�������9�+�	���") 5 �6�	78��� � �6�$)1BD� ��2��=78����
2$��%
If there is no Y in CS such that Y.Var = V.Var then

CS := CS ∪ {<x/TAGS’>:q};
       end if

VM2 := True; M2 := True;
FindTrs (R, SQ, RS, V, T.next, VM2, M2, CS, S);

else 
�����=��5 � � )��F)	� �$#�� �#���6
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��������� ����� �

CS := CS ∪ {<V/Tags>:q};
FindTrs (R, SQ, RS, V.next, T.next, VM, M, CS, S);

end if
end if

else 
���D� , 
 @%$'&$! �6��� ��
 @%$'&$! �6��� ( 
*) ��� )4��!

If (V = NIL) and (M = True) then
S = S ∪ CS;

else
 M := False;
end if

end if

Figure 4. Algorithm for finding rule transformations



and the operation modifyRecommendation(type:
String, rationale: String) of the class
InterviewRecommendation in Figure 1. Rule-1
fails to capture this relation as its syntactic pattern does
not match with any sequence of words in RS2. The
application of the algorithm FindTrs in this case
generates the transformation:

CS1 = { <x1/{VVI}>:1, <x2/{AT1}>:*,
<x8/{APPGE}>:*, <x3/{NN1}>:1,
<x4/{NN1}>:*, <x5/{NN1}>:1 }

According to CS1, Rule-1 can be transformed by: (i)
making the variable x2 that can be matched to an article a
non-compulsory variable, and (ii) introducing a new non-
compulsory variable x8 that may be matched with a
possessive pronoun (as signified by the tag APPGE)
between the variables x2 and x3.

The first of these generalisations is allowed as the
variable x2 is not used in the SUCH THAT conditions of
the rule and therefore it is not considered to be a
semantically significant variable. The second
generalisation is allowed as the tag of the term "his/her"
in RS2 (i.e., APPGE) signifies a possessive pronoun
which cannot be used in the SUCH THAT conditions of a
traceability rule (APPGE is an element of the set
NOT_SEMANTIC_TAGS).

The replacement of the syntactic pattern of Rule-1 by
CS1 transforms this rule into a form that matches with the
sequence of words: change[x1] his/her[x8]
interview[x3] recommendation[x5].

Assuming that the verb "change" is in the set of
synonyms of the stereotype of the operation
modifyREcommendation(type: String,
rationale: String) (i.e., <<set>>), this
matching satisfies the SUCH THAT conditions of the new
form of Rule-1 (they are the same as the SUCH THAT
conditions in the original form of the rule). Thus,
GenerateRules accepts the new form of Rule-1.

Example 2: Our second example demonstrates the
possibility of generating more than one alternative
transformations of the same rule, and the introduction of a
new tag into the set of tags of an existing variable.

Suppose that the user indicates the existence of a
REQUIRES_EXECUTION_OF relation between the
requirement statement:

RS3 = [<The/AT>, <system/NN1>, <shall/VM>,

<allow/VVI>, <the/AT>,

<secretary/NN1>, <to/TO>,

<produce/VVI>, <a/AT1>, <course/NN1>,

<examination/NN1> <statistics/NN>,

<report/NN1>]

and the operation
generateStatisticsReport()of the class

CourseExaminationStatistics in Figure 1.
Rule-1 fails to capture this relation because, although its
syntactic pattern matches with the sequence of words
"produce a course examination" in RS4, this matching
does not satisfy the SUCH THAT conditions of the rule.

The application of the algorithm FindTrs in this
case generates the following two alternative
transformations for Rule-1:

CS2 = { <x1/{VVI}>:1, <x2/{AT1}>:1, <x3/{NN1}>:1,
<x4/{NN1, NN}>:*, <x5/{NN1}>:1 }

CS3 = { <x1/{VVI}>:1, <x2/{AT1}>:1, <x3/{NN1}>:1,
<x4/{NN1}>:*, <x5/{NN1, NN}>:1}

According to CS2, the tag NN which signifies common,
but neutral for number, nouns is introduced as an
alternative tag for the multi-occurrence variable x4. This
introduction results as a consequence of attempting to
match x4 with the word "statistics" in RS3 (after having
already matched it with the word "examination"). The
replacement of the syntactic pattern of Rule-1 by CS2

makes the rule match with the following sequence of
words in RS3: produce[x1] a[x2] course[x3]
examination[x4] statistics[x4] report[x5].

Thus, FindTrs accepts CS2 as a legitimate
transformation of Rule-1. Then, assuming that the verb
"produce" is in the list of synonyms of the stereotype of
the operation generateStatisticsReport()
(i.e., the stereotype <<info-production>>), RS3

and this operation satisfy the SUCH THAT conditions of
the new form of  Rule-1. Thus, GenerateRules
accepts CS2.

The transformation CS3 introduces the tag NN as an
alternative tag for the compulsory variable x5. This
introduction results as a consequence of attempting to
match x5 with the word "statistics" in RS3. The
replacement of the syntactic pattern of Rule-1 by CS3

makes the rule match with the following sequence of
words in RS3: produce[x1] a[x2] course[x3]
examination[x4] statistics[x5].

Thus, CS3 is accepted as a legitimate transformation of
Rule-1 by FindTrs. Subsequently, given the matching
of the above sequence of words in RS3 with the new form
of Rule-1, RS3 and
generateStatisticsReport()satisfy the SUCH
THAT conditions of this form and, therefore,
GenerateRules accepts it.

Note that in this example, GenerateRules is not
capable of establishing a preference between the two rules
that can be created from Rule-1 by applying CS2 and CS3

as both these rules are of the same generality.

6. Related Work
Since the mid-nineties, the investigation of applications of
machine learning techniques to problems arising in



requirements engineering has attracted the attention of
researchers in the requirements engineering and machine
learning communities.

In [19] van Lamsweerde and Willemet present an
inductive goal inference procedure which supports the
elicitation of goal-oriented requirements from sets of
operational scenarios provided by the user. In [1],
machine learning is used in conjunction with abduction to
support the evolution of requirements specifications using
the "Analysis-Revision Cycle" framework. Learning
techniques have also been used for validation of domain
specific requirement models (e.g. an air traffic control
model in [7]).

Finally, although not directly related to requirements
engineering, work in the area of learning formal
grammars [11][15] may inform the future development of
the approach presented in this paper. Ideas and algorithms
for representing and learning recursive productions in a
formal grammar may, for example, be applicable to the
problem of learning recursive traceability rules.

7. Conclusions and Future Work
In this paper we presented a machine learning approach
for generating requirements traceability relations. This
approach is based on a new learning algorithm that
produces traceability rules which are able to capture
traceability relations between requirement statements
specified in natural language and object models. The
creation of these traceability rules is informed by
examples of such relations which are provided by the user
and is based on the generalisation of existing traceability
rules. Currently, we are conducting a series of experiments
(along the lines reported in [20]) for validating the
proposed approach. Our experiments are based on an
industrial case study that includes the specification of
commercial requirements and use-cases for a family of
software intensive TV products.
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