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Abstract

The conjecture that the states of the ferminonic quasi-particles in minimal conformal field theories are eigenstates of the
integrals of motion to certain eigenvalues is checked and shown to be correct only for the Ising model. (© 1997 Published

by Elsevier Science B.V.

1. Introduction

The Hilbert spaces of two dimensional conformal
field theories [1] are described in terms of chiral al-
gebras which act on a finite set of fields. The basis of
these spaces are however not unique, which in turn,
on the basis of the characters, leads to very interest-
ing generalizations of the famous identities of Rogers-
Schur and Ramanujan [2,3] appearing in number the-
ory.

Character formulae for irreducible highest weight
representations of the Virasoro algebra (Vir) exist in
several alternative forms. The oldest, very often ref-
ered to as bosonic representation, are the formulae
of Feigin and Fuchs and Rocha-Caridi [4,5], which
directly incorporate the structure of the Null-vectors,
i.e. divides out the invariant ideal. When interpreted
as partition function one demands modular invariance
of these expressions. In order to investigate this prop-
erty it is most natural to re-express the characters
in terms of theta functions for which these transfor-
mations are well-known. Furthermore via the Jacobi

triple identity it is possible to establish an easy relation
to the currently ubiquitous quantum dilogarithm [6],
which is very useful to carry out semi-classical lim-
its. In order to understand the relation to massive inte-
grable theories, or more precisely perturbed conformal
field theories [7] more recent formulae, also known
as fermionic representations are most suitable. These
expressions posses a remarkable direct ferrnionic in-
terpretation in terms of quasi-particles for the states,
obeying Pauli’s exclusion principle. The connection
between these states and the spectrum of quasi-particle
excitations, which arise from the Bethe Ansatz equa-
tions for the eigenvalues of the Hamiltonians, have
recently been elaborated by the Stony Brook group
[8-11].

Whereas the former bosonic representations are in
general unique, the latter are not, possibly indicating
different relevant perturbations already at the confor-
mal point of the theory. Ultimately one would like
to construct these states explicitly in terms of cosets
[12], in a sense we shall specify below.

In the present letter we will check the simple con-
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jecture that the fermionic states are eigenvalues of the
integrals of motion of the same form as in the contin-
uum theory.

2. The quasi-particle interpretation

For the convenience of the reader and in order to
establish our notation we shall briefly recall various
equivalent expressions for the characters and then ex-
plain how they lead to an interpretation in terms of
quasi-particles. First of all the bosonic representation
[4,5] for the minimal models M (s, t) [1] with cen-
tral charge ¢ = 1 — 6(s — #)2/st and highest weight
Bopm=[(ns —mt)? — (s — t)*] /4st reads

—c/24 ©©

hu+2kl.m — h::+2k:,—m N I)
(Do kZ (@ ) o

=—o0

xs(g) =

Here we have used the standard abbreviation (g),, =
ITe, (1 = g*). Introducing the parameterization g =
€7 ky = rTw(sn £ mt), ko = 7st and using the
well known formula for one of the theta functions

O3(p.7) =3 ¢* € one easily derives

1 2 2
Xrm(@) = D [ @y (k_, ko)

—g TGy (ks ko) 1,
with (¢) denoting Dedekind’s eta function. The rela-
tion to quantum dilogarithms [6] S,(p) =] 5 (1 +
e?g*1) is easily established by employing Jacobi’s
triple identity
03(q,7) = S4(p)Sq(—p)Sq(ar7). (2)

Now one is in a nice position to carry out semi-
classical limits, by knowing that the quantum diloga-
rithm acquires classically the form of Roger’s diloga-
rithm [17]

. 1 i
71_1_21;1)3'(,(77 +p) =exp (ELZ(C”) +O(7')> . (3)

For the fermionic representation there exist two ver-
sions, which are of slightly different nature when in-
terpreted as partition functions. First

%o mAm' +m-B

Xap(q) =) (4)
o ;(q)m,--.(q)m,,

where A is a N x N-matrix, with N being the num-
ber of species, and B denotes a vector which needs to
be specified for a particular theory and super-selection
sector. The summation over m;, m,... may be re-
stricted in some way indicating that certain particles
may only appear in conjunction with others. Choos-
ing A to be the inverse of the Cartan matrix C, re-
lated to a particular simply laced Lie algebra, it was
found in [9] that for A, one obtains the Z,. | invariant
parafermionic theories, for the D, case the r = \/n /2
orbifold theories and for Eg, E7, Ey the tricritical three
state Potts, the tricritical Ising and the Ising model,
respectively. Different restrictions on the summation
correspond in this case in general to different symme-
tries of the Dynkin diagram and different vectors B
are related to different super-selection sectors. In [9]
these expressions where found by means of Mathe-
matica and to the knowledge of the authors explicit
analytic proofs are still lacking for most of them. An
exception is the character formula for the 4, = 0 sec-
tor of the Eg-theory, for which Warnaar and Pearce
{13] utilized the connection between the Ising model
and the dilute A3-model in order to prove it.

Of different nature are the expressions for the mini-
mal models M (s =1+2,r=1+3) which are entirely
based on A,

Xi,m(q)
- q(l/4)ka'—(1/2)e;+;_,,,~k—(1/4)(m—n)(m—n——l)
1;4 (Q)kl
[ ri
s (kl; — e, + €142
XH[Z( r}( I+ m)a , (5)
a=2 @ q

where the ¢ deformed binomial coefficient

(@)
) T ©)

has been introduced and the sum is restricted to k €
QRZY'+(m—=1)(e1+---€¢)+ (ep—) +€p-3...) +
(e1+3-m + €15-p .. .) . Furthermore e; denotes the
{-dimensional unit vector in the direction j and [; is
the incidence matrix I; = 2 — C;, of A;. This formula
was proven by Berkovich et al. [14] and Warnaar
[15]. (4) and (5) only coincide for ¢ = 1, 2. As
shown by Kedem, Klassen, McCoy and Melzer both
possess an interpretation in terms of fermionic quasi-
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particles. For this purpose one considers the characters
as partition function Z

o0
X~ Z= Z e—E(sla!eS)/kT - Z P(El)e—El/kT’ (7)
=0

states li

with T being as usual the temperature, k Boltzmann'’s
constant, £; and P(E;) the energy and the degener-
acy of the particular level [, respectively. Regarding
the system as a gas of particles in a box of size L,
L is thought to be large, one may quantize the possi-
ble momenta in units of 27r/L. Assuming that there
are n different species of particles one obtains this
way a set of single particle momenta p{ for the quasi-
particles, characterized by a, the particle type and a
non-negative integer i,, which is subject to some re-
strictions depending on the particular model. The en-
ergy spectrum minus the ground state energy and the
one for the related momenta may then be expressed as

n mg
E=) Y eapd),

a=l iz=l

n na

p=> > pt. (8)

a=1 i,=1

By definition if a many-body system obeys (8) in the
infinite size limit, its spectrum is said to be of quasi-
particle type. For the quasi-particles to be of fermionic
nature one requires that one of the restrictions acquires
the form of Pauli’s exclusion principle

p. * P, for i, # j,. (9)

Formally this is achieved by employing the well
known formula from number theory, (refer for in-
stance [3]) for the number of partitions Py, (n, m) of
a non-negative integer n into M distinct non-negative
integers which are smaller than m

>, m+1
ZPM(n,m)q"=q“/2’M<M“>[ " ] . (10
n=0 9

In case there is no upper limit, i.e. when m tends to
infinity, we simply employ on the right hand side

) {m +1
lim

M| T (@Ou

m—o0

] ! (11)
q

The requirement of distinctiveness expresses here the
fermionic nature of the quasi-particles in this Ansatz.
Employing (10) in (4) and choosing g = e~27/¥L ;

being the velocity, it is straightforward to derive that
the possible set of momenta is

2m
pi= 7 [(Aw = 3)ms+ Bat 3 + N, 1, (12)

where N, is a set of non-negative distinct integers.
Proceeding in the same way for (5) one ends up with
some restrictions from above for the possible momenta
for all particles except the first one. This feature dis-
tinguishes (5) from (4), since in the latter case the
particles are more on the same footing, whereas in the
former case particle one plays the dominant role. One
obtains for the possible momenta, in units of 27/L,
of the minimal models

pi € (PP (k). PP (k) + 1,pP™ (k) +2,...},
pi € (P (k). pi™ (k) + 1,....pM> (k) },
with

pUU(k)=z(ei+er+ e —enam— k1),
PP =5(en—e1—ex—---—e+ 3k 1p).

In this way one may associate to each energy level
some well defined set of fermionic quasi-particle mo-
menta

1 1 .
Ao P PP, (13)
which are in one-to-one correspondence to the decom-
position of the Hilbert space

Hhom = €D 1 Hm)s (14)
=0

in form of the irreducible representations of the Vira-
soro algebra

Lolhn‘m> = hn,m|hn,m>s
Lylhpmy =0 for k>0,
|#md =Lt Lty ... Lt |hnm) for k; > 0.

Here [ = k; + - - - + k, denotes the /® level of the ir-
reducible highest weight module with respect to the
weight h, ,. The question of how to construct these
states explicitly in terms of cosets of the Kac-Moody
algebra arises naturally, but is still an open probiem
{12]. Here we shall be less ambitious and only try
to find some further properties of these quasi-particie
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Table 1
Eigenvalues of /3 for the # =0 sector.
3
! d A;';x) ng’,l
0 1 0 0
1 0 -
2 1 49/12 (3’7/2
3 1 147/8 ‘”63/4
4 2 (133/6,301/6) ‘3’(43 19)
5 2 (1295/24, 2555,24) “’(365/4 185/4)
6 3 (273/4,441/4,777/4) (3>(333/2 189/2,117/2)
7 3 (2989/24, 475324, 7693/24) ‘”(1099/4 679/4,427/4)
8 5 (217/3,469/3,637/3,973/3,1477/3) ‘”(422 278,182,134,62)
9 5 (1029/8, 1953/8,2709/8, 3969/8, 5733/8) ”(2457/4 1701/4, 1161/4,837/4, 441 /4)

states. An explicit construction will of course ulti-
mately also allow to answer this question. For alge-
bras based on §1(2)k and su(k); such a constructions
have been provided in terms of a spinon basis [16].

3. Integrals of motion

In the case of massive integrable models conserved
charges serve as a very powerful tool. By assuming
locality in the momentum space and the possibility of
diagonalising them as one-particle asymptotic states,
they may be employed, even without knowing their
explicit form, to construct the scattering matrix of a
purely elastic scattering theory [7]. For the massless
models such infinite Abelian subalgebra of integrals
of motions are known to exist in the enveloping alge-
bra of the Virasoro algebra (U Vir) [18]. The charge
densities T>,(z) acquire unique expressions from the
requirement of mutual commutativity and the assign-
ment of a definite spin. For a chiral field in the plane
this may be achieved algebraically by demanding the
condition for a primary field T2;(z) with conformal
dimension 2k, (k € IN)

e 472(2)

+2k(n+1)2"Tu(z),
dz

(15)

[Lp,Tou(2)] =2

only to be satisfied for the Mobius subalgebra, i.e. for
n = £1,0. This means 75,(z) is asked to be a quasi-
primary field. Regarding the map from the plane to
the cylinder as a particular conformal transformation,

i.e. z =e“, one has a well defined procedure to obtain
the spm densities defined on the cylinder, for instance
T3 (w) = 23T (z) — c/24. Integration of the charge
densmes will give the integrals of motion of spin value
2k~ 1

L‘ITd
by = / —zﬁrzkw). (16)
rg
0

The first of them read [18,19]

<
=2 L_,L,+L}~ +2€L0+k3, (17)

n=1
oo
15—‘ LL L[ Z 1—’nL2n 1

nml

44+c 5 (24+¢)(20+ 3c)
- Ly +
8 242
Here ks, ks are constants which depend on the super-
selection sector. It will turn out that for cur purposes
these constants have to be chosen differently than in
[19].

: is the usual normal ordering prescription which
arranges the operators L, into an increasing sequence
with respect to their mode index. We shall now employ
these charges in order to give some characterization of
the quasi-particle states. On the representation space of
the Virasoro algebra they possess a well-defined action

Lo+ks. (18)
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and one may compute explicitly their eigenvalues for
each level

Iflhil,m> A;Srzllhn m> (19)

Denoting by Py the particular set of momenta which
correspond to the level I in the Verma module of A/,
the conjecture that the quasi-particle states are eigen-
states of the integrals of motion arises naturally

LP=vyp P, (20)

n n

m

with P =|p{,....p{",....p},...,p™). Drawing an
analogy to the continuum theory, where the conserved
charges act additively and diagonal on asymptotic one-
particle states one may conjecture for the eigenvalues

ny

/\;‘f) = ‘y.(,;?), Z X Z ) * + const. 20

Ja=1
3.1. The Ising model

We shall start by verifying this conjecture for the
Ising model,ie.c = % for which we expect it certainly
to be true since it is known to be equivalent to a free
fermion theory. In this case we have the following
identities for the characters

474y
x1.1(q) = Z(Q)Zm (22)
1/48 34 e q2m'+2nz+%
(@)= —_—> (23)
XM= 2y
Zm —m-%
1/48 34
xi3(g) = Z : (24)
=0 (q)Zm

The results for the eigenvalue computation for the
highest weight representation % are given in Tables
1 and 2. The eigenvalues A are computed explicitly
by acting with the integrals of motion on the high-
est weight representation. We present the computa-
tion until level nine, since then the second Null-vector
appears in the Verma modul. For the computation it
is not necessary to divide out the complete invariant
ideal, but only all descendants of L_;, which is a Null-
vector at level zero. This way one obtains of course
more eigenvalues, but one may easily match them with

Table 2
Eigenvalues of /5 for the h = 0 sector.

{ d

&

0 1 0 0

1 0 - -

2 1 8723/1152 x>61/8

31 74503/768 ‘5) 1563/16

4 2 (60203/242, 300443/242 ) X{5>(421/4,°101 /4)

the values of the appropriate . In principle the con-
stants x'* could have been fixed already after the first
few levels and all higher levels serve as a consistency
check. The constants k3, k5 were found to be different
in the Ramond- and Neveu-Schwarz sector

55 2161
=30 K= g etk (23)
For the constants y we obtain
3 _ 7 (5) _ 143
=g X0 = T (26)

Notice that the Xls) do not depend on A, i.e. they are
universal constants independent of the super-selection
sector.

3.2. The unitary minimal models

We will now carry out a similar argumentation for
the unitary minimal models. First we consider the 11-
sector, for which (5) takes on a particular simple form

|y Xolt 2
gttt (ki; —
(q)ll H[ ko

a=2

XII‘I(Q) =
ke(2Z)?

J (27)
q

such that the minimal momentum becomes
Tables 3 and 4 show some values for the equivalent
computation for the other super-selection sectors.

P (ky, k.. k)

/1 ko
i 1 : ki + k3
=- |1 |-z kt+ki] (28)
2 {1 4 | ks +ks
\ :



204 A.A. Belavin, A. Fring / Physics Letters B 409 (1997) 199-205

Table 3
Eigenvalues of I3, Is for the 4 = 1/2 sector.

(3} (3) (5) (5)
L M, Py,

0 1 7/48 XE-‘) 1/8 143/4608 XES) 1/32

I 1 63/16 Xé3)27/8 3861/512 ¥P243/32

21 875/48 x'V125/8  446875/4608  x\>'3125/32
| 1

Table 4

Eigenvalues of /3, /s for the £ = 1/16 sector.

! d /\(3) ,),(3) A(S) ')’(5)
P it "2 P,
0 1 1/16  1/16 1/16 1/16
11 59/48  xP+1/16 19/18 X\ +1/16
2 1 451/48  xV8 41716 as85/144 V3241716
Table 5

Fermionic states in the unitary minimal models.

Level d Momentum 1 Momentum 2

1 0 - _

2 1 pl(2,0,0,..=1/2 p;(2,0,0,...)=3/2

3 1 pl(2,0,0,...)=1/2 p‘%[(2.0.0,...)=5/2

4 2 pl(2.0,0,..0=1/2  pi(2.0,0,..)=7/2
pl(2.0,0,..)=3/2  pl(2.0,0...)=5/2

This means in all unitary minimal models the struc-
ture of the first levels may be build up entirely from
particle one alone. Compare Table 5 for this.

To be more general we keep now in (17) also the
variable in front of Ly to be arbitrary, say kg. By the
same procedure as in the previous section the action
of I3 on these states leads to the following equations

d+c+ 2K+ k= (7/2) XY,
17+ ¢+ 3k + k3 = (63/4) P,
34+ 6¢ + /148 + 88c + 16¢2 + 4K + ks

=43,\/§3),
34 + 6¢ — /148 + 88¢ + 16¢2 + 4K3 + ks
=19x%.

It turns out that this is in fact the only solution for
these equations and hence (21) only holds for free
fermions. In principle the assignment of the right hand

side to the left hand side in the last two equations
might have been reversed, but we expect to recover
the Ising model as a particular case and therefore we
have chosen the above relations. It is remarkable that
when taking the values of (17) up to level 3 the above
equations become true identities for all values of the
central charge. Proceeding in the same way for (18),
naming the constant in front of Lo ,%2, leads to the
following equations

581 5 1563
- - 30 =— " (5
g Stk Th=Tex

Choosing ks to be zero in order to be able to recover the
Ising model we obtain already from these two equa-
tions that in fact ¢ = § is the only solution. Hence the
fact that for the /3 integral of motion the third level
allowed an arbitrary solution must be viewed as a co-
incidence.

4. Conclusions

Similarly as in the last section we may proceed for
the other minimal models. For instance we have car-
ried out the equivalent computation for the M(2,5)
{the Yang-Lee edge) model, also with the same nega-
tive answer. In conclusion we can say that, except for
the Ising model, the integrals of motion do not act in
the same way on the fermionic quasi-particle states as
expected from the continuum theory. It would be very
interesting to investigate whether these states are at all
eigenstates of the integrals of motion.
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