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Abstract

We investigate proposals of how the form factor approach to compute correlation functions at zero
temperature can be extended to finite temperature. For the two-point correlation function we conclude
that the suggestion to use the usual form factor expansion with the modification of introducing
dressing functions of various kinds is only suitable for free theories. Dynamically interacting theories
require a more severe change of the form factor progfar2002 Elsevier Science B.V. All rights
reserved.

PACS 11.10.Kk; 11.55.Ds

1. Introduction

The computation of correlation functions is one of the central objectives in quantum
field theories. In general, this can only be achieved by means of perturbation theory in
the coupling constant. Nonetheless, it 1 space—time dimensions many exact results are
known, in particular, at zero temperature. At present, one of the most successful approaches
in this direction is the form factor program. Originally this method was developed to
compute correlation functions for massive models at zero temperature [1,2]. More recently,
it has also been demonstrated, that the approach can be employed successfully for the
computation of massless correlation functions [3] for vanishing temperature. However,
in a realistic set-up of a physical experiment one needs to know such functions in the
finite temperature regime. Computing for instance physical quantities from linear response
theory one requires the response function in form of the canonical two-point correlation
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function at finite temperature
(AO(x, ) AO'(x'. 1)) (1.1)

whereAO(x, t) = O(x, t) — (O(x, t))r. For the static case, e.g., for the computation of
electric and magnetic susceptibilities this goes back to [4]. Taking for instance the local
operatorg)(x, t) andO’(x, r) to be the currenf (x, 1), the dynamical response is needed

to compute the conductivity by means of the celebrated Kubo formula [5].

In [6] a proposal was made to adapt the form factor approach to finite temperature
computations. In there it was demonstrated for some operators of the Ising model that the
modified approach indeed reproduces the expected results for the temperature dependent
correlation functions, even when boundaries are included. In order to make the method
meaningful several technical assumptions were required to eliminate various infinities.
Since not all of them can be justified in an entirely rigorous fashion, further evidence is
desirable to support the working of the proposed prescription, even for the Ising model.
The proposal is very appealing, since apart from the introduction of a dressing function,
the main structures of th€l' = 0)-form factor approach are perpetuated. It was argued
in [6] for the Ising model, that the dressing functions admit an interpretation in terms of
density distribution functions. This observation was taken up in [7] and it was conjectured
that the interpretation should also hold for interacting theories. Some checks which support
the validity of this conjecture for the one-point function were presented in [7]. Shortly
afterwards, doubts were raised in [8] on the working of these formulae for the two-point
function, albeit only a counter example which required a chemical potential was provided.
An additional controversy arose thereafter about the nature of the “dressing function”
(see Eq. (2.15)) which has to be employed in the context of the one-point function. In
[9], it was proposed to employ the on-shell free energies, rather than the pseudo-energies
obtainable from the thermodynamic Bethe ansatz (TBA) as suggested in [7]. For the one-
point function evidence was provided in [10] that the proposal in [9] appears to be incorrect.
No explicit claims concerning the two-point functions were made in [9].

Alternatively one may also compare physical quantities which on one hand involve the
temperature dependent two-point correlation functions and on the other can be computed
by different means. This provides indirectly information on the temperature dependent
correlation function. In such a context one can exploit the fact that one has additional
parameters available in which one can develop. For instance in [11] a proposal was
analyzed of how a low frequency expansion can be implemented in the calculation of
the conductance in a boundary problem, by replacing the reflection amplitudes by a
renormalized counterpart. Or, viewing this alternatively, the zero temperature form factors
have been replaced by renormalized ones. However, it is not clear how this procedure can
be formulated outside the mentioned context, in particular when no boundary is present.
Also in a physical context, namely, by comparing two ways of computing susceptibilities
the dressed form factor approach, similar to the one in [6,7], was tested in [12] for
nondiagonal theories in the low temperature regime.

In the light of the above statements it is highly desirable to check the dressed form
factor approach directly outside any physical context for the full temperature regime. So
far the only few explicit computations using the dressed form factor approach may be found
in [6,8]. It is, therefore, very suggestive to verify it for a simple dynamically interaction
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theory. The main purpose of this manuscript is to provide such an example and contribute to
the above mentioned debate providing further evidence for the (non)-validity of the various
proposals. In regard to the importance of (1.1), we want to focus especially on the study of
the expressions for the two-point functions.

Our manuscript is organized as follows: in Section 2 we outline the various proposals
made so far to evaluate temperature dependent correlation functions in the massive as well
as in the massless regime. We investigate these proposals for two models: the complex
free Fermion/Federbush model (Section 3) and the scaling Yang—Lee model (Section 4).
In Section 5 we state our conclusions. In Appendix A we assemble various properties of
functions which occur throughout our computations.

2. Temperature dependent correlation functions

We start by providing a concise review of the main features of the prescription to
compute temperature dependernpoint correlation functions by means of form factors.
In general a temperature state is described by a density madnixi the expectation value
for observables is the trace over the product of this matrix with the observables. Taking
to be eigenstates of the Hamiltonighwith eigenvaluesy,, and as usugd = 1/kT with
k being Boltzmann’s constant arfd the absolute temperature, the temperature dependent
n-point function for the observabl€?; - - - O, is defined as

(Ol(-xla 1) - On(xp, tn)>T

1
== ) e P01 1)+ Opan, i) ). (2.1)
v
As usual, this expression is normalized by dividing with the partition function
Z=>Y e PEviyly), (2.2)
v

which ensures that the trace over the density matexe ## /Z is one. The central idea
of the “dressed” form factor program is now, as in the finite temperature case [1,2], to
reduce the computation of the expansion (2.1) to the computation of form factors

F;? = (O(0)|y). (2.3)
This is achieved simply by the insertion 0f — 1) complete state_, |¢)(y| = 1.
Suppressing for compactness the space—time dependence of the operators, this reads

(O1---On)r

1
=~ 2 ¢ PHWolOY) (¥alO2la) - (Yn-1lOal o). (2.4)

Yo Yn—1

Thereafter, one needs a meaningful prescription to relate matrix elements of the form
(¥'|Oly) to those where the vacuum is on the left, as in (2.3), and a shift operator

0 xOx, 1) = f(x,HO(0)
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which moves the operator to the origin. In the following we will také = (—ir, 0),
which implies the restrictiom < 8 in order to ensure that exp(8 + r)H) is a trace
class operator.

Let us now specify the statég) to be multi-particle states of the form

) =28 6007} 02} 60), (2.5)

where the operato@l(@) are creation operators for a particle of types a function of
the rapidityd. These operators are assumed to satisfy the Faddeev—Zamolodchikov algebra
[13]

zl o0 Z] 02 = SK 0127 (02 2] (01)

with S being the scattering matrix depending on the rapidity differéage- 61 — 62. The
prescription(y'|O|v) — (O|yy') then reads

(2, (01) -+ Zp0, (6,)|Ox. )| Z) (60) -+ Z] (60)
= > o0z -2} 6025, (017) - Za,(6,7)) (2.6)

all contractions

with 6~ =60 — im + ie ande is an infinitesimal quantity and being the antiparticle of.
After shifting the operator to the origin, the r.h.s. of (2.6) involves #hgarticle form
factors, which we denote as

FOWtn 9y, 0,) =(00) | 2] (01)---Z] (6))- (2.7)
These form factors have to satisfy various properties [1,2], such as Watson’s equations

FOI b1 g iin,. )

Ol i1 i

= F, (00006 ) Sy ugsn Bri), (2.8)
FORtn (91 4+ 27i, ..., 6,)

=y FOH2 iy, . 0,,601), (2.9)

Lorentz invariance
FOWtn gy . 6,) = FOML (g + X, ..., 6, + A), (2.10)

and the so-called kinematic residue equation

Res_, g, Fro " (@ + i, 00,01, . ... On)

n
=i [1 —y? 1 Su (901)] FOWL-tn gy, ... 6,). (2.11)
=1

In (2.10) s is the Lorentz spin of0 and A € C an arbitrary shift. In Egs. (2.9) and
(2.112) yf is the factor of local commutativity defined through the equal time exchange
relation of the local operata(x) and the fieldD,, (y) associated to the particle creation
operatorsZ} (9), i.e., 0, (x)O() = y° O(y) Ou(x) for x>yl It is the singularity
lime_o ZL(@)Z,;(@‘) — oo, implicitin (2.11), which is the reason for the presence of the
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€ in (2.6). The renormalization prescription which eliminates these divergencies is outlined
in [14] (see also [6,7]). Other types of singularities arise from the contractions of terms
like Z#(B)ZZ(O)ZV(B’)ZI(Q’) — 82(0). As demonstrated explicitly in [6] such terms are
absorbed in the (re)normalization factér In this way the one-point function [6—10,14]

do
(ONT Z > f n}(z T ~ exp{—B[euy (01) + -+ £, (0]}

n O 11 Un
1
(Zuy 00+ Z,, O[O Z), 6O Zjy O) 7<= (212)

becomes a meaningful expression. In many cases this function is an important normal-
ization factor, however, for the reasons mentioned in the introduction we will focus our
attention on the two-point function. It results to [6]

(O(F)O/(O))
doy-- d@n e o
_Z Z / n!m)yn [fﬂz(el» T)e™ Eu; ]
n=1H1"/tn i1
x FOMtn@gy . 0,)[FO 16y, ..., 0] r< % (2.13)

This formula requires several explanations and comments: we dropped here as usual
another infinity coming frome = 0 in the infinite sum. The sum over theextends over
particles and holes. This is understood in the way that to each particle type present at zero
temperature one may associate a hole, such that each term at zero temperature which is
summed overn-particles is mapped into’2erms at finite temperature. According to [6],

the form factors involving holes may be constructed from the ones of particles by-an

shift

R TSNS
= R0l s gy o — i, 6. (2.14)

The origin of the hole interpretation is thus the crossing of particles from bra to ket by
means of (2.6) together with the renormalization prescription. As explained in detail in [6],
in comparison with the one-point function there are additional singular terms emerging in
the two-point functions. In the expansion they occur in terms in which the product of the
two form factors associated 10 and O’ involve a different amount of particles. These
terms are just dropped, which could be a possible source for the difficulties we encounter
below in interacting theories.
The functionsf; (6, T') are the so-called filling fractions
1

10D = S @ exd—ei . D] (19
involving the functions; (6, T). For the noninteracting case, treated in [6], this function is
taken to be the on-shell energy divided by the temperaiée T) = m; /T coshh. When
extending the validity of these formulae to the interacting case, one may speculate on the
nature ofe; (9, T). In [7]it was proposed to interpret(6, T') as the pseudo-energies, which
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may be determined by means of the thermodynamic Bethe ansatz equation [15]
;(0,7) =rm; coshp ik In £:1(0). 2.16
£i(0,F) =Fm + 2 Loy xIn £;10) (2.16)

As common we denote hee= m/T, m; — m;/m, with m being the mass of the
lightest particle in the model. Byf x g)(0) := 1/(27) [d0’ f(6 —6')g(6’) we denote the
convolution of two functions ang;; (8) = —id In S;;(9)/d6. In contrast, when specializing

the statement in [7] to fermionic statistics, i.8,,(0) = —1, it was suggested therein to take
instead the free on-shell energies divided by the temperature also in the interacting case.
More generally, this means that the eigenvalije of the Hamiltonian in (2.4) is either

taken to be the free on-shell or the pseudo-energy. In each case, the pseudo-energies of the
holes are simply the negative of the ones of the particles

ehole(t, T) = —éparticlelt, T)- (2.17)

A simple but key property satisfied by the two-point function is the Kubo—Martin—
Schwinger (KMS)-condition [16]. Assuming to have a time evolution operaioat
disposal, it is easily obtained from the trace properties of the temperature dependent
correlation function

(w,OO’)T = (0 w4ip (’))T = (0x,nH0'(x, t/))T
=(0'(x".1)O(x, 1 +iB)),. (2.18)

For more detailed discussion on this formula see, e.g., [17]. For the chiee(—ir, 0),
as in (2.13), this condition reads

(0 00), =(0'w;_p0O), & (00)O0), =000 - p)),. (2.19)

Noting that(O(r)O’(0))r = (O(0)O’'(—r))r, it is clear that (2.13) indeed satisfies the
condition (2.19), provided that the form factors obey

O|nx holesn x particles O'|nx holesm x particle: *
Eo" PateeR61. .., ) [Fr " PateR61. - .., Onam)]

n

Olnx particlesn x holes
=F, " P 01, ... Onm)

% [Fn0/|n>< particlesn x holes(el, L ener)]*. (2.20)

However, from one of Watson’s equations (2.9) and Lorentz invariance (2.10) we easily
derive that in general one picks up a factor exps’ — s) on the r.h.s. of (2.20), where

s, s’ are the Lorentz spins aP and©’, respectively. Consequently, there is no problem
with KMS when(s’ — s) € 2Z like for instance when the two operators coincide. The latter
case was treated in [6—10]. Despite the fact that the KMS condition puts some structural
restrictions on the two-point functions, it is not constraining enough in what more precise
functional details concern, e.g., it cannot shed any light on the controversy [7,9,10] about
the precise nature of the dressing function (2.15). However, it dictates the two functions
e, (6, T) appearing explicitly in (2.13) and (2.15) to be identical.

To clarify further the working of (2.13) it would be highly desirable to compute
this functions for more explicit models. Unfortunately there are not many temperature
dependent two-point functions known from alternative approaches which one could
compare with in order to settle the issue. Nonetheless, various limits are known which
one can take as benchmarks.
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2.1. The massess limit, conformal correlation functions

In conformal field theory various methods have been developed to compute correlation
functions. At vanishing temperature the most celebrated approach is the one which exploits
the structure of the Virasoro algebra, such that the correlation functions obey certain
differential equations [18]. To include the temperature is also fairly simple in this case. Itis
achieved just by mapping the observables from the plane to the cylindeexp(27 T#),

O(z) » 2rT) Loe=2rTIA0 ()

(01,910’ (92, 92)),
= (0@ O (¥2)),(0@W1) O (D2)),
= (2nT)20 T80 FR0 TR (O(21) 0 (22))_o|OGEDO G2 g, (2.21)
By construction (2.21) satisfies the KMS condition, provided

(0G0 (22))7_=(0"(22)0(21));

Alternatively one can get some further information on this function by exploiting the KMS
condition on one of the holomorphic sectors by adopting a proposal made in [20]. Ignoring
normal ordering one obtains

(0O (92), = Z Z exp[—27i T (911 + 92k)|[On, O] (2.22)

n=—o0 k=—00

For this to hold we only need to assume that@r}1) and O’ (¥2) exist Fourier—Laurent
mode expansions of the form

oo
OW) = Z exp(—27niTY)O,. (2.23)
n=—oo

In addition one makes use of the fact that the time evolution is governed, Oy=
eltloOe~itLo with Lo being the zero mode generator of the Virasoro algebra. If then
furthermore the commutatft.g, O, ] = —n O, holds (this is true for instance f@, = L,
the modes of the energy—momentum tenébr= J¢ the modes of a Kac—Moody current,
O, = ¢, the modes of a primary field?, = G, the modes of av = 1 supersymmetric
field),! the relation (2.22) is derived immediately. To make contact with (2.21) one needs
of course to incorporate a proper normal ordering prescription.

Alternatively, we may compute the correlation functions by using the (dressed) form
factors related to the massless theory. The prescription of taking the massless limit
was originally introduced in [21] within the context of a scattering theory. It consists
of replacing in every rapidity dependent expressfor> 6 + o, where an additional
auxiliary parametes has been introduced. Thereafter one should take the dimit co,

m — 0 while keeping the quantity: = m/2 exgo) finite. For instance, carrying out this

1 In[19] it was shown, however, that supersymmetry and temperature seem to be incompatible concepts. Only
the vacuum states admit the implementation of supersymmetry.
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prescription for the momentum yielgs. = +m exp(+6), such that one may view the
model as splitted into its two chiral sectors and one can speak naturally ¢f.)efind
right (R) movers. Hence, having a function depending on the rapiditiespdrticles, it
will be mapped into 2 related functions

lim f(01+x0,...,0, + x,0)
o—>00

vi=L forx, =—,

vi=R forsx =+. (2.24)

=f|)1,...,1)n(917---791’l)7 {
For the scattering matrix this means every massive amplitude is duplicgted=
Sp(0) = Sgr(0) and in addition one obtains the amplitudes connecting the two chiral
sectorsSgr/Lr(6) =liMy 00 SO £ 20).

In [3] this prescription was also carried out for expressions of form factors. In that
case each-particle form factor is turned into”2n-particle form factors. Note that
when considering (2.24) for form factors this does in general not lead to the same
expressions as when taking the scattering matrges6), Spr (), Srz(0), SLr(0) and
determining the form factors thereafter in the usual fashion. This two ways of carrying
out the limit only commute for form factors associated to operators whose Lorentz spin is
vanishing.

In order to be able to formulate the analogue of the expression (2.13) for the massless
case one also requires the massless version of the dressing function, i.e., the massless
analogues of the pseudo-energies. For this one can use once more the above recipe,
such that the TBA-equations (2.16) are replaced by the same equations @jth-

Srr(0), SRr(0), SRL(9), SLr(9) and? m; coshh — 7 m; expd. The working of this was
confirmed in the analysis of [21].

Having now outlined the prescription to compute the massless (temperature dependent)
correlation functions, a nontrivial check is constituted by the comparison with (2.21).

A more constricting check is to start with (2.13) and carry out the massless and zero
temperature limit. That is checking the commutativity of the diagram in Fig. 1. In

f . =1,f =0
1) particle > * hole 1
<Oo i,T T=0 <OO ﬁ.T“D
dressed form facti
essed form factors filling fractions, TBA standard form factors
— FRRFRL FRF?FRI T
FLL’FLR FLL’FLR
1 T=0 1
SO = <00z,

imassless dressed form factors massless form factors

map to cylinder

Fig. 1. Two-point correlation functions in various limits.
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particular, the massless limit can possibly shed more light on the issue of different dressing
functions.

3. The complex free Fer mion/Feder bush model

We will now demonstrate the working of the previous approach with various examples.
Let us start with the complex free Fermion case (the complex version of the Ising model)
with Virasoro central charge = 2 x 1/2. One reason for not considering directly the
simpler case of self-conjugate Fermions is that most of the formulae presented in this
section also hold for the more general Federbush model [24,25], which can be viewed as
an anyonic generalization of the complex free Fermion. This means we can also regard
the results of this section to hold for more exotic statistical interaction, since apart from
the disorder field the operators are formally identical. In general, the free Fermion is
particularly attractive to start with, since for many operators the highgarticle form
factors are vanishing such that the infinite series in (2.13) terminates. For the self-conjugate
Fermion several two-point correlation functions at zero temperature have been computed,
e.g., in [22,23]. Despite the simplicity of the model, only for very few operators massive
temperature dependent correlation functions have been evaluated by means of form factors
[6]. In order to put formula (2.13) on firmer ground it is therefore desirable to check its
working first of all for a wider range of operators.

Taking the operato® and(®’ to be the current, we will present all four cases illustrated
in Fig. 1 in some detail. The current—current correlation functions are particularly
interesting, since they occur explicitly in the application within the Kubo formula.
Adopting the notation of our recent exposition [25], we consider the correlation function
involving one of the chiral currents* = J% + J1. The only nonvanishing massive form
factors for these operators are

F i (0.6) = —F 17(6.6) = —inme™'F . (3.1)

In the following we shall focus on the mutual correlatorfo& J—. Out of the four cases
depicted in Fig. 1, the conformal case at zero temperature is the easiest to treat and hence
a good starting point. According to the massless limit prescription (2.24), we obtain

Fy(6.6) = —F; % (6.0) = —2rimexp(6 +8)/2, (3.2)
F311(0.0) = F) 1 p(0.0) = F} 3y (6.6) =0, (3:3)
F311(0.0) = F}1p(0.0) = F} iy (6.6) =0, (3.4)

such that (2.13) yields

(J(r)J(0)>m:O,T:O

extf—r (e’ +)](") = = (3.5)

r

00 -
de deo

— 4722
M -JT (277:)2

—00
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Recalling that the current has scaling dimensibp= 1, A; = 0, this agrees of course

with the leading order term of the well-known conforniall)-current—current two-point
correlation functiork/r2 for level k = 1, see, e.g., [26]. Note, that as it should be, the
auxiliary parametei: has vanished in the final expressions. Raising now the temperature
we can use the same expressions for the form factors, but the proposal (2.13) dictates that
we have to dress them with the massless version of the filling fractions

1
1+ exp(Fri/ Teb)

for particles ¢) and holes €). The values are in agreement with (2.17). With this we
compute

fe0.7)= (3.6)

(1" 1), _,
_ 4m27_[2 Z / 2129 d)ez 9+9 fu(e T)fl) (9 T) —rm(ue +\)¢0)
nsz
=0 3.7
Sié(mrT) 3.7)

The result (3.7) can of course also be obtained directly from the mapping (2.21) and the
correlation function at zero temperature (3.5). Making now the model massive, we employ
instead of (3.2) and (3.3) the form factors (3.1) and evaluate

()T O),,
— m2x? f,f d)@z exp| —rm (coshd + costd)] ()
JT

—00

—mz[Kl(rm)]z, (3.8)

whereK1(x) is a modified Bessel function (see Appendix A). Using the limiting behaviour
(A.2), we recover as expected the conformal correlation function (3.5) in thedimit 0.
Considering now the massive finite temperature regime, we have to include in the previous
computation the massive dressing function

1

f20.D = 14 exp(m/T coshp)’ (3.9)

Then we compute according to (2.13)
(J(NI(), ,

22 d9do 4.5 5 —r m(ucoshp h)
=m-m Z / (27.[)2( + )fﬂ(Q,T)fv(Q,T)e rm(pucoshf+v cos

v:l:<>Q

=m2[l’(\f(m,r, T)]Z. (3.10)
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The functionsl?f(m, r, T) are defined in Appendix A. The restriction on the arguments
of the Bessel functions (A.1) reflects the conditiens 1/ 7 in (2.13). With the help of
(A.10) we recover the expression (3.8) fBr— 0. Taking instead first the limitz — 0
in (3.10), we reproduce with (A.5) the previously computed conformal correlator (3.7). In
conclusion this means the different methods to compute) J (0)) for several mass and
temperature regimes are consistent and indeed the diagram in Fig. 1 is commutative for the
considered choice of operators.

We proceed now similarly and compute the two-point correlation functions involving
various other operators. In what follows we will be less explicit as (fbg)J(0)) in
the derivation of the finite temperature and mass correlation function and just quote the
final results. Thereafter, we carry out the various limits by using the formulae quoted in
Appendix A.

Recalling that the only nonzero form factors of the trace of the energy—momentum
tensor® are

FSV"(0,6) = Fy"(0,0) = —2rim®sinh(6 — 6) /2, (3.11)
we obtain, according to (2.13), for its mutual correlation function
(©)6(0),, , =2m*[K; (m,r, T)? — K (m,r, T)?]. (3.12)

We can verify the commutativity of the diagram in Fig. 1 similarly as for the current—
current correlator

lim [ im (0 ©(0)),, ;] = |im0[2m4(1<f(rm) — K¢(rm))] =0, (3.13)
TIiTO[nLiTO(@(r)@(O)MT] = TIiTO[O] =0. (3.14)

The conformal limits in (3.13) and (3.14) reflect of course the vanishing of the trace of
the energy—-momentum tensor. Noting that the energy density operatith conformal
dimensionA. = A = 1/2 is related to the trace & = me, we obtain more interesting
limits

o . 2

lim [lim (€(r)e(0)),, ;] = nLILnO[ZmZ(Klz(rm) — K&rm))] = 2 (3.15)
: : : 27272 2

TIITO[JzIT0<E(r)E(O)>m’T] - TI@O[Sinz(an)} - r2Act+2Ac” (3.16)

which are again consistent. Recalling that for the+)-component of the energy—

momentum tensof *+ =T with A7 = 2, A7 = 0 the only nonvanishing form factors
are

Fzﬂt‘i (6.6)= FZ'”(B, 0)=mi/2m*exp(0 + 0 )sinh(0 —§)/2. (3.17)

The mutual correlation function results to

4
THTO), , = ’%[l?;(m, r T)KF (m,r. T) = Ky (m,r, T)?]. (3.18)
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Once again the commutativity of the diagram in Fig. 1 is confirmed

. R o m?
lllino[TIITO(T(r)T(O))m’T] = IL|LnO_§(Kl(rm)K3(rm) — Kzz(rm)):|
1
=53
. R — 1 =474 c
TI|LnO[nI1|Ln0(T(r)T(O))m,T] = T[ILnO_ESin‘l(an)} = an Ay

We also compute
4
— m
T"e©), ;=5

together with the expected limiting behaviour

[Ky (m,r, T)? = Kg (m,r, T)KS (m, 1, T)],

. = . m4
m [TIITO(T(r)@(O»m,T] =n|1|510[7

li
m—0
T“Tou@o(nr)@(o))mf] = T”To[o] =0.

(K2(rm) — Ko(rm)Kz(rm))i| =0,

Once again, the conformal limits in (3.22) and (3.23) reflect the vanishing of the trace of

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

the energy—momentum tensor. Replacing— me will only change in (3.22)n* — m*

and the remaining limits are the expected ones.

However, there are also operators for which the prescription does nor work so smoothly.

As an example, we now want to compyi(r)(0)),,.7, with 1 being the disorder field

of the complex free Fermion theory. For this purpose, it is necessary first to recall the
expressions of the form factors related to this field, which were computed in [25], and
shown to be different from the ones associated to the counterpart of this field in the Ising
model. Similarly as for the latter model, it was found that only the form factors involving

an even number of particles are nonzero. Sincelfdhe only nonvanishing form factors
are the two-particle ones, the only nonvanishing form factors of the fieldich will be

relevant for these computations are
3 (6,6) = 4" (-6, -6)
=i/2(uyr—oexf (0 —0)/2]cosh* (0 —6)/2.
With these data we compute, again according to (2.13),

(T)n©O), ;

(3.24)

(3.25)
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We employed Lerch’s transcendental functdx, s, «) (see Appendix A). In comparison

with our previous computations we have one integration remaining. This results from the
fact that unlike before we have now a tefooshy + coshy) in the denominator, which we
eliminate by a differentiation with respectitand a subsequent integration. Alternatively,

we obtain the same result by a direct computation using a variable substitution similar as
in [22] sinh# /2 = r cosp, sinhd /2 = r sing. By employing (A.14) the limits come out as

T=0767 162 (3.26)
However, starting with the limitz — 0 in (3.25) is problematic, because the expression
lim,__1®(x,s,a) for Res < 1 is not well defined. We obtain similar phenomena for
other correlation functions involving different operators, suck/ag) 1. (0)) 7 .

In principle one could extend this list of correlation functions involving various other
operators and support more and more our overall conclusion, namely, that the conjecture
of a dressed form factor expansion (2.13) is meaningful for free theories even when the
underlying statistics is anyonic. Next we want to see whether the picture still remains the
same for dynamically interacting theories.

li
m—0

| B . 672rm (u) =
m [ThTO(T(r)M(O))m,T]:,,L'Lno[<m ]: =

4. Thescaling Yang-L ee model

The scaling Yang-Lee model (or minima\léz)—affine Toda field theory), like its
conformal counterpart with Virasoro central chakge- —22/5, is one of the simplest
interacting integrable quantum field theories i 1 space—time dimensions. It is an ideal
starting point to test general ideas, since it is comprised of only one massive particle which
couples to itself. This is reflected by the pole in the physical sheet of its scattering matrix

sinhg + i sin/3
S 6) = sinhg — i sinx/3 (4.1)
which was proposed in [27]. Closed formulae for @lparticle form factors for various
components of the energy—momentum tensor were computed in [28]. For our purposes we
will just require the ones up to two particles. We recall from [28] in a slightly different
notation the form factors associatedito* = T

2 .2
T_ T Ty twm 20
FO —_%, Fl (9)——W€ , (4-2)
2
= am* coshhio—1
FJ (01,02 = —5 Cosmlzl " /2e91+92me<012), (4.3)
where the so-called minimal form factor is
T dr sinh’ sinh’ sinh’ t(im —6)
Fimin(6) = exp —8f — 22— Ssif (4.4)
t sinké ¢ 2r

0
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andv is a constant given by

Oodt sinh sinh% sinh%
V= exp<2 — 2 S 5

=1.11154.... 4.5
t sink? ¢ ) (4.5)

0

Our aim is to use these expressions and compute by means of the dressed form factor
formula (2.13) the two-point correlation functions. Unfortunately, to our knowledge there
exists no computation in the massive and temperature dependent situation to compare with.
However, in the massless case we have two benchmarks, namely

_ 111
(T(")T(O))m:T:O = g A (4.6)
_ 11 #4714

(T(T(0) il 4.7)

m=0.T = "5 Gif(zrT)

Here (4.6) is just the well known two-point function from conformal field theory
(T(r)T(0))=r—0 = ¢/2r—*, with ¢ = —22/5, and (4.7) is this formula mapped to the
cylinder according to (2.21) with 7 = 2. Let us therefore compute the massless scattering
matrices and form factors from (4.1) and (4.2), (4.3), respectively. According to the
prescription (2.24) outlined at the end of Section 2, we compute

SrRr(0) = SLL () = SyL(9), Srr(0) =SLr(0) =1 (4.8)
and
Fy =F, =F},, =F) g=F) p, =0, (4.9)
i A2
T i ITm 20
Fl,R(e) = —We . (410)

xm? coshopp—1
2 coshhi2+1/2

These expressions also exemplify our remark at the end of Section 2, namely, that one
cannot take the scattering matrices (4.8) and compute the form factors thereafter from first
principles. In that case we would obtain &nand L L contribution, which are evidently
vanishing when we carry out the method directly on the formulae (4.2) and (4.3) for the
massive regime. The reason is simply that the “massless prescription” is only a way to
carry out the limit starting with the massive expressions, but not a first principle concept.
Nonetheless, viewing it in this sense it works extremely well.

Let us commence with the zero temperature case. The one-particle contribution can be
computed analytically

"2 Froin(612). (4.11)

FJ gp(61,62) =

T(T o 7 —mre
[FOTON o= [ Sel L@

_ 7v/31  22020498..

- = = 4.12
202 14 ] (4.12)
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Table 1
Two-particle contribution td7 (r)T (0)),,—7—0

r 0.0001 00003 00005 0.001 0.01 0.1
P THTO) 2 ,_,10° 05631 19435 20457 20487 20487 20487

We observe, that the expected value is already almost saturated. To compute the two
particle contribution is a fairly simple numerical exercise. We evaluate

(T(V)T(O)>;(712)=T=O = / % |F2T,RR(91a 92)|26—ﬁ1r(691+e92), (4.13)
(27)

and present our results in Table 1

As mentioned in [28], when summing up according to (2.13) witlio, 7) = 1, this
contribution enters with a positive sign in comparison with the one-particle contribution
due to the nonunitarity of the model. As expected, similar to the=(0, m # 0)-case,
carried out in [28], we observe an extremely fast convergence of the series towards the
expected value (4.6). The numbers in Table 1 confirm the general observation, which was
also made in [28], that for extremely small valuesrate higher particle contributions
become more important. Considering a regimefor 0.001, it will not be necessary
to include also the three-particle contribution in order to reach our main conclusion.
Nonetheless, in principle this could be done easily with some Monte Carlo integration,
just at the cost of longer computing time, since in [28]:albarticle form factors were
already provided.

Notice further that the parametér plays no role anymore. As observed before, in
the analytical computation (4.12) it cancels explicitly. This phenomenon is less apparent
in the two-particle formula (4.13), but we convinced ourselves #hahay be re-scaled
without altering the outcome of the numerical computation. Thus the expressions are mass
independent as they should be. In what follows we will use this fact to simplify notations
and scalen to one.

Let us now embark upon the nonzero temperature case. By means of the conjecture
(2.13), we have to compute for the one-particle contribution

= e
TTO),L,,
de -
:_/Z<f+(9’T)|F1T,R(9)|2€_rm9’”
+£0,T)|F{ k@O - in)|ze’T£(9’T))e49. (4.14)

According to the conjectures in [7,10] or if we extend the proposal in [9] to the two-point
function, we can choose for th€d, T) in (4.14) and the corresponding dressing functions
(2.15) eitherstpa (0, T), determined by the massless version of the TBA-equation (2.16)
or efree(8, T) = €/ T, respectively. Solving first numerically the massless TBA-equation
by means of a standard iteration procedure, we can compare the two dressing functions
fe(eTBA(@, T)) and f+ (efree(@, T)). Our results are depicted in Fig. 2.

We plotted the corresponding functions for the left and right movers in order to exhibit
the symmetry of the TBA solutions. The solutions for the left movers are not important
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'
' “ ), T=0.1
08| AR S S f [ f(g,), T=0.1 -
TR S T 4 [ fen ), T = 0.1
4 : - = f(e) T=0.001
07k 5 f(gy), T=0.001 Q]
> 1 C fe), T =0.001

0,5F [P ————— L -

L 1 1 1 L

-20 -10 60 10 20

Fig. 2. Two possible dressing functiorfs. (s1ga (0, T)) and f+ (¢free(@, T)).

for what follows. We observe that_(sta (6, T)) acquires plateaux gt_(sta(0, T)) =
2/(1++/5) which are characteristic for all minimal affine Toda field theories. Furthermore,
we see the well-known fact that in the large rapidity regime the TBA solutions merge
with the free one. Nonetheless, the two functigil$” (6, T) and £, T) differ quite
substantially within a large rapidity regime. However, in the computation in which they
are actually needed, namely in (4.14), this regime is negligible. This is essentially due
to the factore®. This means the issue of controversy on the difference between the two
functions fJBA (9, T) and f{'®%@, T) is irrelevant if we would extend it to the context of
the two-point functions.

Let us therefore takg ™€, T), for which we can compute (4.14) analytically

@ nf

(TTO), o7 =

T4[<15( 1,4,rT)+@(-1,4,1—rT)]. (4.15)
Here®(x, s, «) is again Lerch’s transcendental function, which was already encountered
in Section 3 (see also Appendix A). Extrapolating the behaviour from the casgs((
T =0) and = 0,m = 0), we expect that the main contribution to the sum comes from
the one-particle form factors. It is therefore instructive to compare the ratio of the expected
value (4.7) andT(r)T(O))fnl):O,T#O. We depict this comparison in Fig. 3.

We observe a deviation of up to 300%, which when recalling the excellent agreement at
this level of the casesn(£ 0, T =0) and (n = 0, T = 0), sheds a rather pessimistic light
on the working of the conjecture (2.13) in the interacting case. In fact, we only observe
a reasonable match when<Or7T < 0.01 or Q99 < rT < 1.0, but this is unfortunately
just a regime in which we can approximate in (4.7)*inT) ~ (rT)* such that the
temperature effect becomes irrelevant. For the sceptical reader we include in Fig. 3 also
some points obtained numerically be usififf” (9, T) instead of ¢, T) in (4.14).
The two different cases may hardly be distinguished.
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3i5 T o T " T > T ™ T . T

3.0k

25F
G(T)

2,01

fﬁw

TBA
f

1,51

1‘0 L 1 L L L L
0,0 0,2 0,4 0,6 0,8 1,0
T

Fig. 3. Exact correlation function versus dressed one particle form factor contribatiorr) =
TOTO)m=0720/ TOTON o 120

Let us see whether the next order contributions can improve the situation. For this we
have to compute

TOTO)2,,

d01do T -
— [ G2 6. 1102, | o, T

+ (01, T) f- (02, T)| FJ g (01, 0)| e’ T T o2 1)
+2f4(01,T) f- (02, T)|FzRR(91, 62 — in)!26*’”8(91’”*8(92]))].

(4.16)

We have already all the ingredients to compute this apart from the particle-hole form factor
FJ rr(01,62 +im). We compute

= n (2coshhi2+ 1\ tantf(612/2)
Fl (01,02 —in) = —— 01402, 4.17
272 (01,02~ 17) 218 (2005m12— 1) Fnin(012) (4-17)
Assembling all we find similar values in the entire range ef BT < 1
=N m @ TONT, —4
(THT )"+ /(TNT(0), _,, ~0.001£4x 1074, (4.18)

independently of the different choices for the dressing functions. Thus, assuming that the
convergence of the series in (2.13) does not change radically when the temperature is
switched on, the higher orderparticle contributions will not rescue the proposal for this
case.
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5. Conclusions

We provided more evidence which supports the proposal of LeClair, Lesage, Sachdev
and Saleur [6] to use dressed form factors for the computation of two-point correlation
functions. The method seems to work well for the free Fermion case and in addition for
theories with anyonic statistics. Concerning dynamically interacting theories we reach a
similar conclusion as drawn in [8] on the base of an example involving a chemical potential:
namely, that it fails to work. As a simple counter example we have studied the scaling
Yang—Lee model. This conclusion is reached independently of the choices for the dressing
functionsf (e1ea (0, T)) Or f(efree(0, T)).

Despite this slightly pessimistic result concerning the proposal in its present form,
it was shown in [6] that it also works for the computation of correlation functions in
the presence of boundaries, albeit only for the Ising model. For interacting theories one
can resort in the boundary set up to a modified approach [11], which replaces reflection
amplitudes by renormalized ones. Based on this result one may conjecture that it can also
be successfully applied to defect systems [29]. In fact in this context the only interesting
integrable theories are those for which the approach seems to work for the bulk theories,
namely free theories, possibly with anyonic statistical interaction. It was shown recently
[30], that these theories are the only bulk theories which allow a simultaneous occurrence
of reflection and transmission.

As was argued in [12], possibly nondiagonal theories still allow the application of the
dressed form factor approach. However, in there only indirect evidence was provided in the
low temperature regime. As may be seen from our analysis, see Fig. 3, also in the diagonal
case in this regime the approach works reasonably. Thus, it remains to be established
whether in generality the nondiagonal nature of the model provides a way out of the failure
of the proposal.

At present the challenge remains to show whether the form factor approach to compute
correlation functions can be extended successfully to the finite temperature regime in
complete generality, namely also for dynamically interacting theories. In order to complete
this task it would also be interesting to compare with existing alternative approaches, e.g.,
[31].
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Appendix A

In this appendix we assemble some properties of various functions which are important

for our computations. Some of them are standard whereas others are specific to the present
context. One of the most ubiquitous functions in this context are the modified Bessel
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functions, whose integral representations are given by

o0
Ko(2) = /dt exp(—zcostr) coshwr  for |argz| < % (A1)
0
We recall the well-known limiting behaviour
lim Ko (x) ~ 27 (@)x ™, Rea > 0, lim Ko(x) ~ —Inx. (A.2)
x—0 x—0
Itis convenient to introduce the function
o0
~ 1
K;t(m,r, T) :Z(—l)” |:Ko,(%+rm) :I:Ka(w —rm>i|, (A.3)

n=0

which will appear as a building block in the computation of many finite temperature
correlation functions. Since we intend to investigate the commutativity of the diagram in
Fig. 1, various limits of this function will be required frequently. FordRe 0 we compute

with (A.2) the massless limit

lim I’(\j(m, r,T)
m—0

- ;(f‘o? Z(—l)"[(% +rm> + (@ - rm) } (A.4)

n=0

The sum can be evaluated explicitly. We just report on the cases which are important for
our analysis

. T 1

lim K Ty~ A5
mITO 1 (m.r, 1) m sin(zrT)’ (A-5)
o nT\22colnrT)

lim Ky (m,r, T) ~ [ — ) ===, A.6
g2 (.1 1) ( m ) sine(zrT) (A.6)
P T\36+ 2cog2nrT

iim R m,, T)N<”_> 6+ 2cos2nrT) A7)
m—0 m sint(zrT)

|im0m41?5 (m,r,T)~0, (A.8)
|im0m41?0+(m, r, T)K, (m,r,T) ~0. (A.9)

The zero temperature limit is more easily computed, just by noting that in the sum of (A.3)
only then = 0 term survives

Tlimol?;f(m, 1, T) ~ Ko (rm). (A.10)

A further function which frequently occurs is Lerch’s transcendental function, whose sum
representation is

0 n

D(x,s,0) = Z

n=0

nra) for|x| <1, a¢Zg. (A.11)
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In many cases, however, we require precisely the value- —1 in (A.11). The
convergence problem can be circumvented by exploiting the fact that in theclimit-1
we can expres® (x, s, «) in terms of Riemann zeta functions

[e.e]

1
;(S, (X) = nzzgm, fOI’ Res > 1, (A12)
instead
Iirrllqb(x, s,0) = %[{(s,a/Z) —2(s, A+ w)/2)]. (A.13)

This leaves the problem lim, _; @ (x, s, @) for Res < 1. Also the limit
Iimodﬁ(—e*l/"‘, S, a) ~a %, (A.14)
o—>

is needed in Section 3.
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