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Abstract

We compute the DC conductance with two different methods, which both exploit the integrability
of the theories under consideration. On one hand we determine the conductance through a defect by
means of the thermodynamic Bethe ansatz and standard relativistic potential scattering theory based
on a Landauer transport theory picture. On the other hand we propose a Kubo formula for a defect
system and evaluate the current–current two-point correlation function it involves with the help of
a form factor expansion. For a variety of defects in a fermionic system we find excellent agreement
between the two different theoretical descriptions.
 2002 Elsevier Science B.V. All rights reserved.

PACS:73.50.Bk; 73.40.-c; 72.10.-d; 11.10.Kk; 05.30.-d

1. Introduction

Conductance (conductivity) measurements belong to the easiest and most direct
experiments which can be carried out. They attract a lot of attention, due to the fact
that in general they can be performed without perturbing very much the behaviour of the
system, e.g., a rigid-lattice bulk metal, such that the uncertainty of experimental artifacts
is reduced to a minimum. There exist various well-known theoretical descriptions, such
as semi-classical transport theories (Landauer [1] and Boltzmann–Drude [2]), dynamical
linear-response theory [3,4] and also Green function linear-response theory [5]. To carry
out the latter, in particular at finite temperature, is still poorly understood in generality [6],
even in 1+1 space–time dimensions [7,8]. For a review on Landauer–Büttinger theory and
the Kubo formula see, e.g., [4,9]. Since recent experimental progress allows conductance
measurements also in 1+ 1 space–time dimensions [10], one can on the theoretical side
fully exploit the special features of low dimensionality.
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It is in particular very suggestive to exploit the full scope of non-perturbative techniques
which have been developed in the context of integrable quantum field theories in 1+ 1
space–time dimensions, such as the thermodynamic Bethe ansatz (TBA) [11,12] and the
form factor bootstrap approach [13,14]. Generalizing the Landauer transport picture a
proposal for the conductance through a quantum wire with a defect (impurity) has been
made in [15,16]

(1.1)

Gα(T )=
∑
i

lim
(µli−µri )→0

qi

2

∞∫
−∞

dθ
[
ρri
(
θ,T ,µli

)∣∣T α
i (θ)

∣∣2 − ρri
(
θ,T ,µri

)∣∣T̃ α
i (θ)

∣∣2],
which we only modify to accommodate parity breaking, known to occur in integrable
lattice models, see, e.g., [17]. This means in particular we allow the transmission
amplitudes to be different for a particle of typei with chargeqi passing with rapidityθ
through a defect of typeα from the leftT α

i (θ) and rightT̃ α
i (θ) . The density distribution

function ρri (θ, T ,µi), being a function the temperatureT , and the potential at the left
µli and rightµri constriction of the wire, can be determined by means of the TBA.
We have already restricted (1.1) to the Abelian (diagonal) situation. It is clear that the
effect resulting from the defect is most interesting when|T α

i (θ)| �= 1, which requires the
occurrence of simultaneous transmission and reflection (see (2.6), (2.17)). In this paper
we will therefore be mainly interested in that situation. One may adapt (1.1) also to the
case of pure reflection, which physically describes the influence of the constriction to the
conducting process. From the previous statement it is clear that such boundary theories are
only interesting in this physical context when they are non-Abelian.

The other prominent way of determining the conductance is a result from linear response
theory, which yields an expression for the conductance in form of the Fourier transform of
the current–current two-point correlation function. This Kubo formula has been adapted
to the situation with a boundary [18]. As we mentioned, this will only capture effects
coming from the constriction of the wire, we propose here a generalization to the analogous
situation as described in (1.1), i.e., when a defect is present

(1.2)Gα(T )= − lim
ω→0

1

2ωπ2

∞∫
−∞

dt eiωt
〈
J (t)ZαJ (0)

〉
T ,m
.

Here the defect operatorZα enters in-between the two currentsJ within the temperature
and massm dependent correlation function. The Matsubara frequency is denoted byω.

The main purpose of this manuscript is to compare the two alternative descriptions (1.1)
and (1.2) for massive bulk theories with a defect which allows for simultaneous reflection
and transmission. There exist various investigations, e.g., [15,16,19,20] for conformal
(massless) theories with defect, which exploit the original folding idea of Wong and
Affleck [19]. The idea is that a conformal field theory with apurely transmitting or
reflecting defect can be mapped into a boundary theory, i.e., a theory living in half space,
which has the advantage that the full restriction of modular invariance can be exploited
in the construction of boundary states as pioneered by Cardy [21]. Since this folding idea
relies on the vanishing of either the reflection or transmission, our considerations do in
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general not reduce to that set up, even in the conformal limit. As was already pointed out
in [19], and as can be seen directly from (1.1) and (1.2), in that case the conductance is less
interesting because it is either zero or perfect for Abelian theories.

In Section 2 we outline the procedure of how the defect scattering matrices may be
determined, since they are needed as input in both approaches. We demonstrate that the
Yang–Baxter system singles out the free Fermion as a very special model, which we
treat thereafter extensively. In Section 3 we newly formulate the defect TBA equations
and use them to determine the density distribution functions. We evaluate numerically the
Landauer formula (1.1) for various defects and provide some analytical approximations in
certain regimes. In Section 4 we propose a Kubo formula (1.2) for a configuration in which
an impurity is present and compute the current–current two-point correlation functions
occurring in there by means of a form factor expansion. We find very good agreement
between (1.1) and (1.2) for the complex free Fermion theory with various types of defects.
Our final conclusions and an outlook into open problems is provided in Section 5.

2. Determining the defect scattering matrices

An essential input required in both non-perturbative methods which are exploited to
compute the conductance (1.1) and (1.2), that is the TBA and the form factor bootstrap
approach, respectively, is the knowledge of the exact (defect) scattering matrix. It is one of
the most intriguing facts of two-dimensional quantum field theories that these matrices can
be determined exactly to all orders in perturbation theory. In the following section we will
recall how much (little) of this approach can be carried over to the situation when defects
are present and compute explicitly the transmission and reflection amplitudes for a variety
of concrete defects.

2.1. Defect Yang–Baxter equations

A cornerstone in the context of integrable models in 1+ 1 space–time dimensions are
the Yang–Baxter equations [22]. They can be derived most easily simply by exploiting the
associativity of the so-called Zamolodchikov–Faddeev (ZF) algebra [23] and its extended
version which includes an additional generator representing a boundary [24–26] or a
defect [27,28]. Indicating particle types by Latin and degrees of freedom of the impurity
by Greek letters, the “braiding” (exchange) relations of annihilation operatorsZi(θ) of a
particle of typei moving with rapidityθ and defect operatorsZα in the stateα can be
written as

(2.1)Zi(θ1)Zj (θ2)= Sklij (θ1 − θ2)Zk(θ2)Zl(θ1),
(2.2)Zi(θ1)Z

†
j (θ2)= Sklij (θ1 − θ2)Z†

k (θ2)Zl(θ1)+ 2πδ(θ1 − θ2)δij ,
(2.3)Zi(θ)Zα =Rjβiα (θ)Zj (−θ)Zβ + T jβiα (θ)ZβZj (θ),
(2.4)ZαZi(θ)= R̃jβiα (−θ)ZβZj (−θ)+ T̃ jβiα (−θ)Zj(θ)Zβ.

The bulk scattering matrix is indicated byS, and the left/right reflection and transmission
amplitudes through the defect are denoted byR/R̃ andT/T̃ , respectively. We employed
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Einstein’s sum convention, that is we assume sums over doubly occurring indices. We
suppress the explicit mentioning of the dependence ofZα on the position in space and
assume for the time being that it is included inα. For the treatment of a single defect
this is not relevant, but it will become important when we consider multiple defects. The
same relations hold when we replace the annihilation operators by the creation operators
Z

†
i (θ)withR/R̃, T/T̃ andS replaced by their complex conjugates. The algebra (2.3)–(2.4)

can be used to derive various relations amongst the scattering amplitudes. Using extended
ZF-algebra twice leads to the constraints

(2.5)Sklij (θ)S
mn
kl (−θ)= δmi δnj ,

(2.6)R
jβ
iα (θ)R

kγ
jβ (−θ)+ T jβiα (θ)T̃ kγjβ (−θ)= δki δγα ,

(2.7)R
jβ
iα (θ)T

kγ
jβ (−θ)+ T jβiα (θ)R̃ kγjβ (−θ)= 0.

The same equations also hold after performing a parity transformation, that is forR↔ R̃

andT ↔ T̃ in (2.6)–(2.7). From the associativity of the extended ZF-algebra one derives
the equations [24–28]

(2.8)

S(θ12)
[
I ⊗Rβα (θ1)

]
S(θ̂12)

[
I ⊗Rγβ (θ2)

]= [
I ⊗Rβα (θ2)

]
S(θ̂12)

[
I ⊗Rγβ (θ1)

]
S(θ12),

(2.9)S(θ12)
[
I ⊗Rβα (θ1)

]
S(θ̂12)

[
I ⊗ T γβ (θ2)

]=Rγβ (θ1)⊗ T βα (θ2),
(2.10)S(θ12)

[
T βα (θ2)⊗ T γβ (θ1)

]= [
T βα (θ1)⊗ T γβ (θ2)

]
S(θ12),

where we employed the convention(A ⊗ B)klij = Aki B
l
j for the tensor product and

abbreviated the rapidity sum̂θ12 = θ1 + θ2 and differenceθ12 = θ1 − θ2. Once again the
same equations also hold forR↔ R̃ andT ↔ T̃ . Starting with another initial asymptotic
state one derives [28]

(2.11)Rβα (θ1)⊗ R̃γβ (θ2)=Rγβ (θ1)⊗ R̃βα (θ2),
(2.12)

[
T βα (θ2)⊗ I

]
S(θ̂12)

[
R̃
γ
β (θ1)⊗ I

]
S(θ12)= T γβ (θ2)⊗ R̃βα (θ1),

(2.13)
[
I ⊗ T̃ βα (θ2)

]
S(θ̂12)

[
I ⊗Rγβ (θ1)

]
S(θ12)=Rβα (θ1)⊗ T̃ γβ (θ2),

(2.14)
[
T βα (θ1)⊗ I

]
S(θ̂12)

[
T̃
γ
β (θ2)⊗ I

]= [
I ⊗ T̃ βα (θ2)

]
S(θ̂12)

[
I ⊗ T γβ (θ1)

]
.

On the basis of Eqs. (2.8)–(2.10), it was shown in [27], for the Abelian case without
defect degrees of freedom, that one cannot have reflection and transmission simultaneously.
In [28] this result was extended to the non-Abelian parity breaking case and it was proven
that for the simultaneous occurrence of reflection and transmission the scattering matrix
has to be rapidity independent and of the form

(2.15)S(θ)= Pσ,

with P being a permutation operator andσ a constant matrix. When assuming in addition
thatσ is a diagonal matrix with the propertyσij σji = 1, the free Fermion (σij = σji = −1),
free Boson (σij = σji = 1) and also the Federbush model [29] and the generalized coupled
Federbush models [30] are solutions to (2.15).
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As a further set of consistency equations, which serve for the determination of the
defect scattering matrix, we report the crossing relations, which are as usual less obvious
to justify. In analogy to the relations which have to hold for the bulk scattering matrix
Sij (θ) = Si̄ (iπ − θ) = S∗

ji (−θ) (̄ is the anti-particle ofj and∗ denotes the complex
conjugation) we deduce from (2.3)–(2.4) the crossing-hermiticity relations

(2.16)Rα̄ (θ)= R̃α̄ (−θ)∗ = Sj̄ (2θ)R̃αj (iπ − θ),
(2.17)T α̄ (θ)= T̃ α̄ (−θ)∗ = T̃ αj (iπ − θ).

The first equalities follow when takingZ†
i (θ)

∗ = Zi(θ) andZα = Z†
α . The latter relations

in (2.17) simply result by considering the relations forS while letting one of the particles
freeze, i.e., setting its rapidity to zero, and viewing it as a defect. Relations (2.16) are
obtainable in a similar fashion as the interpretation put forward in [26,31]. Our Eqs. (2.16)
and (2.17) disagree slightly from the crossing relations in [26,27,31,32], which is due to
the fact that when parity is broken real analyticity is replaced by Hermitian analyticity [33].
Later on in our example, this will also be reflected in the representation of the free Fermion
field (2.35), being Dirac rather than Majorana. There is of course no consequence of this
choice of conventions on the physics, since the ambiguity just exploits the fact that only
the moduli of these amplitudes are observable.

Similar as for the bulk scattering matrices an additional powerful constraint results from
the singularity structure of the defect scattering amplitudes. Supposing that the defect
scattering matrices have a pole on the imaginary axis atiθ0 ∈ iR, the corresponding
residues are therefore constraint as

i Res
θ→iθ0

Rαj (θ)= i Res
θ→iθ0

R̃αj (θ)= i Res
θ→iθ0

T αj (θ)

(2.18)= i Res
θ→iθ0

T̃ αj (θ)

{
< 0, for θ0 ∈ (0,π),
> 0, for θ0 /∈ (0,π).

The intervals(0,π) are understood to be mod 2π .

2.2. Multiple defects

Assuming that we have determined the defect scattering matricesR/R̃ andT/T̃ for a
single defect, for instance by solving the consistency equations in the previous subsection,
it is straightforward to use them in order to compute the related quantities for several
defects. This type of situation is of interest since, unlike for a single defect, it leads
to the occurrence of resonance phenomena and when the number of defects tends to
infinity even to band structures. Let us therefore commence by exploiting the extended
ZF-algebra (2.3)–(2.4) for a double defect. For the reasons mentioned in the introduction
we are interested in the situation whenR/R̃ andT/T̃ are simultaneously non-vanishing,
and in the light of the result (2.15), we shall therefore focus on the diagonal case from now
onwards. We compute

(2.19)Zi(θ)ZαZβ =Rαβi (θ)Zi(−θ)ZαZβ + T αβi (θ)ZαZβZi(θ),

(2.20)ZαZβZi(θ)= R̃αβi (−θ)ZαZβZi(−θ)+ T̃ αβi (−θ)Zi(θ)ZαZβ,
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where we have now introduced overall transmission and reflection amplitudes correspond-
ing to two defects

(2.21)T
αβ
i (θ)= T αi (θ)T

β
i (θ)

1−Rβi (θ)R̃αi (θ)
, R

αβ
i (θ)=Rαi (θ)+

R
β
i (θ)T

α
i (θ)T̃

α
i (θ)

1−Rβi (θ)R̃αi (θ)
,

(2.22)T̃
αβ
i (θ)= T̃ αi (θ)T̃

β
i (θ)

1−Rβi (θ)R̃αi (θ)
, R̃

αβ
i (θ)= R̃βi (θ)+

Rαi (θ)T
β
i (θ)T̃

β
i (θ)

1−Rβi (θ)R̃αi (θ)
.

The term[1−Rβi (θ)R̃αi (θ)]−1 =∑∞
n=1(R

β
i (θ)R̃

α
i (θ))

n results from the infinite number of
reflections which we have in-between the two defects, well known from Fabry–Perot type
devices of classical and quantum optics. For the caseT = T̃ , R = R̃ the expressions (2.21)
and (2.22) coincide with the formulae proposed in [34]. When absorbing the space
dependent phase factor into the defect matrices, the explicit example presented in [27]
for the free fermion perturbed with the energy operator agree almost forT = T̃ , R = R̃

with the general formulae (2.21). They disagree in the sense that the equality ofR
αβ
i (θ)

andR̃αβi (θ) does not hold for genericα, β as stated in [27].
It is now straightforward to extend the expressions to an arbitrary number of defects,

sayn, in a recursive manner

(2.23)T α
i (θ)=

T
α1···αk
i (θ)T

αk+1···αn
i (θ)

1− R̃α1···αk
i (θ)R

αk+1···αn
i (θ)

, 1< k < n,

(2.24)Rα
i (θ)=Rα1···αk

i (θ)+ R
αk+1...αn
i (θ)T

α1···αk
i (θ)T̃

α1···αk
i (θ)

1− R̃α1···αk
i (θ)R

αk+1···αn
i (θ)

, 1< k < n.

For convenience we encoded here the defect degrees of freedom into the vector
α = {α1, . . . , αn}. Similar expressions also hold for̃T α

i (θ) = T̃
α1···αn
i (θ) and R̃α

i (θ) =
R̃
α1···αn
i (θ). It is clear that from the knowledge of the single defect amplitudes we are now

in the position to compute the corresponding quantities for multiple defects just by nesting
successively the expressions (2.23) and (2.24) for increasing values ofn into each other.
Nonetheless, in general one does not succeed to provide simple analytical expressions for
n-defect amplitudes and a different description is useful.

Alternatively, we can define, in analogy to standard quantum mechanical methods (see
e.g., [35,36]), a transmission matrix which takes the particle from one side of the defect
to the other. From the braiding relations (2.3) and (2.4), we obtain with the help of the
unitarity relations (2.6) and (2.7)

(2.25)

(
Zα1 · · ·ZαnZi(θ)
Zα1 · · ·ZαnZi(−θ)

)
=
(

n∏
k=1

Mi
αk
(θ)

)(
Zi(θ)Zα1 · · ·Zαn
Zi(−θ)Zα1 · · ·Zαn

)
,

with

(2.26)Mi
αk
(θ)=

(
T
αk
i (θ)

−1 −Rαki (θ)T αki (θ)−1

−Rαki (−θ)T αki (−θ)−1 T
αk
i (−θ)−1

)
.

This means alternatively to the recursive way (2.23) and (2.24), we can also compute the
multi-defect transmission and reflection amplitudes as
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(2.27)

T α
i (θ)=

(
n∏
k=1

Mi
αk
(θ)

)−1

11

, Rα
i (θ)= −

(
n∏
k=1

Mi
αk
(θ)

)
12

(
n∏
k=1

Mi
αk
(θ)

)−1

11

.

One may convince oneself that this formulation is indeed the same as (2.23) and (2.24). It
has, however, the virtue that it allows for a more elegant computation of the band structures.
In particular, it is most suitable for numerical computations, since it just involves matrix
multiplications rather than recurrence operations.

Let us now consider the case in which all the defects are of the same typeα,
equidistantly separated by an amounty and sendn→ ∞. First of all we have to include
now explicitly the dependence of the defect on its position into the discussion. We assume

(2.28)
n∏
l=1

Mi
α(x = ly)=

n∏
l=1

[
QyMi

α(x = 0)
]l
Q−1
ny , Qy =

(
eiky 0
0 e−iky

)
,

where k corresponds to the wave-vector of the lattice. Taking thenn → ∞ this
accommodates Bloch’s theorem (e.g., [35]) for the relativistic set-up. The simple
requirement, that the product of transmission matrices limn→∞

∏n
l=1Mi

α(x = ly) remains
finite, leads now in the usual way to a restriction for the allowed energies, that is to band
structures. To see when this is the case we can exploit the r.h.s. of the first equation in (2.28)
and diagonalize the matrixQyMi

α(x = 0). Then it is clear that the limitn → ∞ only
remains finite when the eigenvalues of this matrix are not real

(2.29)λi,α /∈ R.

The eigenvalues are computed to

(2.30)λ
i,α
1,2 = χαi (θ)±

√
χαi (θ)

2 − T̃ αi (−θ)/T αi (−θ),

(2.31)χαi (θ)=
[eikyT αi (θ)−1 + e−iky(T̃ αi (θ)∗)−1]

2
.

In the parity invariant case the criterium (2.29) becomes simpler. From (2.30) and (2.31)
follows in that case that the allowed energies in the infinite lattice have to respect

(2.32)χαi (θ)= Re
[
eikyT αi (θ)

−1]< 1, for T = T̃ .
In other words particles are only allowed to travel in the system with rapidities for which
the inequality (2.32) holds. In conclusion, this means the determination of the transmission
amplitudes for a single defect is sufficient to determine multiple defects and the energy
band structure. Let us illustrate the working of this general formulae with a concrete
example.

2.3. Free Fermion with defects

The continuous version of the(1 + 1)-dimensional free Fermion (Ising model) with
a line of defect was first treated in [37]. Thereafter it has also been considered in [27,
31] and [32] from a different point of view. In [27,31,37] the defect line has the form of
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the energy operator and in [32] also a perturbation in form of a single Fermion has been
considered. In this manuscript we want to enlarge the class of perturbations having in mind
to obtain various different kinds of structural and physical behaviours.

Let us consider the Lagrangian density for a complex free Fermionψ with , defects1

(2.33)L= ψ̄(iγ µ∂µ −m)ψ +
,−1∑
n=0

δ(x − xn)Dαn(ψ̄,ψ),

where we describe the defect by the functionsDαn(ψ̄,ψ), which we assume to be linear in
the Fermi fieldsψ̄ andψ . In the following we will restrict ourselves mainly to the case of
equidistantly distributed defects of the same type, i.e.,xn = ny andDαn(ψ̄,ψ)=D(ψ̄,ψ)
for n ∈ {0, ,− 1}.

2.3.1. Transmission and reflection amplitudes
Unfortunately, it follows from the arguments outlined in Section 2.1, that when one

is seeking a situation with simultaneously occurring reflection and transmission the
constraining equations for diagonal bulk scattering matrices reduce simply to unitarity
and crossing. These equations are, however, not restrictive enough by themselves to fix
R/R̃ andT/T̃ and therefore one has to resort to alternative arguments. For instance one
may proceed in analogy to standard quantum mechanical potential scattering theory (see
also [27,31,32]) and construct the amplitudes by adequate matching conditions on the
field. We consider now a single defect at the origin which suffices, since multiple defect
amplitudes can be constructed from the single defect ones, according to the arguments
of the previous section. We decompose the fields of the bulk theory asψ(x) = Θ(x)

ψ+(x)+Θ(−x) ψ−(x), withΘ(x) being the Heavyside step function, and substitute this
ansatz into the equations of motion. This way we obtain the constraints

(2.34)iγ 1(ψ+(x)−ψ−(x)
)∣∣
x=0=

∂D(ψ̄(x),ψ(x))
∂ψ̄(x)

∣∣∣∣
x=0
.

Using here for the left (−) and right (+) parts ofψ the Fourier decomposition of the free
field

(2.35)ψj (x)=
∫

dp1
j√

4πp0
j

(
aj (p)uj (p)e

−ipj ·x + a†
̄ (p)vj (p)e

ipj ·x),
with

√
m2
j + p2

j = p0
j and the Weyl spinors

(2.36)uj (p)=
√
mj

2

(
e−θ/2
eθ/2

)
and vj (p)= i

√
mj

2

(
e−θ/2
−eθ/2

)
,

1 Throughout the paper we use the following conventions:

xµ = (x0, x1), pµ = (mcoshθ,msinhθ), g00 = −g11 = ε01 = −ε10 = 1,

γ 0 =
(

0 1
1 0

)
, γ 1 =

(
0 1

−1 0

)
, γ 5 = γ 0γ 1, ψα =

(
ψ
(1)
α

ψ
(2)
α

)
, ψ̄α = ψ†

αγ
0.
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we can substitute them into the constraint (2.34). Treating the equations obtained in this
manner componentwise, stripping off the integrals, we can bring them thereafter into the
form

(2.37)

(
a

†
̄ ,−(θ)

a
†
̄ ,+(−θ)

)
=
(
R̄ (θ)

∗ T̄ (θ)
∗

T̃̄ (θ)
∗ R̃̄ (θ)

∗

)(
a

†
̄ ,−(−θ)
a

†
̄ ,+(θ)

)
,

(2.38)

(
aj,−(θ)
aj,+(−θ)

)
=
(
Rj(θ) T

j
(θ)

T̃j (θ) R̃j (θ)

)(
aj,−(−θ)
aj,+(θ)

)
.

The creation and annihilation operatorsai(θ), a
†
i (θ) play in (2.1) and (2.2) the role

of the ZF-algebra generators in view of the usual fermionic anti-commutation relations
{ai(θ1), aj (θ2)} = 0, {ai(θ1), a†

j (θ2)} = 2πδij δ(θ12). When including the defect operator in
Eqs. (2.37) and (2.38), on the right/left for−/+-subscript, they acquire precisely the form
of the extended ZF-algebra (2.3)–(2.4), such that one can read off directly the reflection and
transmission amplitudes. One may convince oneself that the expressions found this way
indeed satisfy the consistency equations like crossing (2.16), (2.17), unitarity (2.6), (2.7)
and respect (2.18). In order to find the explicit expressions, we have to consider some
concrete defects. Let us first concentrate on the energy perturbation.

2.3.2. The energy operator defectDα(ψ̄,ψ)= gψ̄ψ
The defectDα(ψ̄,ψ) = gψ̄ψ has received already some amount of consideration, for

the reason that it possesses a well studied [38] discrete counterpart. Taking the continuum
limit of these lattice models the defect term in there acquires the form of the energy
operatorε(x) = gψ̄ψ(x), with g being a coupling constant. According to (2.34), (2.37)
and (2.38) we compute

(2.39)

R̃αj (θ, y)=Rα̄ (θ, y)=Rαj (θ,−y)= R̃α̄ (θ,−y)=
sinB coshθ

i sinhθ − sinB
e2iymsinhθ ,

(2.40)T αj (θ)= T̃ αj (θ)= T α̄ (θ)= T̃ α̄ (θ)=
cosB sinhθ

sinhθ + i sinB
,

where we used a common and convenient parameterization in this context2

(2.41)sinB = − 4g

4+ g2
, −π

2
� B � 0.

Note, that there is no explicity-dependence inT/T̃ and that (2.39)–(2.40) satisfy the
“unitarity” relations (2.6)–(2.7) and the crossing-hermiticity relations (2.16)–(2.17) when
the defect is situated at the origin. The residues are constrained as in (2.18). The
expressionsRαj (θ,B) and T αj (θ,B) coincide with the solutions found in [27], which,

2 This is suggestive since many bulk theories admit such a relation between the bare and effective coupling.
One may equate some combinations ofR andT with some well-known bulk scattering matrices. For instance,
we identify the sinh-Gordon S-matrixSSG(θ,BSG)= Tj (θ,Bπ/2)/Tj (−θ,Bπ/2), with the indicated relation
amongst the effective defect coupling constants.
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Fig. 1. (a) Single defect with varying coupling constant.|T |2 and |R|2 correspond to curves starting at 0 and 1
of the same line type, respectively. (b) Double defect with varying distancey. (c) Double defect with varying
effective coupling constantB. (d) Double defect (dotted line), eight defects (solid line).

however, in general does not correspond to taking our particles simply to be self-
conjugated, since we use Dirac Fermions. Having obtained these amplitudes, we can easily
compute the corresponding quantities associated to multiple defects by means of (2.23),
(2.24) or (2.27). The explicit formulae are obvious and since they are quite cumbersome
we will not report them here. Instead, we will depict them as functions of coshθ in Fig. 1
for various parameters in order to emphasize some of their characteristics.

Part (a) of Fig. 1 confirms the unitarity relation (2.6) where we usedR∗
j (θ,B) =

Rj(−θ,B) andT ∗
j (θ,B) = Tj (−θ,B). Part (b) and (c) show the typical resonances of

a double defect, which become stretched out and pronounced with respect to the energy
when the distance becomes smaller and the coupling constant increases, respectively.
Part (d) exhibits a general feature which extends to an even number of higher multiple
defects, say 2n, when keeping the distancey between the two most separated defects fixed:
The resonances accumulate at the position around the (2n− 1)th resonances of the double
defect. For increasingn they become very dense in that region such that one may speak of
energy bands.

It is interesting to compare these bands with those obtained from the criterium (2.32),
which translates in this case into

(2.42)sinhθ(cosky − cosB) < sinky sinB, k =msinhθ.
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Fig. 2. Band structures according to the criterium (2.32). The non-shaded regions are forbidden. (a) eight defects
with B = B1 = · · · = B8 = 1.1 equidistant byy = 0.25/7. (b) Double defect withB = B1 = B2 = 1.1 distanced
by y = 0.25.

Fig. 1(d) shows that when taking 2n defects separated by a distancey/(2n−1) one obtains
for largen an energy spectrum which resembles a band structure. Analyzing instead the
function χαi (θ) in (2.31) we obtain the same band structure from the criterium (2.32).
The two computations show that the positions as well as the width of the bands in the
two Figs. 1(d) and 2 coincide quite well. Remarkably, even for the double defect the
criterium (2.31) yields energy regions, see Fig. 2(b), which are in good agreement with
the exact computation as presented in Fig. 1(d).

Very often we will not be able to perform certain computations analytically, but instead
we can carry them out in the massless limit. The prescription for taking this limit was
originally introduced in [39]. It consists of replacing in every rapidity dependent expression
θ by θ ±σ , where an additional auxiliary parameterσ has been introduced. Thereafter one
should take the limitσ → ∞, m→ 0 while keeping the quantitŷm= m/2 exp(σ ) finite.
For instance, carrying out this prescription for the momentum yieldsp± = ±m̂exp(±θ),
such that one may view the model as splitted into its two chiral sectors and one can
speak naturally of left(L) and right(R) movers. In this way the expressions (2.39)–(2.40)
become

(2.43)Rαj,L/R(θ,B)= ±i sinB e±2iyαm̂eθ and T αj,L/R(θ,B)= cosB.

Similarly we compute the expression involving two and four defects for later purposes

(2.44)T
α1α2
j,L/R(θ,B)= T̃ α1α2

j,L/R(θ,B)=
cos2B

1+ sin2B exp[∓2im̂(yα1 − yα2)e
θ ] ,

(2.45)R
α1α2
j,L/R(θ,B)= ±i sinBe−2iyα1m̂e

θ ± i sinB cos2Be−2iyα2m̂e
θ

1+ sin2B exp[∓2im̂(yα1 − yα2)e
θ ] ,

(2.46)R̃
α1α2
j,L/R(θ,B)= ±i sinBe2iyα2m̂e

θ ± i sinB cos2Be−2iyα1m̂e
θ

1+ sin2B exp[∓2im̂(yα1 − yα2)e
θ ] ,

(2.47)T
α1α2α3α4
j,L/R (θ,B)= T̃ α1α2α3α4

j,L/R (θ,B)= T
α1α2
j,L/R(θ,B)T

α3α4
j,L/R(θ,B)

1− R̃α1α2
j,L/R(θ,B)R

α3α4
j,L/R(θ,B)

.
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The remaining amplitudes can be obtained analogously. The expressions of physical
quantities, e.g., the conductance, in the massless limit should not depend on the param-
eterm̂, such that the amplitudes (2.43)–(2.47) should in fact always appear in combination
with other functions in order to make the prescription meaningful.

Having discussed this type of defect in some detail we will now computeR/R̃ andT/T̃
for various other defects in order to illustrate several types of physical behaviours.

2.3.3. Transparent defects,D0(ψ̄,ψ)= 0, Dβ(ψ̄,ψ)= gψ̄γ 1ψ

The examples which can be handled most easily in later considerations are defects
which behave physically as if they were transparent ones, i.e., as|T α| = 1. Note that this
does not necessarily mean the absence of the defect. For instance considering the defect
Dβ(ψ̄,ψ)= gψ̄γ 1ψ , we compute with the method outlined above

(2.48)R
β
j (θ,B)= R̃βj (θ,B)=Rβ̄ (θ,B)= R̃β̄ (θ,B)= 0,

(2.49)T
β
j (θ,−B)= T β̄ (θ,B)= T̃ β̄ (θ,−B)= T̃ βj (θ,B)= eiB,

for this defect. The coupling constant is parameterized as in (2.41). Evidently the
“unitarity” (2.6)–(2.7) and the crossing relations (2.16)–(2.17) are satisfied. Note that this
is also an example for a defect which breaks parity invariance, i.e., the left and right
transmission amplitudes are not identical. In the infinite lattice limit, i.e., when the number
of defects tends to infinity, we find

(2.50)χ
β
j/̄ (θ)= cos(ky ∓B) ⇒ λ

β
j/̄ (θ) /∈ R, ∀θ,B,

which means that according to (2.29) there are no forbidden energy regimes.

2.3.4. Energy insensitive defects,Dγ (ψ̄,ψ)= gψ̄γ 5ψ , Dδ±(ψ̄,ψ)= gψ̄(γ 1 ± γ 5)ψ

In comparison with the transparent defects the next complication arises when the defect
causes a phase shift independent of the energy of the incoming particle. ForDγ (ψ̄,ψ) =
gψ̄γ 5ψ we compute

R
γ

j (θ,B,−y)= R̃γj (θ,−B,y)=Rγ̄ (θ,B,y)= R̃γ̄ (θ,−B,−y)
(2.51)= ie2iymsinhθ tanB,

(2.52)T
γ

j (B)= T γ̄ (B)= T̃ γ̄ (B)= T̃ γj (B)= cos−1(B).

In this case we observe that parity is broken for the reflection amplitudes, i.e.,R �= R̃.
The relations (2.6)–(2.7) and (2.16)–(2.17) fory = 0 are satisfied. Fory = 0 none of the
amplitudes depend on the rapidities. In the infinite lattice limit we find

(2.53)χ
γ
j (θ)= χγ̄ (θ)= cosky cosB < 1 ∀θ,B,

such that according to (2.32) there are no forbidden energy regimes.
ForDδ±(ψ̄,ψ)= gψ̄(γ 1 ± γ 5)ψ we compute

R
δ±
j (θ,B,−y)= R̃δ±j (θ,−B,y)=Rδ±̄ (θ,B, y)= R̃δ±̄ (θ,−B,−y)

(2.54)= ±i tan
B

2
e2iymsinhθ ,
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(2.55)T
δ±
j (B)= T δ±̄ (−B)= T̃ δ±̄ (B)= T̃ δ±j (−B)= 1− 2i tan

B

2
.

These are examples in which parity is broken for the reflection as well as for the
transmission amplitudes. Again the relations (2.6)–(2.7) and (2.16)–(2.17) are satisfied
when the defect is placed at the origin and, as forDγ , wheny = 0 none of the amplitudes
depends on the rapidities. In this case we find in the infinite lattice limit

(2.56)χ
δ+
j/̄ (θ)= χδ−j/̄ (θ)=

cosky

1∓ 2i tan(B/2)
⇒ λ

δ±
j/̄ (θ) /∈ R, ∀θ,B,

such that according to (2.32) there are no forbidden energy regions.

2.3.5. Luttinger liquid typeDε(ψ̄,ψ)= ψ̄(g1 + g2γ
0)ψ

When taking the conformal limit of a defect of the typeDε(ψ̄,ψ) = ψ̄(g1 + g2γ
0)ψ

one obtains an impurity which played a role in the context of Luttinger liquids [40] when
setting the bosonic number counting operator to zero (see, e.g., [41]). BesidesDα(ψ̄,ψ)
this is also an example of a defect for which the potential is real. With (2.34), (2.37)
and (2.38) we compute the related transmission and reflection amplitudes

(2.57)

Rεj (θ, g1, g2,−y)= R̃εj (θ, g1, g2, y)= 4i(g2 + g1 coshθ)e2iymsinhθ

(4+ g2
1 − g2

2)sinhθ − 4i(g1 + g2 coshθ)
,

(2.58)

Rε̄ (θ, g1, g2,−y)= R̃ε̄ (θ, g1, g2, y)= 4i(g1 − g2 coshθ)e−2iymsinhθ

(4+ g2
1 − g2

2)sinhθ − 4i(g1 − g2 coshθ)
,

(2.59)T εj (θ, g1, g2)= T̃ εj (θ, g1, g2)= (4+ g2
2 − g2

1)sinhθ

(4+ g2
1 − g2

2)sinhθ − 4i(g1 + g2 coshθ)
,

(2.60)T ε̄ (θ, g1, g2)= T̃ ε̄ (θ, g1, g2)= (4+ g2
2 − g2

1)sinhθ

(4+ g2
1 − g2

2)sinhθ − 4i(g1 − g2 coshθ)
.

As we expect, since limg2→0Dε(ψ̄,ψ) = Dα(ψ̄,ψ), we recover the related results also
for theT/T̃ ’s andR/R̃’s in (2.39)–(2.40). On the other hand, forg1 → 0 we obtain the
defectDζ (ψ̄,ψ)= g2ψ̄γ

0ψ for which the expressions simplify to

(2.61)R
ζ
j (θ,B,−y)= R̃ζj (θ,B,y)=

−ie2iymsinhθ sinB

cosB sinhθ + i sinB coshθ
,

(2.62)R
ζ
̄ (θ,B,y)= R̃ζ̄ (θ,B,−y)=

ie2iymsinhθ sinB

cosB sinhθ − i sinB coshθ
,

(2.63)

T
ζ
j (θ,B)= T̃ ζj (θ,B)= T ζ̄ (θ,−B)= T̃ ζ̄ (θ,−B)=

sinhθ

cosB sinhθ + i sinB coshθ
.

Where the effective couplingB is given by (2.41) withg → g2. The relations (2.6)–(2.7)
and (2.16)–(2.17) may be verified once again fory = 0. In this case the infinite lattice limit
leads to forbidden energy regimes, since according to (2.32), the rapidities have to respect
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the inequality(
4+ g2

1 − g2
2

)
sinhθ cosky + sinky(g1 ± g2 coshθ) <

(
4+ g2

2 − g2
1

)
sinhθ

(2.64)for j, ̄ ,

which possess non-trivial solutions.

2.3.6. The defectsDη±(ψ̄,ψ)= gψ̄(1± γ 5)/2ψ
For this case we compute now

(2.65)R
η±
j (θ,B,y)=Rη±̄ (θ,B,−y)=

e∓θe−2iymsinhθ

i cot(B/2)sinhθ − 1
,

(2.66)R̃
η±
̄ (θ,B,−y)= R̃η±j (θ,B,y)=

e±θ e2iymsinhθ

i cot(B/2)sinhθ − 1
,

(2.67)

T
η±
j (θ,B)= T η±̄ (θ,B)= T̃ η±̄ (θ,B)= T̃ η±j (θ,B)= 1

1∓ i tan−1(B/2)sinh−1(θ)
,

which is once again in agreement with (2.6)–(2.7) and (2.16)–(2.17) fory = 0. In
the infinite lattice limit we obtain also in this case forbidden energy regimes. The
criterium (2.32) gives

(2.68)±cosky/2< sinhθ tan(B/2)sinky/2,

which has non-trivial solutions for the rapidities.

2.3.7. The defectsDλ±(ψ̄,ψ)= gψ̄(γ 0 ± γ 1)/2ψ
For this case we compute now

(2.69)R
λ±
j (θ,B,y)=Rλ±

̄ (θ,B,−y)=
e−2iymsinhθ tan(B/2)

i sinhθ − tan(B/2)coshθ
,

(2.70)R̃
λ±
̄ (θ,B, y)= R̃λ±

j (θ,B,−y)=
−e−2iymsinhθ tan(B/2)

i sinhθ + tan(B/2)coshθ
,

T
λ±
j (θ,B)= T λ±

̄ (θ,−B)= T̃ λ±
̄ (−θ,B)= T̃ λ±

j (−θ,−B)
(2.71)= (i ± tan(B/2))sinhθ

i sinhθ − tan(B/2)coshθ
.

The crossing-hermiticity and unitarity relations hold fory = 0.
In principle we could of course prolong this list of defects and construct their

correspondingR’s andT ’s. However, the main purpose of this exercise was to review how
the transmission and reflection amplitudes for a defect may be obtained and also to give
a brief account of some of their characteristic features. Important to note is that indeed all
variations of possible parity breaking occur and one should keep therefore the discussion
generic in that sense. Note that when the defect is real, namelyDα(ψ̄,ψ), Dε(ψ̄,ψ),
parity invariance is preserved, which is a well known fact from quantum mechanics (see,
e.g., [36]). Complex potentials might look at first sight somewhat unphysical from the
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energy spectrum point of view. However, as is well known for some bulk theories, such
as for instance affine Toda field theories with purely complex coupling constants, one can
still associate well defined quantum field theories to such Lagrangians and construct even
classically soliton solutions with real energies and momenta [42].

A classification scheme for possible defects which maintain integrability is highly
desirable. It is interesting to note that in the conformal limit, as outlined before Eq. (2.43),
some of the defects, namelyDζ (ψ̄,ψ) and Dλ±(ψ̄,ψ), become purely transmitting.
Therefore, in contrast to first impression, the folding idea [19] could be employed. We have
now enough examples at hand to use them in the following to determine the conductance
in a multiparticle system, which we shall do in two alternative ways.

3. Conductance from the Landauer formula

3.1. Conductance through an impurity

The most intuitive way to compute the conductance is via Landauer transport theory [1].
Let us consider a set up as depicted in Fig. 3, that is we place a defect in the middle of a
rigid bulk wire, where the two halves might be at different temperatures.

The direct currentI through such a quantum wire can be computed simply by deter-
mining the difference between the static charge distributions at the right and left con-
striction of the wire, i.e.,I = Qr − Ql . This is based on the assumption [15,18], that
Q(t)∼ (Qr −Ql)t ∼ (ρr − ρl)t , where theρs are the corresponding density distribution
functions. Placing an impurity in the middle of the wire, we have to quantify the overall
balance of particles of typei and anti-particles̄ı carrying opposite chargesqi = −qı̄ at
the end of the wire at different potentials. This information is of course encoded in the
density distribution functionρri (θ, T ,µi). In the described set-up half of the particles of
one type are already at the same potential at one of the ends of the wire and the probability
for them to reach the other is determined by the transmission and reflection amplitudes
through the impurity. We assume that there is no effect coming from the constrictions of

Fig. 3. A conductance measurement. Part (a) represents the initial condition with no current flowing, i.e.,I = 0
and part (b),I �= 0. The defect is placed in the middle of the wire and the left and right half are assumed to be at
temperaturesT1 andT2, respectively.
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the wire, i.e., they are purely transmitting surfaces withT = T̃ = 1. One could, however,
also consider a situation in which those constrictions act as boundaries, namely purely re-
flecting surfaces. The situation could be described with the same transport theory picture
(see, e.g., [15,16,43]), but then the conductance can only be non-vanishing if the reflection
amplitudes in the constrictions are non-diagonal in the particle degrees of freedom, such as
for instance for sine-Gordon [31], that is in general affine Toda field theories with purely
imaginary coupling constant or in the massless limit folded purely reflecting (transmitting)
diagonal bulk theories.

According to the Landauer transport theory the direct current (DC) along the wire is
given by

Iα =
∑
i

Iα
i

(
r,µli,µ

r
i

)
(3.1)=

∑
i

qi

2

∞∫
−∞

dθ
[
ρri
(
θ, r,µri

)∣∣T α
i (θ)

∣∣2 − ρri
(
θ, r,µli

)∣∣T̃ α
i (θ)

∣∣2],
(3.2)= IB −

∑
i

qi

2

∞∫
−∞

dθ
[
ρri
(
θ, r,µri

)∣∣Rα
i (θ)

∣∣2 − ρri
(
θ, r,µli

)∣∣R̃α
i (θ)

∣∣2],
where we assume hereT1 = T2. The relation (3.2) is obtained from (3.1) simply by making
use of the fact that|R|2 + |T |2 = 1. Eq. (3.2) has the virtue that it extracts explicitly the
bulk contribution to the current which we refer to asIB . There are some obvious limits,
namely a transparent and an impenetrable defect

(3.3)lim|T α |→1
Iα = IB and lim|T α |→0

Iα = 0,

respectively. A short comment is needed on the validity of (3.1). Apparently it suggests that
when the parity between left and right scattering is broken, there is the possibility of a net
current even when an external source is absent. In this picture we have of course not taken
into account that charged particles moving through the defect will alter the potential, such
that we did in fact not describe a perpetuum mobile. Thus the limitation of our analysis is
thatµli −µri has to be much larger than the change in the potential induced by the moving
particles.

Finally we want to compute the conductance from the DC current, which by definition
is obtained from

(3.4)Gα(r)=
∑

i
Gα
i (r)=

∑
i

lim
(µli−µri )→0

Iα
i

(
r,µli,µ

r
i

)
/
(
µli −µri

)
and is of course a property of the material itself and a function of the temperature. In
general the expressions in (3.1) tend to zero for vanishing chemical potential difference
such that the limit in (3.4) is non-trivial.

Thus from the knowledge of the transmission matrix and the density distribution
function we can compute the conductance. Having already described howT α

i (θ) can
be determined, we will now explain howρri (θ, r,µi) can be evaluated by exploiting the
integrability of the theory.
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3.2. Defect TBA equations

The thermodynamic Bethe ansatz is a powerful tool which may be used to compute
various thermodynamic properties of multi-particle systems which interact via a factorizing
scattering matrix [11] and some chosen statistics. In addition, it allows to check the theory
for consistency and to extract some distinct structural quantities such as the Virasoro central
in the ultraviolet limit. The original bulk formulation has been accommodated to a situation
which includes a purely transmitting defect [44] and a boundary [46]. In this section we
want to propose a new formulation which is valid for a situation not treated before in this
context, namely when reflection and transmission occur simultaneously.

As usual we obtain the Bethe ansatz equation by dragging a particle along the world
line of lengthL. We introduce for convenience the following shorthand notation for the
product of various particleZi(θ) and defect operatorsZα

(3.5)

Z
µ1···µN
k1,α1;k2,α2;...;kn,αn :=Zµ1(θµ1) · · ·Zµk1 (θµk1 )Zα1 · · ·Zµkn (θµkn )Zαn · · ·ZµN (θµN ).

Then we compute the braiding of a particle operator of typei and the product ofN further
particlesZµ1 · · ·ZµN with one defectZα situated on the right of the particleZµk by using
the ZF-algebra (2.3) and (2.4)

(3.6)Zi(θi)Z
µ1···µN
k,α =Zµ1···µN

k,α Zi(θi)F̃iα −Zµ1···µN
k,α Zi(−θi)G̃iα,

(3.7)Z
µ1···µN
k,α Zi(θi)=Zi(θi)Zµ1···µN

k,α Fiα −Zi(−θi)Zµ1···µN
k,α Giα.

We abbreviated here

F̃ αi = 1

T̃ αi (−θi)
N∏
l=1

Siµl (θiµl ),

(3.8)G̃αi = R̃αi (−θi)
T̃ αi (−θi)

k∏
l=1

Siµl (θiµl )

N∏
l=k+1

Siµl (−θ̂iµl ),

(3.9)Fαi = 1

T αi (θi)

N∏
l=1

Sµli(θµl i), Gαi = Rαi (θi)

T αi (θi)

k∏
l=1

Sµl i(θ̂µli )

N∏
l=k+1

Sµl i(θµli ).

Being on a circle of lengthL, we can make the usual assumption on the Bethe wave-
function (see, e.g., [11]), which is captured in the requirement

(3.10)Zi(θ)Z
µ1···µN
k,α =Zµ1···µN

k,α Zi(θ)exp(−iLmi sinhθ).

Using this monodromy property together with the braiding relations (3.6), (3.7) and the
unitarity relation (2.6), we obtain

(3.11)

N∏
l=1

Sli (θ̂li)

Sli (θli)

(
N∏
l=1

Sli (θli)− eiLmi sinhθi

T̃ αi (−θi)

)
= T αi (−θi)
T̃ αi (−θi)

(
e−iLmi sinhθi

T αi (θi)
−

N∏
l=1

Sil(θil)

)
.

Viewing the subscripts as entire spaces rather than components, Eq. (3.11) corresponds
to the Bethe ansatz equation with simultaneously occurring transmission and reflection
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amplitudes for the generic, that is also the non-diagonal, case. We restrict it here to the
diagonal case and can therefore use the constraints (2.15), such that the bulk scattering
matrix becomes rapidity independent and the relation (3.11) may be re-written as

(3.12)1= eiLmi sinhθD±
iα(θ)

N∏
l=1

Sil,

where

D±
iα(θ)=

T̃ αi (θ)+ T αi (θ)
∏N
l=1S

2
il

2

(3.13)± 1

2

[(
T̃ αi (θ)+ T αi (θ)

N∏
l=1

S2
il

)2

− 4T αi (θ)
∏N
l=1S

2
il

T αi (−θ)

]1/2

.

For consistency reasons it is instructive to consider the limit when the reflection amplitude
tends to zero. In that case we can employ the relations (2.5)–(2.7) and may take the square
root in (3.13), such that we obtain from (3.12) the two equations

(3.14)R, R̃→0: 1= eiLmi sinhθ T̃ αi (θ)

N∏
l=1

Sil , 1=e−iLmi sinhθT αi (θ)

N∏
l=1

Sli .

This means we recover the Bethe ansatz equations for a purely transmitting defect, which
were originally proposed by Martins in [44]. The two signs in (3.13) capture the breaking of
parity invariance in the limiting case, i.e., the two equations in (3.14) correspond to taking
the particle either clockwise or anti-clockwise around the world line as formulated for the
parity breaking case for the first time in [45]. We do not expect to recover from here the
equations for a purely reflecting boundary which were suggested in [46], since Eqs. (3.6)
and (3.7) do not make sense in the limitT , T̃ → 0. For

∏N
l=1S

2
il = 1, i.e., the free Boson

and Fermion, we can exploit the fact that (3.12) with (3.13) look formally precisely like the
Bethe ansatz equations for a purely transmitting defect. If we want to exploit this analogy
we should of course be concerned about the question whetherD±

jα(θ) is a meromorphic
function. Assuming parity invariance, we may take the square root

(3.15)D±
jα(θ)= T αj (θ) ±Rαj (θ) for T = T̃ ,R = R̃.

The matrixD±
jα(θ) has now the usual properties, namely it is unitarity in the sense that

D±
jα(θ)D

±
jα(−θ)= 1. It follows further from (3.15), (2.16) and (2.17) that the hermiticity

relation D±
jα(θ) = D±

jα(−θ)∗ and the crossing relationsD±
̄α(θ) = D∓

jα(iπ − θ) and

D±
̄α(θ)=D±

jα(iπ − θ) hold for the free Fermion and Bosons, respectively.
Let us now carry out the thermodynamic limit in the usual way, namely by increasing

the particle number and the system size in such a way that their mutual ratio remains finite.
The amount of defects is kept constant in this limit, such that there is no contribution to the
TBA-equations from the defect in that situation, see also [44] where the same argument was
employed. Hence this means that essentially we can employ the usual bulk TBA analysis
when the considerations are carried out not per unit length.
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Let us therefore recall the main equations of the TBA analysis. For more details on
the derivation see [11] and in particular for the introduction of the chemical potential
see [12]. The main input into the entire analysis is the dynamical interaction, which enters
via the logarithmic derivative of the scattering matrixϕij (θ) = −id lnSij (θ)/dθ and the
assumption on the statistical interaction, which we take to be fermionic. As usual [11,12],
we take the logarithmic derivative of the Bethe ansatz equation (3.12) and relate the density
of statesρi(θ, r) for particles of typei as a function of the inverse temperaturer = 1/T to
the density of occupied statesρri (θ, r)

(3.16)ρi(θ, r)= mi

2π
coshθ +

∑
j

[
ϕij ∗ ρrj

]
(θ).

By (f ∗ g)(θ) := 1/(2π)
∫
dθ ′ f (θ − θ ′)g(θ ′) we denote as usual the convolution of two

functions. The mutual ratio of the densities serves as the definition of the so-called pseudo-
energiesεi(θ, r)

(3.17)
ρri (θ, r)

ρi(θ, r)
= e−εi(θ,r)

1+ e−εi(θ,r) ,
which have to be positive and real. At thermodynamic equilibrium one obtains then the
TBA-equations, which read in these variables and in the presence of a chemical potentialµi

(3.18)rmi coshθ = εi(θ, r,µi)+ rµi +
∑
j

[
ϕij ∗ ln

(
1+ e−εj )](θ),

wherer =m/T , ml →ml/m, µi → µi/m, with m being the mass of the lightest particle
in the model. It is important to note thatµi is restricted to be smaller than 1. This follows
immediately from (3.18) by recalling thatεi � 0 and that forr largeεi(θ, r,µi) tends to
infinity. As pointed out already in [11] (here just with the small modification of a chemical
potential), the comparison between (3.18) and (3.16) leads to the useful relation

(3.19)ρi(θ, r,µi)= 1

2π

(
dεi(θ, r,µi)

dr
+µi

)
.

The main task is therefore first to solve (3.18) for the pseudo-energies from which then all
densities can be reconstructed.

3.3. Thermodynamic quantities

Treating Eqs. (3.12) and (3.13) in the mentioned analogy we can also construct various
thermodynamic quantities. It should be stressed that these quantities are computed per unit
length. Similarly as the expression found in [44] for a purely transmitting defect the free
energy is

(3.20)F(r)= − 1

πr

∑
l,α

m̂l

∞∫
0

dθ
[
coshθ +m−1ϕlα(θ)

]
ln
[
1+ exp(−rmcoshθ)

]
.

It is made up of two parts, one coming from the bulk and one including the data of the
defect in form ofϕlα(θ)= −id lnDlα(θ)/dθ . From Eq. (3.20) we also see that when taking
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the mass scale to be large in comparison to the dominating scale in the defect, the latter
contribution to the scaling function becomes negligible with regard to the bulk and vice
versa.

3.4. The high temperature regime

Since the physical quantities require a solution of the TBA-equations, which up to
now, due to their non-linear nature, can only be solved numerically, we have to resort
in general to a numerical analysis to obtain the conductance for some concrete theories.
However, there exist various approximations for different special situations, such as the
high temperature regime. For large rapidities and smallr, it is known [11] (here we only
need the small modification of the introduction of a chemical potentialµi ) that the density
of states can be approximated by

(3.21)ρi(θ, r,µi)∼ mi

4π
e|θ | ∼ 1

2πr
ε(θ)

dεi(θ, r,µi)

dθ
,

whereε(θ)=Θ(θ)−Θ(−θ) is the step function, i.e.,ε(θ)= 1 for θ > 0 andε(θ)= −1
for θ < 0. In Eq. (3.17), we assume that in the large rapidity regimeρri (θ, r,µi) is
dominated by (3.21) and in the small rapidity regime by the Fermi distribution function.
Therefore

(3.22)ρri (θ, r,µi)∼
1

2πr
ε(θ)

d

dθ
ln
[
1+ exp

(−εi(θ, r,µi))].
Using this expression in Eq. (3.1), we approximate the direct current in the ultraviolet by

(3.23)lim
r→0

Iα
i (r,µi)∼

qi

4πr

∞∫
−∞

dθ ln

[
1+ exp(−εi(θ, r,µli))
1+ exp(−εi(θ, r,µri ))

]
d[ε(θ) |T α

i (θ)|2]
dθ

,

after a partial integration. For simplicity we also assumed here parity invariance, that is
|T α
i (θ)| = |T̃ α

i (θ)|. The derivation of the analogue to (3.23) for the situation when parity
is broken is of course similar. Taking now the potentials at the end of the wire to be
µri = −µli = V/2, the conductance reads in this approximation

(3.24)

lim
r→0

Gα
i (r)∼

qi

2πr

∞∫
−∞

dθ
1

1+ exp[εi(θ, r,0)]
dεi(θ, r,V /2)

dV

∣∣∣∣
V=0

d[ε(θ) |T α
i (θ)|2]

dθ
.

In order to evaluate these expressions further, we need to know explicitly the precise form
of the transmission matrix, i.e., the concrete form of the defect. An interesting situation
occurs when the defect is transparent or rapidity independent, that is|T α

i (θ)| → |T α
i |, in

which case we can pursue the analysis further. Noting thatdε(θ)/dθ = 2δ(θ), we obtain

(3.25)lim
r→0

Gα
i (r)∼

qi

πr

|T α
i |2

1+ expεi(0, r,0)

dεi(0, r,V /2)

dV

∣∣∣∣
V=0

.
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The derivativedεi(0, r,V /2)/dV can be obtained by solving recursively

(3.26)
dεi(0, r,V /2)

dV
= − r

2
+
∑
j

Nij
1

1+ expεj (0, r,V /2)

dεj (0, r,V /2)

dV
,

which results form a computation similar to a standard one in this context [11] leading to
the so-called constant TBA-equations. Here only the asymptotic phases of the scattering
matrix enter viaNij = limθ→∞[ln[Sij (−θ)/Sij (θ)]]/2πi. The values ofεi(0, r,0) needed
in (3.25) can be obtained for smallr in the usual way from the standard constant TBA-
equations.

3.5. Free Fermion with defects

Let us exemplify the general formulae once more with the free Fermion. First of all
we note that in this case in the TBA-equations (3.18) the kernelϕij is vanishing and the
equation is simply solved by

(3.27)εi(θ, r,µi)= rmi coshθ − rµi.
Therefore, we have explicit functions for the densities with (3.19) and (3.17)

(3.28)

ρi(θ, r,µi)= 1

2π
mi coshθ and ρri (θ, r,µi)=

mi coshθ/2π

1+ exp(rmi coshθ − rµi) .

According to (3.1) the direct current reads

Iα(r,V )= qi

2

∞∫
−∞

dθ
[
ρrı̄ (θ, r,V /2)

∣∣T α
ı̄ (θ)

∣∣2 − ρri (θ, r,−V/2)
∣∣T α
i (θ)

∣∣2
(3.29)− ρrı̄ (θ, r,−V/2)

∣∣T̃ α
ı̄ (θ)

∣∣2 + ρri (θ, r,V /2)
∣∣T̃ α
i (θ)

∣∣2].
Using atomic unitsme = e= h̄=mi = qi = 1, we obtain explicitly with (3.28)

(3.30)Iα(r,V )= 1

π

∞∫
0

dθ
coshθ sinh(rV /2) |T α(θ)|2

cosh(r coshθ)+ cosh(rV /2)
,

for |T α
ı̄ (θ)| = |T α

i (θ)| = |T̃ α
ı̄ (θ)| = |T̃ α

i (θ)| = |T α(θ)|. Then by (3.4) the conductance
results to

(3.31)Gα(r)= rme
2

h

∞∫
0

dθ
coshθ |T α(θ)|2

1+ cosh(rmcoshθ)

in this case. We have re-introduced dimensional quantities instead of atomic units to be able
to match with some standard results from the literature. The most characteristic features
can actually be captured when we carry out the massless limit as indicated in Section 2.3.2,
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which can be done even analytically. Substitutingt = eθ , we obtain

(3.32)lim
m→0

Gα(r)∼ e2

h

∞∫
0

dt
|T α
L/R(t y/r)|2
1+ cosh(t)

= e2

h

{ |T α
L/R(t y/r)|2, for y� r,

|T α
L/R(y/r=0)|2, for y� r.

We have identified here two distinct regions. Wheny � r we can replace the left/right
transmission amplitudes by their values aty/r = 0. When y � r the transmission
amplitudes enter the expression as a strongly oscillatory function in whichy/r plays the
role of the frequency. It is then a good approximation to replace this function by its means
value as indicated by the overbar. It is straightforward to extend the expression (3.32) to the
case when the assumption onT α in (3.30) is relaxed and to the case with different values
of y. To proceed further we need to specify the defect.

3.5.1. Energy insensitive defectsD0(ψ̄,ψ)= 0, Dβ(ψ̄,ψ), Dγ (ψ̄,ψ), Dδ±(ψ̄,ψ)
Let us first consider the easiest example, which supports the general working of the

method. When the defect is transparent, i.e.,|T α | = 1, we can compute the expression for
the conductance (3.31) directly in the large temperature limit and obtain the well known
behaviour [9]

(3.33)lim
r→0,|T α |→1

Gα(r)∼ e2

h

(
1− rm

2

)
.

Alternatively we obtain the expression (3.33) also from Eqs. (3.25) and (3.27). In the
massless limit of (3.32) we obtaine2/h which coincides with the result in [15]. However,
we should stress that we consider here purely massive cases and the massless limit only
serves as a benchmark. Note that a transparent defect in this context does not necessarily
mean the absence of the defect. Considering for instance the defectDβ(ψ̄,ψ), we compute
with (2.48) and (2.49) the same conductance as if there was no defect at all. Similarly
simple are the computations for the defectsDγ (ψ̄,ψ), Dδ±(ψ̄,ψ). We simply get

(3.34)G0(r)=Gβ(r)=Gγ (r)cos2B =Gδ±(r)/(1+ 4 tan2B/2
)= e2

h
.

Since the amplitudes do not depend on the rapidities, the TBA-kernel is zero and there is
no contribution from this defect to the free energy, even unit length.

3.5.2. The energy operator defectDα(ψ̄,ψ)= gψ̄ψ
For this defect the computation of the conductance according to (3.31) is more involved.

The results of our numerical analysis of the expression (3.31) are depicted in Fig. 4.
We observe several distinct features. First of all it is naturally to be expected that when

we increase the number of defects the resistance will grow. This is confirmed, as for fixed
temperature and increasing number of defects, the conductance decreases. Second we see
several well extended plateaux. They can be reproduced with the analytical expressions
obtained in the massless limit (3.32). To be able to compare with (3.31) we re-introduce
atomic units for convenience, i.e.,e2/h → 1/2π . For a single defect there is only one
plateaux and from (3.32) we obtain with (2.43)

(3.35)Gα(r)∼ cos2B

2π
.
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Fig. 4. ConductanceG(r) for the complex free Fermion with the energy operator defects as a function of the
inverse temperaturer, for fixed effective coupling constantB and (a) for varying amounts of defects,= 0,1,2,4,
(b) for ,= 2 for varying distancesy.

For B = 0.5 the value 0.1226 is well reproduced in Fig. 4(a). The lower lying plateaux
correspond to the region wheny� r. In that case we obtain from (3.32) together with the
expressions (2.44)–(2.47) for a double and four defects

(3.36)Gα1α2(r)∼ 1

2π

(
cos2B

1+ sin2B

)2

, for y� r,

(3.37)Gα1α2α3α4(r)∼ 1

2π

(
cos4B

cos4B − 2(1+ sin2B)2

)2

, for y� r.

ForB = 0.5 the values 0.0624 and 0.0095 are well reproduced in Fig. 4(a) for,= 2 and
,= 4, respectively. The plateaux extending to the ultraviolet regime result from (3.32) and
by taking in (2.44)–(2.47) the mean values

(3.38)Gα1α2(r)∼ 2

π

1+ sin4B

(cos2(2B)− 3)2
, for y� r,

(3.39)Gα1α2α3α4(r)∼ 1

4π
+ cos8B

4π[cos4B − 2(1+ sin2B)2]2 , for y� r.

Also in this case the values forB = 0.5, i.e., 0.110784 and 0.084311 for,= 2 and,= 4,
respectively, match very well with the numerical analysis. Finally we have to explain the
reason for the increase from one to the next plateaux and why the curves are shifted
precisely in the way as indicated in Fig. 4(b) when we change the distance between the
defects. This phenomenon is attributed to resonances as we shall discuss in more detail in
the next subsection.

3.5.3. Resonances versus unstable particles
In [47] we demonstrated that resonances may be described similarly as unstable

particles. The latter provide an intuitively very clear picture which explains the relatively
sharp onset of the conductance with increasing temperature. The temperature at which this
onset occurs, sayTC can be attributed directly to the energy scale at which the unstable
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particle is formed, since then it starts to participate in the conducting process. The Breit–
Wigner formula [48] constitutes in this case a relation for the massM and the decay width
Γ of an unstable particle. Supposing that in the scattering process between particles of
type i and j an unstable particle can be formed, this is reflected by a pole inSij (θ) at
θ = σ − iσ̄ . Then, for large values of the resonance parameterσ one may approximate

(3.40)M2 ≈ 1/2mimj (1+ cosσ̄ )exp|σ | and Γ 2 ≈ 2mimj (1− cosσ̄ )exp|σ |.
Since a renormalization group flow is provided byM → r M, one should observe
that the quantitiesM ∼ r1e

σ1/2 = r2e
σ2/2 andΓ ∼ r1e

σ1/2 = r2e
σ2/2 remain invariant.

Accordingly, this creation of the unstable particle should be reflected in the conductance
as

(3.41)G(r1, σ1)=G(r2, σ2) for r1e
σ1/2 = r2eσ2/2.

This means we can control the position of the onset in the conductance byM and
its extension in the temperature direction byΓ . For a model which possesses unstable
particles we found indeed such a behaviour [47]. From the data of the previous subsections
we find that the conductance scales asG(r1, y1) = G(r2, y2) for r2y1 = r1y2. Then the
comparison with (3.41) suggests that we can relate the distance between the two defects to
the resonance parameter asσ = 2 ln(const/y). From the maxima in|T (θ)| we may identify
variousσs and in fact in this case the net result can be attributed to two resonances [47].

3.5.4. Multiple plateaux
Up to now, we have observed that we always obtain essentially two plateaux in the

conductance, no matter how many (� 2) and what type of defects we implement. The
natural question arising at this point is whether it is possible to have a set up which leads
to a more involved plateaux structure? It is clear that if we had many defects in a row
separated far enough from each other such that the relaxation time of the passing particles
is so large that they could be treated as single rather than multiple defects, then any desired
type of multiple plateau structure could be obtained. In this case the conductance is simply
the sum of the expressions one has for each defect independently. Recalling the origin of
the different plateaux, there is another slightly less obvious option. The density distribution
function ρr is a peaked function of the rapidity and if the resonances inT α(θ) would
be separated far enough, such that they are resolved byρr , we would also get a multiple
plateaux pattern. However, tuning the distance between the defects or the coupling constant
will merely translate the position of the resonances in the rapidity variable or change their
amplitudes, respectively (see Section 2).

Therefore the last option left is to change theρrs, which is possible by varying the
temperature. Choosing now a configuration as in Fig. 3 with different temperaturesT1
andT2, one can “create” a second plateau at half the height of the original one. The reason
for this is simply that the cooled half of the wire will cease to contribute to the conductance
as can be directly deduced from (3.31). We depict the results of our computations in Fig. 5.

From this it also obvious that if we only cool the fractionx of the wire, the lowest
plateau will be positioned at the heightx times the height of the upper plateau. Thus, by
combining these different configurations, i.e., different temperatures or defects, we could
produce any desired plateau structure.
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Fig. 5. ConductanceG(r2) for the complex free Fermion with the energy operator defects as a function of the
inverse temperaturer2, for fixed effective coupling constantB = 0.5and varying temperature ratios in the two
halves of the wire.

4. Conductance from the Kubo formula

Having computed the DC conductance by means of a TBA analysis, we want to proceed
now by introducing an alternative method for the acquisition of the same quantity, that is
the evaluation of the celebrated Kubo formula3 [3]

(4.1)G(T )= − lim
ω→0

1

2ωπ2

∞∫
−∞

dt eiωt
〈
J (t)J (0)

〉
T ,m
.

The key quantity needed for the explicit computation of (4.1) is the occurrence of the
current–current correlation function〈J (r)J (0)〉T ,m. In the latter, the subscripts(T ,m)
indicate that, in general, one is interested in a situation when both, the mass scale of
the particles in the quantum field theory and the temperature, are non-vanishing. This is
precisely the same regime in which we have carried out the TBA analysis in the previous
section and ultimately we want to compare the outcome of both computations. So far,
formula (4.1) still refers to a situation in which no defect is present in the theory. Later
on we will see how the Kubo formula can also be generalized in order to incorporate the
presence of defects.

As a consequence of the central role played by the two-point function of the current
operator in (4.1), we will devote an important part of this section to recall the key features
of a concrete method which will allow for the computation of such a quantity that is, the
form factor bootstrap approach [13]. To carry out this program one needs essentially as the
only input the scattering matrix and it is then in principle possible to compute form factors
associated to various local operators of the quantum field theory under investigation. Form
factors are defined as matrix elements of some local operatorO(!x) located at the origin

3 For a model independent derivation in the context of dynamical response theory see, e.g., [4].
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between a multiparticle in-state and the vacuum,

(4.2)FO|µ1···µn
n (θ1, θ2, . . . , θn) := 〈0|O(0)∣∣Z†

µ1
(θ1)Z

†
µ2
(θ2) · · ·Z†

µn
(θn)

〉
.

They can be obtained by a direct computation once a representation for the operator
involved is known or as solution to a certain set of physically motivated consistency
equations [13,14,49,50], in a similar fashion as one can determine exact scattering matrices
or transmission and reflection amplitudes for(1 + 1)-dimensional integrable systems as
discussed in Section 2.

In the zero-temperature regime, the latter fact is well-known since the original
works [13] and has lead successfully to the computation of correlation functions for
many models, albeit in most cases only approximately. It is easy to show that once the
corresponding form factors associated to two local operatorsO andO′ are known, the
computation of their two-point function is reduced to the task, still non-trivial, of evaluating
the following series〈

O(r)O′(0)
〉
T=0,m

(4.3)

=
∞∑
n=1

∑
µ1···µn

∫
dθ1 · · ·dθn
n!(2π)n

n∏
i=1

e−rmi coshθi

× FO|µ1···µn
n (θ1, . . . , θn)

[
FO′|µ1···µn
n (θ1, . . . , θn)

]∗
,

with xµ = (−ir,0). The previous expression is simply obtained by introducing a sum over
a complete set of states in between the two operators involved in the correlation function
and by shifting the operatorO(r) to the origin thereafter. However, as indicated by the
subscripts, this formula applies only to the zero-temperature regime. Obviously, when
settingO =O′ = J , the correlation function (4.3) is precisely the quantity entering the
Kubo formula (4.1), although forT = 0. It is therefore necessary to find a generalization of
the expansion (4.3) to the(T �= 0)-regime. Such type of generalization was first suggested
in [51] for the Ising model. It appears, however, to be difficult to generalize this to
dynamically interacting models [52] and since by now this has not been achieved we shall
concentrate on the zero temperature regime in this paper.

4.1. Conductance through an impurity

With the help of (4.3) we could in principle compute the current–current correlation
function and therefore evaluate the Kubo formula when there are no boundaries or defects
present. With regard to the inclusion of boundaries, the first examples in which the Kubo
formula was generalized in order to accommodate that situation were provided in [18]. In
there the expression (4.1) was evaluated for the sinh-Gordon and sine-Gordon model in
them = T = 0 limit and in the presence of a boundary. This was done by replacing the
vacuum state|0〉 with a boundary state|B〉 in the current–current correlation function as
follows

(4.4)
〈
J (r)J (0)

〉
T ,m

→ 〈
J (r)J (0)B

〉
T ,m

≡ 〈0|J (r)J (0)B|0〉T ,m.
The boundary state|B〉 := B|0〉 is understood as the action of a boundary operatorB on the
vacuum state|0〉 [31]. Following [31], one exchanges usually the roles of space and time,
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such that the correlation functions are radially rather than time ordered. This is the reason
why the boundary operatorB can only enter at the very right or left, since one formulates
such theories in half space. In contrast to the boundary, a defect can also enter in-between
the operators. Therefore, in order to include a defect in (4.1), one has to consider terms of
the form

(4.5)
〈
J (r)J (0)

〉
T ,m

→ 〈
J (r)ZαJ (0)

〉
T ,m
,

〈
J (r)J (0)Zα

〉
T ,m
,

〈
ZαJ (r)J (0)

〉
T ,m
,

whereZα represents the defect operator.
As a consequence of (4.5), the evaluation of the defect Kubo formula will require the

computation of matrix elements involving the operatorsZα

(4.6)Gα(T )= − lim
ω→0

1

2ωπ2

∞∫
−∞

dr eiωr
〈
J (r)Zα1 · · ·ZαnJ (0)

〉
T ,m
.

Eq. (4.6) expresses the conductance for a situation in whichn generic defectsZα1 · · ·Zαn
are present in the theory and located at positionsyα1 · · ·yαn in space. The defect
degrees of freedom are encoded into the vectorα = {α1, . . . , αn}, as done in previous
sections. In order to compare with the TBA results we would like, of course, to
compute the conductance in the massive, finite temperature regime. As mentioned the
evaluation of temperature dependent correlation functions is still poorly understood,
even for the simplest models. In addition, the presence of the limit in the parameterω,
together with the introduction of the defect operatorZα in the current–current two-point
function makes the generic evaluation of (4.6) fairly involved and constitutes a problem
which in general cannot be solved analytically. This is specially cumbersome when
double defects are considered, since the expressions for the reflection and transmission
amplitudes (2.21), (2.22) are, in general, quite messy to handle. For these reasons it is
interesting to start with a more simplified situation, in which some analytical calculations
can still be performed, that is theT = 0 regime. One may now view (4.5) as a three-
point function and extend the expansion (4.3) to the case when three operators enter the
correlation function. This will only require the inclusion of one more set of complete states,
such that (4.5) is expanded in terms of the form factors of the three operators involved〈

J (r)ZαJ (0)
〉
T=0,m =

∞∑
n,m=1

∑
µ1···µn
ν1···νm

∫
dθ1 · · ·dθn dθ̃1 · · ·dθ̃m

m!n!(2π)n+m FJ |µ1···µn
n (θ1, . . . , θn)

× 〈
Zµn(θn) · · ·Zµ1(θ1)

∣∣Zα

∣∣Zν1(θ̃1) · · ·Zνm(θ̃m)
〉

(4.7)

× FJ |ν1···νm
m (θ̃1, . . . , θ̃m)

∗e−r
∑n
i=1mi coshθi .

We will now restrict ourselves further and consider the massless version of (4.7). In this
limit, the results obtained for the conductance should agree with the UV-limit of the
conductance computed by means of (3.1), (3.31). Such a limit can be carried out by
exploiting the massless prescription suggested originally in [39] and already introduced
in the paragraph before Eq. (2.43). For the form factors in (4.7) the massless limit yields

(4.8)lim
σ→∞F

O|µ1···µn
n (θ1 + η1σ, . . . , θn + ηnσ)= FO|µ1···µn

ν1···νn (θ1, . . . , θn),
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with ηi = ±1 andνi =R for ηi = + andνi = L for ηi = −. Namely, in the massless limit
every massiven-particle form factor is mapped into 2n massless form factors. Using these
expressions, performing a Wick rotation and introducing the variableE =∑n

i=1 m̂ie
θi , we

obtain from (4.7)〈
J (r)ZαJ (0)

〉
T=m=0 =

∞∑
n,m=1

∑
µ1···µn
ν1···νm

∫
dθ1 · · ·dθn dθ̃1 · · ·dθ̃m

m!n!(2π)n+m F
J |µ1···µn
R1···Rn (θ1, . . . , θn)

× 〈
ZRµn(θn) · · ·ZRµ1

(θ1)
∣∣Zα

∣∣ZRν1
(θ̃1) · · ·ZRνm(θ̃m)

〉
(4.9)

× FJ |ν1···νm
R1···Rm (θ̃1, . . . , θ̃m)

∗e−irE.

We note that for the massless prescription to work, the matrix element involving the defect
Zα can only depend on the rapidity differences, which will indeed be the case as we see
below. Performing the variable transformationθn → lnE′/m̂n −∑n

i=1 m̂i/m̂ne
θi , we re-

write the r.h.s. of (4.9) as

∞∑
n,m=1

∑
µ1···µn
ν1···νm

E∫
0

dE′
lnE′/m̂n∫
−∞

dθ1 · · ·dθn−1

n!(2π)n

×
∞∫

−∞

dθ̃1 · · ·dθ̃m
m!(2π)m F

J |µ1···µn
R1···Rn

(
θ1, . . . , θn(E

′)
)

× 〈
ZRµn

(
θn(E

′)
) · · ·ZRµ1

(θ1)
∣∣Zα

∣∣ZRν1
(θ̃1) · · ·ZRνm(θ̃m)

〉
(4.10)× FJ |ν1···νm

R1···Rm (θ̃1, . . . , θ̃m)
∗e−irE′

.

We substitute now this correlation function into the Kubo formula, shift all rapidities as
θi → θi+ lnE′/m̂n, θ̃i → θ̃i+ lnE′/m̂n use the Lorentz invariance of the form factors4

and carry out the integration indE′

Gα = − lim
ω→0

ω2s−2

m̂2s
n π

∑
µ1···µn
ν1···νm

0∫
−∞

dθ1 · · ·dθn−1

n!(2π)n
∞∫

−∞

dθ̃1 · · ·dθ̃m
m!(2π)m

1

1−∑n−1
i=1 m̂i/m̂ne

θi

×
〈
ZRµn

(
ln

(
1−

n−1∑
i=1

m̂i/m̂ne
θi

))
· · ·ZRµ1

(θ1)

∣∣∣∣∣Zα

∣∣ZRν1
(θ̃1) · · ·ZRνm(θ̃m)

〉

(4.11)

× FJ |µ1···µn
R1···Rn

(
θ1, . . . , ln

(
1−

n−1∑
i=1

m̂i/m̂ne
θi

))
F
J |ν1···νm
R1···Rm (θ̃1, . . . , θ̃m)

∗.

4 Denoting bys the Lorentz spin of the operatorO andλ being a constant, the form factors satisfy

F
O|µ1···µn
n (θ1 + λ, . . . , θn + λ)= esλ FO|µ1···µn

n (θ1, . . . , θn).
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We state various observations: Since the matrix element involving the defect only depends
on the rapidity difference, it is not affected by the shifts. The Lorentz spins = 1 plays
a very special role in (4.11), which makes the current operator especially distinguished.
In that case the r.h.s. of (4.11) becomes independent of the frequencyω and the limit is
carried out trivially. Furthermore, since the final expression has to be independent ofm̂n,
we deduce that the form factors have to be linearly dependent onm̂n.

One may now compute the form factors by solving either the associated consistency
equations or by using concrete realizations of the operators. For those form factors
involving the current operatorJ , a realization in terms of the ZF-algebra was given in [30]
for complex free Fermion type models and used to compute the corresponding matrix
elements. We will determine form factors involving the defect operator in the same fashion,
which means we require a concrete realization for the operatorZα .

4.2. Realization of the defect operator

A realization ofZα can be achieved very much in analogy to a realization of local
operators, i.e., as exponentials of bilinears in the ZF-operators [53]. For the case of
a boundary a generic model independent realization for the boundary operatorB was
originally proposed in [31] for the parity invariant case, i.e.,R = R̃. This proposal was
generalized to the defect operator in [34] with the same restriction and for self-conjugated
particles. This realization was used by the authors for the computation of various matrix
elements involving the defect operator. Our aim in this section is to extend this realization
in order to incorporate the possibility of parity breaking as well as non self-conjugated
particles. A non-trivial consistency check for the validity of our proposal will be ultimately
provided when exploiting it in the computation of the conductance, obtained before by
entirely different means, that is the TBA approach. The realization we want to propose
here is a direct generalization of the one presented in [34], namely

(4.12)Zα = :exp

[
1

4π

∞∫
−∞

Dα(θ) dθ

]
:,

where: : denotes normal ordering and the operatorDα(θ) has the form

Dα(θ)=
∑
i

[
Kα
i (θ)Z

†
i (θ)Z

†
ı̄ (−θ)+ K̃α

i (θ)
∗Zı̄(−θ)Zi(θ)

(4.13)+Wα
i (θ)Z

†
i (θ)Zi(θ)+ W̃α

i (θ)
∗Z†

i (−θ)Zi(−θ)
]
,

with

(4.14)Kα
i (θ) :=Rα

i

(
iπ

2
− θ

)
, K̃α

i (θ) := R̃α
i

(
iπ

2
− θ

)
,

(4.15)Wα
i (θ) := T α

i

(
iπ

2
− θ

)
, W̃α

i (θ) := T̃ α
i

(
iπ

2
− θ

)
.

In comparison with [34] we have used a slightly different normalization factor, since in
general we have contributions in the sum overi in (4.13) including both particles and anti-
particles, as for the complex free Fermion we shall treat below. Following the arguments
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given in [31], the operatorDα(θ) depends on the amplitudesR(θ), T (θ), R̃(θ) andT̃ (θ)
with their arguments shifted according to (4.14)–(4.15), as considered also in [27,34]. The
reason for these shifts is the exchange of the roles played by the space and time coordinates
xµ = (t, x)→ (ix, it), which was already mentioned after (4.4). Doing this and keeping
simultaneously the productxµ · pµ invariant requires the rapidity shifts in (4.14)–(4.15).
In our context, this implies that we must now not only perform the shifts (4.14)–(4.15) in
our expressions, but also, with regard to the positions of the defects, the changeyα → iyα
should be implemented. The latter replacement will play an important role since, similar as
in the TBA case, the amplitudes (4.14)–(4.15) will become in this way strongly oscillating
functions ofyα . Therefore, we may be able to carry out once more certain analytical
calculations, by replacing the mentioned functions with their mean values. In (4.13) we
have already specialized to the case when the reflection and transmission amplitudes are
diagonal both with respect to the particle and defect degrees of freedom, since that will be
the situation for all the examples we want to treat in this paper.

4.3. Defect matrix elements

Having now a concrete generic realization of the defect (4.13), we can compute the
defect matrix elements. One way of doing this is to solve a set of consistency equations
which relate the lower particle matrix elements to higher particle ones, similar as in the
standard form factor program [13]. Such kind of iterative equations were proposed in [27]
for a parity invariant defect and for a real free fermionic and bosonic theory. First we note
that the operator (4.12) becomes

(4.16)Zα = :exp

[
1

2π

∞∫
−∞

dθ
∑
i

Z
†
i (θ)Zi(θ)

]
:,

in the limit R = R̃ = 0 andT = T̃ = 1. The defect should act in this case as the identity
operator and, according to (2.2),

(4.17)
〈
Zi(θ1)ZαZ

†
j (θ2)

〉= 2π δ(θ12)δij ,

holds, simply by employing Wick’s theorem when carrying out the necessary contractions.
For two particles we find,

(4.18)
〈
Zı̄(θ1)Zi(θ2)Zα

〉= πK̂α
i (θ2)δ(θ̂12),

(4.19)
〈
ZαZ

†
i (θ1)Z

†
ı̄ (θ2)

〉= π K̂α
i (θ1)

∗δ(θ̂12),

(4.20)
〈
Zi(θ1)ZαZ

†
j (θ2)

〉= π Ŵα
i (θ1)δ(θ12)δij ,

where we recall from Section 2 the notationθ̂12 = θ1 + θ2 andθ12 = θ1 − θ2. For later
convenience we have introduced the functions

(4.21)K̂α
i (θ)=Kα

i (θ)+ Sı̄i (−2θ)Kα
ı̄ (−θ)= K̃α

i (θ)+ Siı̄ (2θ)K̃α
ı̄ (−θ),

(4.22)Ŵα
i (θ)=Wα

i (θ)+ W̃α
i (−θ)∗ = W̃α

ı̄ (−θ)+Wα
ı̄ (θ)

∗ = Ŵα
ı̄ (θ)

∗,
since theKα

i , K̃α
i ,Wα

i andW̃α
i amplitudes defined by (4.14)–(4.15) will repeatedly appear

in the combinations (4.21), (4.22) in what follows. The latter equalities in (4.21), (4.22)
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follow simply from

W̃α
i (θ)=Wα

ı̄ (−θ)= W̃α
ı̄ (iπ − θ)∗,

(4.23)K̃α
i (θ)= Siı̄ (2θ)Kα

ı̄ (−θ)= Siı̄ (2θ)K̃α
ı̄ (iπ − θ)∗,

which are in turn consequences of the crossing-hermiticity properties (2.16)–(2.17).
Having these matrix elements we can construct the ones involving more particles
recursively from

Fµm···µ1ν1···νn
α (θm · · ·θ1, θ ′

1 · · ·θ ′
n)

:= 〈
Zµm(θm) · · ·Zµ1(θ1)ZαZ

†
ν1
(θ ′

1) · · ·Z†
νn
(θ ′
n)
〉

= π
m∑
l=2

δµ1µ̄l δ(θ̂1l)K̂
α
µ1
(θ1)

×
l−1∏
p=1

Sµ1µp (θ1p)F
µm···µ̌l ···µ2ν1···νn
α (θm · · · θ̌l · · ·θ2, θ ′

1 · · ·θ ′
n)

(4.24)

+ π
n∑
l=1

δµ1νl δ(θ1 − θ ′
l )Ŵ

α
µ1
(θ1)

×
l−1∏
p=1

Sµ1νp (θ1p)F
µm···µ2ν1···ν̌l ···νn
α (θm · · ·θ2, θ ′

1 · · · θ̌ ′
l · · ·θ ′

n),

Fµm...µ1ν1···νn
α (θm · · ·θ1, θ ′

1 · · ·θ ′
n)

= π
n∑
l=2

δν1ν̄l δ(θ̂
′
1l)K̂

α
ν1
(θ ′

1)
∗

×
l−1∏
p=1

Sν1µp(θ1p)F
µm···µ1ν2···ν̌l ···νn
α (θm · · ·θ1, θ ′

2 · · · θ̌ ′
l · · ·θ ′

n)

(4.25)

+ π
m∑
l=1

δν1µl δ(θ
′
1 − θl)Ŵα

ν1
(θ ′

1)
∗

×
l−1∏
p=1

Sν1µp(θ1p)F
µm···µ̌l ···µ1ν2···νn
α (θm · · · θ̌l · · ·θ1, θ ′

2 · · ·θ ′
n).

Here we denoted with the check on the rapiditiesθ̌ the absence of the corresponding
particle in the matrix element. It is clear from the expressions (4.12) and (4.13) that
the only possible non-vanishing matrix elements (4.24) are those whenn + m is even.
Taking (4.18)–(4.20) as the initial conditions for the recursive equation (4.24)–(4.25),
we can now either solve them iteratively or use (4.12) and evaluate the matrix elements
directly.

4.4. Free Fermion with defects

Similar as for the TBA we want to exemplify our general formulae with the complex
free Fermion. We consider now the particularization of the defect realization (4.13) to
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this case. Then the generators of the ZF-algebraZi(θ), Z
†
i (θ) are just the usual creation

and annihilation operatorsai(θ), a
†
i (θ) in the free fermionic Fock space and we have to

distinguish between particlesi and anti-particles̄ı. For the complex free Fermion it is
interesting to notice that the realization (4.12) resembles very much the one employed
in [30,53] for a prototype local field.

4.4.1. Defect matrix elements
Let us now use (4.12)–(4.13) in order to evaluate matrix elements involving the defect

operator. In what follows, the most relevant matrix elements are those involving four
particles, for which we compute〈

ai(θ1)aı̄(θ2)Zαa
†
ı̄ (θ3)a

†
i (θ4)

〉
(4.26)=wα

iı̄ (θ1,θ2)δ(θ14)δ(θ23)+ kα
ii (θ1,θ4)δ(θ̂12)δ(θ̂34),

(4.27)
〈
ai(θ1)ai(θ2)Zα a

†
j (θ3)a

†
j (θ4)

〉= −π2Ŵα
i (θ1)Ŵ

α
i (θ2)δ(θ13)δ(θ24)δij ,〈

ai(θ1)ak(θ2)ai(θ3)Zαa
†
i (θ4)

〉
= π2Ŵα

i (θ4)K̂
α
i (−θ2)

[
δ(θ14)δ(θ̂23)− δ(θ̂12)δ(θ34)

]
δik̄,〈

ai(θ1)Zαa
†
i (θ2)a

†
k (θ3)a

†
i (θ4)

〉
= π2Ŵα

i (θ1)K̂
α
i (−θ3)∗

[
δ(θ̂23)δ(θ14)− δ(θ12)δ(θ̂34)

]
δik̄,

with the abbreviations

(4.28)wα
iı̄ (θ1,θ2)= π2Ŵα

i (θ1)Ŵ
α
ı̄ (θ2), kα

ii (θ1,θ2)= π2K̂α
i (θ1)K̂

α
i (θ2)

∗.

One can also find solutions for alln-particle form factors either from (4.24)–(4.25) or by
direct computation. For instance we compute

Fm×(iı̄) n×(ı̄i)
α (θ2m · · ·θ1, θ ′

1 · · ·θ ′
2n)

=
min(n,m)∑
k=0

(−1)m+n−2kπn+m

(m− k)!(n− k)!k!k!
∞∫

−∞
dβ1 · · ·dβ2n+2m

× detA2n(β1 · · ·β2n; θ ′
1 · · ·θ ′

2n)detA2m(β2n+1 · · ·β2n+2m; θ1 · · ·θ2m)

×
k∏
p=1

Ŵα
i (β2p)Ŵ

α
ı̄ (β2p−1)δ(β2p − β2n+2p)δ(β2p−1 − β2n+2p−1)

(4.29)×
n∏

p=1+k
K̂α
i (β2p)

∗δ(β2p + β2p−1)

n+m∏
p=1+k+n

K̂α
i (β2p)δ(β2p + β2p−1),

whereA,(θ1 · · ·θ,; θ ′
1 · · ·θ ′

,) is a rank, matrix whose entries are given by

(4.30)A,ij = cos2
[
(i − j)π/2]δ(θi − θ ′

j ), 1 � i, j � ,.
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The matrix elements are computed similarly as in [30] and references therein. Likewise we
compute

Fn×i+m×i
α (θn · · ·θ1, θ ′

1 · · ·θ ′
m)

= δn,m π
n(−1)n−1

n!
∞∫

−∞
dβ1 · · ·dβn

n∏
k=1

Ŵα
i (θk)

(4.31)× detBn(θn · · ·θ1;β1 · · ·βn)detBn(β1 · · ·βn; θ ′
1 · · ·θ ′

n),

where we introduced a new rank, matrix B,(θ1 · · ·θ,; θ ′
1 · · ·θ ′

,) whose entries are now
simply given by

(4.32)B,ij = δ(θi − θ ′
j ), 1 � i, j � ,.

Since (4.31) is simpler than (4.29) we use it to demonstrate explicitly that it satisfies the
recurrence relations (4.24) and (4.25). The other cases work the same way. Starting with the
expansion of the determinant detBn(θn · · ·θ1;β1 · · ·βn) with respect to the row involving
the variableθ1 gives

detBn(θn · · ·θ1;β1 · · ·βn)
(4.33)=

n∑
l=1

(−1)n+l+1δ(θ1 − βl)detBn−1(θn · · ·θ2;β1 · · · β̌l · · ·βn).

Inserting then (4.33) into (4.31), we obtain

Fn×i+m×i
α (θn · · ·θ1, θ ′

1 · · ·θ ′
m)

(4.34)

= δn,m π
n

n!
n∑
l=1

Ŵα
i (θ1)

∞∫
−∞

dβ1 · · ·dβ̌l · · ·dβn(−1)l
l−1∏
k=1

Ŵα
i (θk)

×
n∏

k=l+1

Ŵα
i (θk)detBn−1(θn · · ·θ2;β1 · · · β̌l · · ·βn)

× detBn(β1 · · ·βl → θ1 · · ·βn; θ ′
1 · · ·θ ′

n).

Expanding now the second determinant in (4.34) with respect to thelth row, which involves
the rapidityθ1, and using the fact that theβs are just integration variables and therefore,
the sum inl gives actuallyn times the same contribution, we can write

Fn×i+m×i
α (θn · · ·θ1, θ ′

1 · · ·θ ′
m)

= δn,m πn

(n− 1)!
n∑
p=1

Ŵα
i (θ1)δ(θ1 − θ ′

p)

∞∫
−∞

dβ1 · · ·dβn−1

× (−1)p
p−1∏
k=1

Ŵα
i (θk)

n∏
k=p+1

Ŵα
i (θk)detBn−1(θn · · ·θ2;β1 · · ·βn−1)

(4.35)× detBn−1(β1 · · ·βn−1; θ ′
1 · · · θ̌ ′

p · · ·θ ′
n).
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We recognize now the matrix element with two particles less on the l.h.s. of (4.35) and can
re-write it as

Fn×i+n×iα (θn · · ·θ1, θ ′
1 · · ·θ ′

n)

= π
n∑
p=1

(−1)p−1Ŵα
i (θ1)δ(θ1 − θ ′

p)

(4.36)× F (n−1)×i+(n−1)×i
α (θn−1 · · ·θ2, θ ′

1 · · · θ̌ ′
p · · ·θ ′

n),

which is in complete agreement with (4.24). The validity of (4.25) can be checked similarly.

4.4.2. Conductance in theT =m= 0 regime
It is well-known that for a free Fermion theory (also for a single complex free Fermion)

the conformalU(1)-current–current correlation function is simply

(4.37)
〈
J (r)J (0)

〉
T=m=0 = 1

r2 .

This expression can also be obtained by using the expansion (4.3), together with the
massless prescription outlined before (2.43) (see [52]) and the expressions for the only
non-vanishing form factors of the current operator in the complex free Fermion theory

(4.38)F
J |ı̄i
2 (θ, θ̃ )= −FJ |iı̄

2 (θ, θ̃ )= −iπme(θ+θ̃)/2.
In particular, the massless limit of the previous expressions gives, according to the massless
prescription,

(4.39)F
J |ı̄i
RR (θ, θ̃ )= −FJ |iı̄

RR (θ, θ̃ )= −2πim̂e(θ+θ̃)/2,
(4.40)F

J |ı̄i
LL (θ, θ̃ )= FJ |ı̄i

LR (θ, θ̃)= FJ |ı̄i
RL (θ, θ̃)= 0,

(4.41)F
J |iı̄
LL (θ, θ̃ )= FJ |iı̄

LR (θ, θ̃)= FJ |iı̄
RL (θ, θ̃)= 0.

Inserting (4.37) into (4.1) reduces the problem of finding the Fourier transform of the
function r−2 which is given byP

∫∞
−∞ dr eiωr r−2 = −πω for ω > 0, with P denoting

the principle value. This yields in the absence of a defectG0(0) = 1/2π , in complete
agreement with the limit (3.34).

Let us now consider a more complicated situation, that is, the evaluation of (4.6) for
T = m = 0 in the presence ofn defectsZα1 · · ·Zαn located at positionsyα1 · · ·yαn in
space. The correlation function (4.5) can now be obtained with the help of (4.3), which
has to be generalized for three-point functions. This requires the inclusion of one more
sum over a complete set of states in (4.3). Fortunately the only non-vanishing form factors
of the current are (4.39), which means the expansion (4.3) will already terminate for two
particles. Explicitly, we find〈

J (r)Zα1 · · ·ZαnJ (0)
〉
T=m=0

=
∑
i

∞∫
−∞

dθ1dθ2dθ3dθ4

2(2π)4
F
J |ı̄i
RR (θ1, θ2)

[
F
J |ı̄i
RR (θ3, θ4)

]∗
(4.42)× e−rm̂(eθ1+eθ2)〈ai(θ1)aı̄(θ2)Zα1 · · ·Zαna†

ı̄ (θ3)a
†
i (θ4)

〉
m=0.
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In the light of the expressions (4.28), we can re-write (4.42) in a more explicit form without
the need of specifying a concrete defect yet. Inserting (4.26) and (4.39) into (4.42), we find〈

J (r)Zα1 · · ·ZαnJ (0)
〉
T=m=0

(4.43)

= m̂2

2

∑
i

[ ∞∫
−∞

dθ1

2
e−2rm̂coshθ1K̂

α|R
i (θ1)

∞∫
−∞

dθ2

2
K̂

α|R
i (θ2)

∗

+
∞∫

−∞

dθ1

2
eθ1−rm̂eθ1Ŵα|R

i (θ1)

∞∫
−∞

dθ2

2
eθ2−rm̂eθ2Ŵα|R

ı̄ (θ2)

]
,

where we have exploited the crossing relations stated in (4.23). Here the functions
Ŵ

α|R
i (θ), K̂α|R

i (θ), . . . defined in (4.43) are the massless limits of the corresponding
functionsŴα

i (θ), K̂
α
i (θ), . . . For all the defects we will consider below, it turns out that

the first contribution to the previous correlation function is actually vanishing, so that
(4.43) is considerably simplified. In many of the examples we will treat later, this is due
to the fact that the amplitudeŝKα

i (θ) are vanishing in the first place, as a consequence
of the crossing relations (4.23). This will be the case for all energy insensitive defects
for which we will present a case-by-case computation of the conductance below. The
vanishing of the reflection part in (4.43) also occurs in some cases as a consequence of
the parity of the function̂Kα

i (θ). For instance, we find that, for the energy operator defect
such function, although initially non-vanishing, satisfieŝKα

i (θ) = −K̂α
i (−θ), such that

limm→0
∫∞
−∞ dθ K̂

α
i (θ)

∗ = 0.
We can now either use (4.43) in (4.6) to compute the conductance or evaluate the

expression (4.11) directly in which the frequency limit is already taken

(4.44)Gα(0)= 1

2(2π)3
∑
i

0∫
−∞

dθ eθw
α|RR
iı̄

[
ln(1− eθ ), θ].

There are, in addition, further generic results which can be obtained independently of
the specific defect. We present them at this stage and will confirm their validity below by
some specific examples. Specializing to the case in which all, defects are of the same type
and equidistantly separated, i.e.,y = yα1 = · · · = yαn . As in the TBA context (3.32), we
can identify two distinct regions

(4.45)w
α|RR
iı̄ (θ1,θ2)= π2

{
Ŵ

α|R
i (θ1)Ŵ

α|R
i (θ2)∗, for finite y,∣∣Ŵα|R

i

∣∣2, for y→ 0,

where we used in addition (4.22). Supported by our explicit examples below, we find that
for y→ 0 in (4.45) the amplitudeŝWα|R

i (θ) become independent functions of the rapidity.
As we have already argued above

(4.46)k
α|RR
ii (θ1,θ2)= 0.

The two regions specified in (4.45) are in complete agreement with the regions identified
in Eq. (3.32), since we also consider here the massless limit. When exploiting (4.45), our
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explicit examples below yield the values of the conductance as those computed from (3.32).
In the regimey → 0 this is very apparent, since when|Ŵα|R

i | = const it becomes equal
to 2|T α

R | and the conductance reduces just to the constant factor given by (4.45) times the
value 1/2π obtained when defects are not present in the theory. The vanishing of the first
contribution in (4.43) is also quite suggestive with regard to the TBA results, since the
conductance obtained in terms of thermodynamic quantities only involves the moduli of
the transmission or the reflection amplitudes, but not both simultaneously and, in the light
of the previous discussion, that seems to extend also to the form factor computation. The
coincidence in the regime for finite value ofy between the Kubo formula based on (4.45)
and the results from the Landauer formula are less obvious and we support this by some
explicit computations for several specific defects, similar as in Section 3.5.

4.4.3. Energy insensitive defects,D0(ψ̄,ψ)= 0, Dβ(ψ̄,ψ), Dγ (ψ̄,ψ), Dδ±(ψ̄,ψ)
A simple example to start with, which at the same time provides a first test of

the working of the Kubo formula in the UV-limit is a transparent defect, i.e., purely
transmitting. As shown in Section 2.3.3, examples for this are the absence of a defect
D0(ψ̄,ψ) = 0 as well as the defectDβ(ψ̄,ψ) = gψ̄γ 1ψ , for which the associated
reflection and transmission amplitudes are given by (2.48) and (2.49). In this case the
observation̂Kα

i (θ)= 0 is of course trivial and therefore only the second integral in (4.43)
is relevant. The situation in which there is no defect was already commented on in the
paragraph after Eq. (4.41). We found in that case that the Kubo formula leads to entirely
consistent results with regard to our TBA analysis, that isG0(0)= 1/2π in the massless
limit. Considering now a theory withn defects of the typeDβi (ψ̄,ψ), we find

(4.47)Ŵ
β1···βn
i (θ)= 2e−inB, K̂

β1···βn
i (θ)= 0,

simply by exploiting the expressions (2.49) for a single defect and the formulae (2.23)
and (2.24). From (4.47) it follows that

(4.48)w
β1···βn|RR
iı̄ (θ1, θ2)= 4π2, k

β1···βn|RR
ii (θ1, θ2)= 0,

just, as in the case in which the defect is absent. Therefore, we recover once more the value

(4.49)Gβ1···βn(0)= 1

2π
,

for the conductance at zero mass and temperature.
The next complication arises for defects whose reflection and transmission amplitudes

are simultaneously non-vanishing, but at the same time are independent functions of
the rapidity. As we have seen in Section 3.5, those defects can be very easily handled
in the context of a TBA calculation for the conductance, since the modulus of the
transmission amplitudes is a constant, depending only on the defect couplingg. Therefore,
the conductance is simply given by the constant|T α|2 times the value (4.49). The
vanishing of the functionK̂α

i (θ) can be established in those cases by exploiting the
crossing properties listened above. Namely, from (2.16)–(2.17) we findKi = K̃∗

i = −K̃ı̄ ,
whenever the reflection amplitudes are independent of the rapidity, and thereforeK̂α

i =
Ki + K∗

i = 2 Re(Ki). The latter quantity is zero for the defectsDγ andDδ± treated in
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Section 2.3.4, when settingy = 0, since the reflection amplitudes are purely complex
quantities. Therefore, the Kubo formula computation leads to the same results as found
in Section 3.5.1, since we find

(4.50)w
γ |RR
iı̄ (θ1, θ2)= 4π2(1+ 4 tan2(B/2)

)
, k

γ |RR
ii (θ1, θ2)= 0,

(4.51)w
δ±|RR
iı̄ (θ1, θ2)= 4π2

cos2B
, k

δ±|RR
ii (θ1, θ2)= 0,

which yields

(4.52)Gγ (0)= (1+ 4 tan2(B/2))

2π
and Gδ±(0)= 1

2π cos2B
.

As expected, forB = 0 we recover once more the value (4.49).

4.4.4. The energy operator defectD(ψ̄,ψ)= gψ̄ψ
Let us now treat the energy operator defect, the example which has been most

extensively studied in our previous sections. Considering first a theory possessing a single
defect of this type, we find

(4.53)Ŵα
i (θ)=

4 cosB cosh2 θ

cosh2θ + cos2B
and K̂αi (θ)=

2i sinB sinhθ

sinB − coshθ
.

Therefore, in this case the amplitudêKα
i (θ) is non-vanishing. However, we find that

K̂α
i (θ) = −K̂α

i (−θ). This means that the integral of this function (or its complex
conjugated) is vanishing. Consequently, only the transmission part contributes non-trivially
to (4.43). In order to evaluate (4.26) in the massless limit, we are interested in this limit
of (4.53) which enters Eq. (4.43). We obtain

(4.54)w
α|RR
iı̄ (θ1,θ2)= 4π2 cos2B,

which, together with (4.39) leads to the result

(4.55)
〈
J (r)ZαJ (0)

〉
T=m=0 = cos2B

r2 '⇒ Gα(0)= cos2B

2π
,

again in agreement with the corresponding result (3.35) from the Landauer formula.
Let us now proceed to the study of the conductance in the presence of a double defect.

Again, we consider first the caseT = m= 0 and two defects of the energy operator type
located at the origin and at a distancey from the origin, respectively. Expression (4.42)
again holds for that situation withn= 2. As explained in the paragraph after Eq. (2.22), the
Greek indices in the defect operator encode also the space dependence. The reflection and
transmission amplitudes are computed according to (2.21) and (2.22) with (4.53). These
functions can thereafter be substituted into Eq. (4.26) in order to determine the explicit
form of the functionswα1α2|RR

iı̄ andkα1α2|RR
ii in (4.26) for the double defect system, which

depend now on the distancey between the defects and their expressions become very
cumbersome. Once more, it is possible to show that the contribution to the conductance
depending onkα1α2|RR

ii is vanishing and therefore only the functionwα1α2|RR
iı̄ will be of

further interest to us. However, it is relatively easy to show that in the massless limit we
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find

w
α1α2|RR
iı̄ (θ1,θ2)= 4π2 cos4B

[
1+ cos(2m̂yeθ1)sin2B

1+ 2 cos(2m̂yeθ1)sin2B + sin4B

]
(4.56)×

[
1+ cos(2m̂yeθ2)sin2B)

1+ 2 cos(2m̂yeθ2)sin2B + sin4B

]
,

such that we obtain

(4.57)
〈
J (r)Zα1Zα2J (0)

〉
T=m=0 = w

α1α2|RR
iı̄ (θ1,θ2)

4π2r2 = 4[1+ sin4B]
r2[cos2(2B)− 3]2 ,

(4.58)Gα1α2(0)= 2

π

1+ sin4B

[3− cos2(2B)]2 ,
which precisely agrees with the corresponding result (3.38) obtained from the Landauer
formula. The overbar denotes as before the mean value of the corresponding function.

As explained above, we can also predict the precise position of the second plateau
obtained within the TBA analysis given in Eq. (3.36). This is achieved by considering
previously to the UV-limit, the limit when the distance between the defectsy → 0. By
doing so we find

(4.59)lim
y→0

w
α1α2|RR
iı̄ (θ1,θ2)= 4π2 cos4B

(1+ sin2B)2
,

which gives

(4.60)lim
y→0

〈
J (r)Zα1Zα2J (0)

〉
T=m=0 = 1

r2

cos4B

(1+ sin2B)2
,

(4.61)lim
y→0

Gα1α2(0)= 1

2π

cos4B

(1+ sin2B)2
,

in agreement with the value (3.36).
Finally, in order to match all the results in Section 3.5, we would like to address also

the case, = 4 in (4.6), that is, we consider now a complex free Fermion theory with
four equidistant defects of the typeDα(ψ̄,ψ) = gψ̄ψ . As usual, we denote their mutual
distances byy. For the first region in (4.45), that is the UV-limit, we find

(4.62)w
α1α2α3α4|RR
iı̄ (θ1,θ2)= f1(θ1)f1(θ2)

(f2(θ1)− f3(θ1))(f2(θ2)− f3(θ2))
,

with

f1(θ)= −128π2 cos4B
[
2+ (

6 cos
(
2m̂yeθ

)+ (
5− cos(2B)

)
cos
(
4m̂yeθ

)
+ 2 cos

(
6m̂yeθ

))
sin2B

]
,

f2(θ)= 1192 cos(2B)− 348 cos(4B)+ 24 cos(6B)

− cos(8B)+ (−995− 256 sin2B cos
(
6m̂yeθ

))
,

f3(θ)= 128 sin2B
[(

17− 12 cos(2B)+ cos(4B)
)
cos
(
2m̂yeθ

)
− 4

(−2+ cos(2B)
)
cos
(
4m̂yeθ

)+ 2 cos
(
6m̂yeθ

)]
.
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This expression appears somewhat messy, but when proceeding as indicated in (4.45) it
will simplify considerably. Computing the mean value of this function we find

〈
J (r)Zα1Zα2Zα3Zα4J (0)

〉
T=m=0 = w

α1α2α3α4
RR (θ1,θ2)

4π2r2

(4.63)= 1

2r2

[
1+ cos8B

[cos4B − 2(1+ sin2B)2]2
]
,

(4.64)Gα1α2α3α4(0)= 1

4π

(
1+ cos8B

[cos4B − 2(1+ sin2B)2]2
)
,

in complete agreement with the corresponding TBA value (3.39). We can also predict
the precise position of the second plateau which, according to (4.45) is expected for
the conductance. Once more we find complete agreement with the outcome of our TBA
analysis, since in this case

(4.65)lim
y→0

w
α1α2α3α4
iı̄ (θ1,θ2)=

(
2π cos4B

cos4B − 2(1+ sin2B)2

)2

,

which gives

(4.66)lim
y→0

〈
J (r)Zα1Zα2Zα3Zα4J (0)

〉
T=m=0 = 1

r2

(
cos4B

cos4B − 2(1+ sin2B)2

)2

,

(4.67)lim
y→0

Gα1α2α3α4(0)= 1

2π

(
cos4B

cos4B − 2(1+ sin2B)2

)2

,

that is, the same expression as (3.37).

5. Conclusions

We have exploited the special features of(1+ 1)-dimensional integrable quantum field
theories in order to compute the DC conductance in an impurity system. For this purpose
several non-perturbative techniques have been used. As the main tools we employed the
thermodynamic Bethe ansatz in a Landauer transport theory computation and the form
factor expansion in the Kubo formula.

The comparison between the Landauer formula(1.1) and the Kubo formula(1.2) yields
in particular an identical plateau structure for the DC conductance in the ultraviolet limit.

We have explained to what extend integrability can be exploited in order to determine
the reflection and transmission amplitudes through a defect. Unfortunately, for the most
interesting situation in this context, namely whenR/R̃ andT/T̃ are simultaneously non-
vanishing, the Yang–Baxter-bootstrap equations narrow down the possible bulk theories
to those which possess rapidity independent scattering matrices [27,28]. By means of a
relativistic potential scattering theory we compute for several types of defects theR/R̃s
andT/T̃ s, thus enlarging the set of examples available at present. We confirm that for real
potentials parity is preserved, but otherwise essentially all possible combinations of parity
breaking can occur. From the knowledge of the single defect amplitudes the multiple defect
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amplitudes, which exhibit the most interesting physical behaviours, can be computed in a
standard fashion [35,36].

We newly formulate the TBA equations for a defect with simultaneously non-vanishing
reflection and transmission amplitudes. We indicate how these equations can be used to
compute various thermodynamic quantities, which are, however, most interesting only
when considered per unit length. By means of the TBA we compute the density distribution
functions and use them to evaluate the Landauer conductance formula (1.1) for various
defects in a complex free fermionic theory. We predict analytically the most prominent
features in the conductance as a function of the temperature, i.e., the plateaux.

We formulate the Kubo formula [3] for a situation in which defects are present (1.2).
We evaluate the current–current correlation functions occurring in there by means of
another non-perturbative method based on integrability, namely the bootstrap form factor
approach [13,14]. We provide closed formulae which solve explicitly the defect recursive
equations involving any arbitrary number of particles. As for the Landauer formula, we
also predict in this case the plateaux in the conductance as a function of the temperature
analytically.

There are several interesting open issues. Most challenging is to treat in full generality
the massive and temperature dependent case of (1.2). Unfortunately, the formulation of
non-perturbative methods do not yet cover that situation [52] and it remains to be clarified
how the form factor bootstrap program for the computation of two-point functions can be
extended to that case. It would be further interesting to compute thermodynamic quantities
per unit length by means of the TBA formulated in Section 3. To classify possible defects
more systematically is desirable even for free theories.

As already mentioned, one can realize(1 + 1)-dimensional systems in quantum wires
experimentally and measure the conductance [10]. When applying the method of Section 3
to a massless model, it was shown for instance in [16] that one may achieve a qualitatively
good agreement between such theoretical predictions and the experimental results in the
absence of defects. In our massive case, which should be closer to reality, Fig. 4 allows
a similar comparison. Since a wide class of defects has been studied, we hope that
comparison with experimental results might show that certain concrete types of impurities
are quite accurately represented by some of our defect systems, in particular in what
concerns a conductance measurement. A further experimentally feasible setup is to couple
the defects to a laser field. In [54] it was shown that harmonics can be generated this way.
In this context one may use the laser in addition as an optical switch.
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