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Abstract

By exploiting the properties of q-deformed Coxeter elements, the scattering matrices of affine
Toda field theories with real coupling constant related to any dual pair of simple Lie algebras may
be expressed in a completely generic way. We discuss the governing equations for the existence of
bound states, i.e. the fusing rules, in terms of q-deformed Coxeter elements, twisted q-deformed
Coxeter elements and undeformed Coxeter elements. We establish the precise relation between
these different formulations and study their solutions. The generalized S-matrix bootstrap equa-
tions are shown to be equivalent to the fusing rules. The relation between different versions of
fusing rules and quantum conserved quantities, which result as nullvectors of a doubly q-deformed
Cartan like matrix, is presented. The properties of this matrix together with the so-called combined
bootstrap equations are utilised in order to derive generic integral representations for the scattering
matrix in terms of quantities of either of the two dual algebras. We present extensive case-by-case
data, in particular on the orbits generated by the various Coxeter elements. q 2000 Elsevier
Science B.V. All rights reserved.

PACS: 11.10.Kk; 11.55.Ds

1. Introduction

1 w xThe perturbation of 1q1 dimensional conformal field theories 1 in a suitable way
leads to massive quantum field theories which possess a rich underlying structure. Soon

w xafter the seminal paper by Zamolodchikov 3 a decade ago on the perturbation of the
w xIsing model, it was realized 4,5 that most of these massive theories are closely related
w xto affine Toda field theories 6–8 , either in a ‘‘minimal’’ sense or with the coupling

1 There exist earlier considerations of field theories in 1q1 dimensions which focus on the aspect of
w xconformal invariance, e.g. Ref. 2 . However, the key feature, i.e. the role played by the Virasoro algebra,

which lead to a more universal formulation and allowed to find their solution was first realised and exploited
w xin 1 .
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constant included. On the base of case-by-case studies for various algebras several
w xexplicit scattering matrices were constructed thereafter 9–16 . For the simply laced

Ž .algebras ADE this series of investigations culminated with the formulation of universal
w xformulae which encompass all these algebras at once 17–19 . The universal nature of

these representations for the scattering matrices allowed also to establish the equivalence
w xbetween the bootstrap equations and a classical fusing rule 17,18 formulated with the

w xorbits generated by Coxeter elements of the related algebra 20,21 . Furthermore the
fusing rule is closely linked to the quantum conservation laws. The origin for the
structural interrelation between the classical and the quantum field theory is the fact that
for the simply laced theories all masses of the theory renormalise with an overall factor
w x9–16 . It is the breakdown of this property for theories related to a non-simply laced
algebra which constituted the main obstacle in the construction of consistent scattering
matrices on the base of the boostrap principle. Once again numerous candidates were

w xproposed on the base of case-by-case studies 22–27 , but it remained a challenge to find
a closed universal representation similar to the simply laced case for these theories, until

w xOota recently 28 succeeded.
w xThe main conceptual breakthrough towards this goal was the proposal by Dorey 29 ,

that one may regard these theories in a dual sense, mathematically in a Lie algebraic
way and physically equivalent to this in the strong-weak duality sense in the coupling

w xconstant and the generalization of the bootstrap principle 25 by Corrigan, Dorey and
Sasaki. From this point of view affine Toda theories constitute some concrete simple

w xexamples for the Olive–Montonen duality 30 . Technically it was also very important to
w xexpress the scattering matrices in the adequate building blocks 26 . Chari and Pressley

w x w x31 succeeded thereafter to work out in detail the suggested 4,5 fusing rules in terms
of the two dual algebras which reproduced precisely the allowed fusing processes. Oota
w x28 suggested to re-formulate these fusing rules in terms of q-deformed Coxeter
transformations of either of the two dual Lie algebras. Viewing matters in the latter
fashion allows to link the fusing rules to the scattering matrices and find closed
universal representations.

One of the purposes of this paper is to precisely establish and derive the interrelation
between the different versions of the fusing rules. We further demonstrate that these
fusing rules are equivalent to the S-matrix bootstrap equations. Numerous identities
which were hitherto only claimed on the base of case-by-case analysis are rigorously
derived. We manifest the relation between quantum conserved quantities and the various
versions of the fusing rules. We derive a set of equations, which we refer to as combined
bootstrap equations, and exploit them systematically to derive generic integral represen-
tations for the scattering matrix.

Our paper is organized as follows. We first develop the mathematics needed and
apply it thereafter in the physical context. In Section 2 we define two different
q-deformed Coxeter elements related to two Lie algebras dual to each other. We derive
some of their properties which we need later on in the physical context. In particular
their action in the root space and inner product relations. In Section 3 we formulate
several equivalent versions of the fusing rule, study their different solutions and
establish their relation to quantum conserved quantities. In Section 4 we apply our
results to a universal formula for the scattering matrices of affine Toda field theories in
terms of basic building blocks consisting of specific combinations of hyperbolic
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functions, whose powers may be obtained from q-deformed quantities of either of the
two dual algebras. An alternative formula for the scattering matrix in form of an integral

ˆrepresentation is derived in Section 5. We exploit the properties of matrices M and N
related to the untwisted and twisted algebra, respectively, and establish their equality. In
Section 6 we reduce the expressions for the scattering matrix to the simply laced case. In
Section 7 we provide a case-by-case analysis for all non-simply laced algebras. Our
conclusions are stated in Section 8.

2. q-deformed Coxeter elements of dual pairs

w x Ž1.Adopting the standard notation of 32 , we let X be a simple simply laced Lien

algebra of rank n endowed with a Dynkin diagram automorphism v of order l.
Employing this automorphism to fix a subalgebra in X Ž1. we obtain the twisted Lien

ˆ Ž l .algebra X of rank r. Changing the orientation of the arrows of the Dynkin diagramn
ˆ Ž l .related to this twisted Lie algebra X , that is interchanging long and short roots,n

produces a Dynkin diagram related to a Lie algebra X Ž1.. Two Lie algebras which arer
Ž1. ˆ Ž l .Ž .related by this map are referred to as dual pair X , X . Simply laced Lie algebras arer n

self-dual in this sense.
Before we move on to the q-deformed case we shall collect a few well known facts in

Ž1. ˆ Ž l .order to define our notations. To each simple root a of X or a of X a reflectionˆi r i n

on the hyperplane through the origin orthogonal to a or a may be associatedˆi i

xPa xP âi i
s x sxy2 a or s x sxy2 a . 1Ž . Ž . Ž .ˆ ˆi i i i2 2a âi i

Note that there is no sum over i implied here on the r.h.s. These are the Weyl reflections
constituting the Weyl group which are used to construct the so-called Coxeter and
twisted Coxeter element

r r

ss s and ss s v 2Ž .ˆ ˆŁ Łi i
is1 is1

Ž1. ˆ Ž l . w xfor X and X , respectively. The latter definition is originally due to Springer 33 .r n

We also note here that these elements are not unique and only defined up to conjugation.
Ž w x.There are several Coxeter numbers see e.g. 32 , whose intimate relations we wish to

exploit. Expressing the highest root of X Ž1. as csÝr n a , the correspondingr is1 i i

Coxeter- and the dual Coxeter numbers are defined as

r r
k khs1q n and h s1q n . 3Ž .Ý Ýi i

is1 is1

Ž . k k 2The so-called marks n or Kac labels and co-marks n are related by n sn a r2.i i i i i

Since dual algebras are obtained from each other by the interchange of roots and
co-roots, i.e. a ™2a ra 2, one deduces easily thati i i

ˆk k ˆhsh and h sh , 4Ž .
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ˆk ˆ ˆ Ž l .where h , h are the Coxeter numbers of X . The order of the Coxeter elements readn

s h s1 and s H s1 5Ž .ˆ
ˆ Ž l . ˆwhere H is the lth Coxeter number of X , i.e. Hs lh.n

w x Ž .Following now essentially Oota 28 the definitions of the Coxeter elements 2 can
be generalized by introducing a q-deformation.

2.1. q-deformed Coxeter element of X (1)
r

2.1.1. Definitions
w x Ž n yn. Ž 1 y1.Using the standard notation n s q yq r q yq for q-deformed integers,q

we define the action of the q-deformed Weyl reflection s q on a simple root a asi i

qs a :sa y 2d y I a . 6Ž . Ž .ž /i j j i j ji iq

Here I denotes the incidence matrix, i.e. twice the unit matrix minus the Cartan matrix
K s2a Pa ra 2, related to the simply laced Lie algebra X Ž1.. We easily verify thei j i j j r

Ž q.2usual properties of a reflection s s1. For the time being we assume the deforma-i

tion parameter q to be completely generic, that is some complex number which is not a
root of unity. In some later applications we will specify q to be a root of unity and also

Ž .introduce a particular parameterization q b , where b is a coupling constant. In that
situation the ‘‘classical’’ limit q™1 corresponds to the vanishing of the coupling
constant.

Since in general Weyl reflections do not commute, Coxeter elements, i.e. the
products of all Weyl reflections related to simple roots, only form a conjugacy class.
However, by introducing a particular ordering amongst the simple roots, one is able to
define the Coxeter element uniquely. For this purpose we partition the set of simple
roots, denoted by D, into two disjoint sets of roots, say D , by associating the values"

c s"1 to the vertices i of the Dynkin diagram of X Ž1., in such a way that no twoi r
Ž .vertices related to the same set are linked together. Then it clearly holds by 6 that two

reflections related to simple roots belonging to the same colour set commute,
q qs ,s s0 for c sc . 7Ž .i j i j

Consequently the two special elements

s q :s s q , 8Ž .Ł" i
a gDi "

Ž q .2are uniquely defined, having obviously the property s s1. For reasons that become"

more apparent below, it is convenient to introduce the simple root times its colour value
as a separate quantity g :sc a . Then, the action of the reflections on these elements isi i i

Ž . Ž . Ž .easily worked out. With the help of 6 , 7 and 8 we obtain
q qs g syg and s g sg y I g . 9Ž . Ž . Ž .Ýc i i yc i i i j jqi i

a gDj yci

Here we introduced the notation s q, meaning that it takes the values s q or s q whenc q yi

c s1 or c sy1, respectively. Denoting now by a gD and a gD the short and thei i s s l l

long roots, respectively, we define some integers

1 for a gDi s
t s 10Ž .i 2 2½ a ra for a gDl s i l
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which symmetrize the incidence matrix

I t s I t . 11Ž .i j j ji i

The ratio a 2ra 2 is indeed an integer, which follows directly from the definition of thel s
Ž .Cartan matrix. In fact it equals l 1, 2 or 3 , the highest order of the Dynkin diagram

automorphism of the algebra X Ž1.. The occurrence of quantities of X Ž1., despite the factn n

that we are discussing X Ž1., is a feature we will encounter more frequently in the courser

of our discussion and indicates the close interrelation between the two dual algebras. We
Ž .employ the symmetrizers 10 to introduce the map

t g :sq tig . 12Ž . Ž .i i

We have now assembled all the ingredients in order to define the q-deformed Coxeter
element

s :ss qts qt . 13Ž .q y q

Having eliminated the ambiguity in the ordering of the q-deformed Weyl reflections
within s q , the only matter left to convention with regard to the q-deformed Coxeter"

Ž .element is the ordering of the four maps in 13 and the two possible choices for the
colour values we attribute to the vertices of the Dynkin diagram. The former ambiguity

Ž .is fixed by the choice in 13 and the latter by choosing the unique vertex of the short
root which is connected to a long root as c sy1. Note also that lim s ss , that isi q™1 q

Ž .in the ‘‘classical’’ limit we recover the usual Coxeter element 2 from the q-deformed
Ž .Coxeter element 13 .

2.1.2. Action of s in the root spaceq

There are several properties of the q-deformed Coxeter element which we wish to
exploit in the context of the scattering matrix of affine Toda field theories. First we state
the identities

1qc 1qc 1qc 1qci i i i
x q q q yx y q y
y1s st s t s t s t 14Ž .2 2 2 2q c q ci i

1yc 1yc c qc 1qc 1qcj j i j i i
q q q yxq y q yst s t s t s t , 15Ž .2 2 2 2 2yc q cj i

which follow immediately by noting that under the interchange of q and qy1 the
elements s q remain invariant and t™ty1. In fact the r.h.s. of these equations"

correspond to several equations which are combined to one by including the colour
Ž .y1 y1 q y1 qvalues c and c in the way we need them. Obviously, s st s t s is thei j q q y

inverse q-deformed Coxeter element2.

2 w xWe differ here from the definition of the inverse in 28 .



[ ] ( )A. Fring et al.rNuclear Physics B 567 FS 2000 409–453414

Ž . Ž .We further need to know the action of s on the simple roots. From 9 , 12 andq
Ž .13 we obtain

s a qq2 t iaŽ .q i i

1qc3qc ji c y1t q ti j i t qt2 2 i js q I g q q I I g 16Ž .Ý Ýi j j i j jl lq q q2
a gD a gDj yc j qi

a gDl y

and also the crucial identity
1qc1qc ji

t y ti jc iyc t c t 2 2i i i iq s qq g s q I g . 17Ž . Ž . Ž .Ýž /q i i j jq
a gDj yci

Acting now successively with s on g and the multiplication with powers of q willq i

create an orbit which we denote by V q, i.e. for x, y being arbitrary integers a typicali
q x yŽ .element in V reads q s g . The periodicity of these orbits readsi q i

hy2 Hq s s1 . 18Ž . Ž .q

Ž .We do not have a general proof of 18 , but it is confirmed on the base of a case-by-case
analysis in Section 7 as may be seen from the data presented. To each orbit V q wei

associate a particle species. The anti-particle is identified with the orbit in which we find
the element

h c yci ıc yc qı i
yH q t q2 4iyq s g sg gV . 19Ž .2 q i ı ı

hŽ . w xThe property c c s y1 19 ensures that the power of the Coxeter element is alwaysi ı
Ž . Ž .an integer. Conjugating ı once more in 19 leads to 18 , when t s t . For thei ı

Ž .non-simply laced algebras, the relation 19 reduces to
h

H2s g syq g , 20Ž .q i ı

since in that case all particles are self-conjugate. The motivation of this definition is
w xanalogue to the one known from the simply laced case 20,21 . This means complex

conjugating the field which creates the particle of type i in the classical theory
corresponds to the creation of the anti-particle ı, suggesting to associate yg to thei

anti-particle. However, one should keep in mind that in this context the classical theory
is only known in the extreme weak or extreme strong limit of the coupling constant. In

w xthe classical limit we recover the known identity 19 for the simply laced case
h c yci ıqž /2 4s g sg which relates particles and anti-particles.i ı

2.1.3. Inner product identities
˜We introduce now the co-fundamental weights l , related to the fundamental weightsi

˜ 2l as l :s2l ra , such that they constitute a dual base to the simple roots, i.e.i i i i
˜ Ž .l Pa sd . In comparison to the non-deformed simply laced case, it is important toi j i j

˜ x yx˜Ž . Ž .note that s does in general not preserve the inner product, i.e. l P s g / s l Pq j q i q j

g .i
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Ž . Ž .In view of 9 , 12 and the orthogonality of roots and co-fundamental weights we
can write

˜ x ˜ q x yt j ˜ xl Ps g sl Ps s g sq l Pts g . 21Ž .j q i j yc q i j q ij

Ž . Ž . Ž .Using now 9 , 15 and exploiting 21 we derive
c y1 c y1 c qc 1qc 1qcj j i j i i

x q yxq q˜ ˜ y1l Ps g sl Pt s t s t s t g 22Ž .2 2 2 2 2j q i j yc q c ij i

c qci j
Žc y1. t qŽ1qc . t yxqj j i i ˜ y1syq l Ps g , 23Ž .2j q i

which may also be re-written as
Ž . Ž . Ž . Ž .1yc t y 1qc t c y1 t q 1qc tj j i i j j i i

x 2 Hq hyxqŽc qc .r2i j˜ ˜ y1q l Ps g qq l Ps g s0 , 24Ž .2 2j q i j q i

Ž .with the help of 18 .
As the last inner product identity we show that

x x2 t 2 tj i˜ ˜q y1 l P s g s q y1 l P s g . 25Ž . Ž . Ž .Ž . Ž .ž / ž /j q i i q j

Ž .We prove 25 by induction and demonstrate therefore first that it holds for xs1. With
Ž .the help of 16 we obtain

2 t j ˜q y1 s a PlŽ .Ž . q i j

1yci2 t t qt 2 tj i p is q y1 y q I I yq dŽ . Ý i p q p j i jq2ž pgDyci

1qc3qc ji
t q ti j2 2qc q I d . 26Ž .j i j c ,ycq i j /

Ž . w x w x w x w xNoting that 11 also holds for the q-deformed quantities, i.e. I t s I t , it isi j q j q ji q i q
Ž .easy to verify that the r.h.s. of Eq. 26 is symmetric in i and j. Assuming now relation

Ž .25 to be valid for x, one deduces by the similar reasoning as for the case xs1, that
Ž . Ž .25 also holds for xq1 and therefore for all integers x. This establishes 25 .

It should be mentioned that once we have the matrix representation of Subsection 5.1
Ž .the symmetry property 25 follows more easily.

ˆ (l)2.2. q-deformed twisted Coxeter element of Xn

2.2.1. Definitions
Let us now consider a Lie algebra X Ž1., whose associated Dynkin diagram isn

endowed with an automorphism v which acts on a simple root a with length l , i.e.i i

v l ia sa . The largest value of l corresponds to l. Sometimes we will also use thei i i

common notation va sa . We may employ this automorphism to define the orbitsi v Ž i.
V v by successive actions of v on a simple root a . By selecting a representative of thei i

v ˆorbit V , we can build up a set of roots, which we denote by a gD. The algebraˆi i
ˆ Ž l . ˆrelated to these roots is the twisted Lie algebra X . To each of the r elements in D wen

associate a particular particle species. We choose the conventions in such a way that we
may carry out a one-to-one correspondence between the two dual algebras without
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renaming the particles, see Section 7. The Weyl reflections related to these representa-
Ž .tives are now defined in the usual fashion as in 1

s a sa yK a , 27Ž . Ž .i j j ji i

where K denotes the Cartan matrix of X Ž1.. Analogously to the non-twisted case, treatedn

in the previous section, we can bi-colour the Dynkin diagram related to X Ž1. and dividen
ˆ ˆthe set of representatives into two sets D and D . Note that roots related by they q

automorphism v possess naturally the same colour value. Hence we may define
uniquely the elements

s :s s . 28Ž .ˆ Ł" i
ˆa gDˆ i "

Besides the absence of the q-deformation, the difference between these special elements
of the Weyl group in comparison with the non-twisted case is that the product runs only
over the representatives. We define now the integers

ˆ1 for a gDi
t̂ s 29Ž .i ½ ˆ0 for a fDi

Ž .With the help of 27 we easily compute the action of s on some g :sc a , whereˆ" i i i

we stress that a is not necessarily a representativei

t̂ is g s y1 g and s g sg y I g . 30Ž . Ž .ˆ ˆ ˆÝc i i yc i i i j ji i

ˆa gDˆ j yci

The incidence matrix I is here related to X Ž1., but note that 1( i(n and 1( j(r. Inn

addition we introduce the map which will serve as a q-deformation
ˆ2 t it a :sq a . 31Ž . Ž .ˆ i i

w xAt last we are in the position to define, analogously to 28 , the q-deformed twisted
Coxeter element as

s :svy1s ts . 32Ž .ˆ ˆ ˆ ˆq y q

Once again by means of the bi-colouration, we have achieved that s is uniquelyˆq
Ž .defined up to the ordering of the maps occurring in 32 . For q™1 we obtain one of the

standard twisted Coxeter elements in the conjugacy class as originally introduced by
Ž .Springer, Eq. 2 . We will not elaborate here on the alternative characterization of the

twisted Coxeter element, which may be obtained from the folding of an affine simply
w xlaced Dynkin diagram, see e.g. 32,38,39 .

2.2.2. Action of s in the root spaceˆq
"c y1i

" 2Introducing for convenience the quantities g :sv g , the action of s on theˆi i q

simple roots is computed to

1yci2 y1 2 y1 2 y1s g qq v g sy q I v a q q I I v g 33Ž .Ž .ˆ ˆ ˆ ˆ ˆÝ Ýq i i i j j i j jl l2ˆ ˆa gDˆ a gDj yc j qi

ˆa gDl y
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and

t̂ iy y2 c c q qi ig s yq s g q I g , 34Ž .Ž .Ž . ˆ ˆÝi q i i j j
a gDj yci

Ž . Ž . Ž .with the help of 30 , 31 and 32 .
ˆActing successively with s and q on the elements of D, we construct the orbits ofˆq

ˆ qthe q-deformed twisted Coxeter element, which we denote by V . The order of thei

q-deformed twisted Coxeter element reads

qy2 hs H s1 . 35Ž .ˆq

Ž .Thus in comparison with 18 the roles of h and H are just interchanged. Like in the
non-twisted case we do not have a generic proof of this periodicity property, but we
have verified it case-by-case in Section 7.

The anti-particle is identified with the orbit in which we find the element

c yc H c ycı i i ı Ž .ˆyhq t q 2yl q q qi i ˆyq s g sg gV . 36Ž .ˆ ˆ ˆ2 2 4q i ı ı

Ž . Ž .Conjugating ı once more in 36 leads to 35 , when l s l . For the non-simply lacedi ı
Ž .algebras, the relation 19 reduces to

H

2 q h qs g syq g , 37Ž .ˆ ˆ ˆq i ı

since in that case all particles are self-conjugate. In the limit q™1 we obtain
c ciH y ıq Ž2yl . q qi2 4s g sg , which relates particles and anti-particles in twisted algebras.ˆ ˆ ˆi ı

2.2.3. Inner product identities
ˆ q ˆTo each orbit V we associate now a fundamental weight l which is dual to alli i

elements inside the v-orbit, i.e.

l j

kl̂ P v a sd , 38Ž . Ž .Ýi j i j
ks1

Ž1. Ž . Ž .for a being a root of X . With the help of 31 , 30 and the orthogonality relationi n
Ž .38 we derive easily

ˆx q x y2 t xjˆ ˆ ˆl Ps g sl Ps s g sq l Pts g . 39Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆj q i j yc q i j q ij

We also have the identities

c yc 1ycc y1j i ji
x q xq q l q l qi jˆ ˆl Ps g sl Ps g 40Ž .ˆ ˆ ˆ ˆ2 2 2j q i i q j

and

c y11yc ji
x q 2 hqc qc Hyxqc q l q l qi j i i jˆ ˆ y1l Ps g syq l Ps g . 41Ž .ˆ ˆ ˆ ˆ2 2j q i j q i

To prove these identities directly is much more involved as for the equivalent relations
in the untwisted case. We will therefore postpone the proof until Subsection 5.2, where
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Ž .we can exploit properties of a different quantity which then implies the validity of 40
Ž .and 41 .

3. The fusing rules

We are now in a position to formulate the universal fusing rules. This may be done
either by exploiting the properties of the orbits of the q-deformed Coxeter element of

Ž1. ˆ Ž l .X or the q-deformed twisted Coxeter element of X similar to the approach of Ootar n
w x w x28 or alternatively in the spirit of Chari and Pressley 31 one may consider the orbits
of the non-deformed Coxeter element of X Ž1. and simultaneously the non-deformedr

ˆ Ž l .twisted Coxeter element of X . Additionally one may formulate the fusing rule inn

terms of the quantum conserved quantities. We will discuss the solutions to these
different fusing rules and prove in general that they are in fact all equivalent. We derive
the precise quantitative relation between the relevant quantities.

3.1. The fusing rule in V q

The generalized3 three-point-coupling related to three particles of the type i,j and k
is non-Õanishing, i.e. the process iq j™k is possible, if and only if there exist
representatiÕes of the q-deformed orbits V q, V q and V q whose sum is zero.i j k

Ž . Ž .This means there should exist two triplets of integers j , j , j and z , z , z suchi j k i j k

that

q z ls j lg s0 . 42Ž .Ý q l
lsi , j ,k

Ž . n mMultiplying 42 by q or s corresponds naturally to the same process and we shouldq

therefore view the triplets as equivalence classes4. In this sense we regard two pairs of
triplets as equivalent if they may be constructed from each other by the displacements

w xz ™z qm or j ™j qn. Similarly as in the simply laced case 19 , it will turn out tol l l l
Ž .be crucial that there exists a second solution to 42 ,

q z l
X

s j l
X

g s0 . 43Ž .Ý q l
lsi , j ,k

The two solutions may not be obtained from each other by simple shifts, but they are
related as

c y1lX X
j syj q and z syz y 1qc t , ls i , j,k . 44Ž . Ž .l l l l l l2

Ž .Nonetheless, as an existence criterion for the fusing process, the variant 42 is
sufficient, since the second solution may always be constructed from the first as we now

3 Usually we really refer to the three-point-coupling in the common sense, i.e. related to the process
Ž1. Ž2.Ž .iq j™ k. The only exceptions are the processes 2q2™2 and 3q3™3 in F , E , which are possible4 6

from the fusing rule point of view. However, on the S-matrix bootstrap side these processes correspond to
third order poles.

4 We shall see below that from a physical point of view this corresponds to a simple shift in the bootstrap
functional equations which involve the scattering matrix.
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y1 Ž . Ž .demonstrate. Changing q to q in the fusing rule 42 and using 14 thereafter, we
obtain

1qc 1qc 1qc 1qcl l l l
yz q q q yj y q yl lq t s t s t s t g s0 . 45Ž .2 2 2 2Ý c q c ll l

lsi , j ,k

y1 q y1 Ž . Ž . Ž . Ž .Acting on this equation with t s t yields 43 , with the help of 9 , 12 and 13 .q
What remains to be shown is that these two solutions are indeed non-equivalent in the
sense defined above. For this purpose we may take the limit q™1 and note that the
quantities j and j

X are related to each other in the same way as in the simply lacedl l
w xcase. We may now simply refer to 19 for the proof of the non-equivalence of this two

triplets. This is sufficient to establish the non-equivalence between the two solutions. In
addition we shall demonstrate below that there exists in fact no further non-equivalent
solution.

ˆ q3.2. The fusing rule in V

The generalized three-point-coupling related to three particles of the type i,j and k is
non-Õanishing, i.e. the process iq j™k is possible, if and only if there exist representa-

c y1c y1 c y1ji k

q q q2 2 2ˆ ˆ ˆtiÕes of the q-deformed orbits v V , v V and v V whose sum is zero.i j k
ˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .This means there should exist two triplets of integers j , j , j and z , z , z suchi j k i j k

that

ˆ ˆz j ql lq s g s0 . 46Ž .ˆ ˆÝ l
lsi , j ,k

Equivalence of two solutions is defined as in the previous section, i.e. two triplets which
ˆ ˆ ˆ ˆare obtained by simple shifts of the type j ™j qm and z ™z qn are consideredl l l l

Ž .equivalent to the original solution. However, as in the non-twisted case, also 46 always
admits a second non-equivalent solution

ˆX ˆX
z j ql lq s g s0 . 47Ž .ˆ ˆÝ q l

lsi , j ,k

The relations between the two solutions read

1yclX Xˆ ˆ ˆ ˆz syz q1yc and j syj q l q1qc , ls i , j,k . 48Ž .l l l l l l l2

As in the previous section the second solution may be constructed from the first, and
Ž .therefore the variant 46 is sufficient as an existence criterion.

ˆ3.3. The fusing rule in V and V

The generalized three-point-coupling related to three particles of the type i,j and k is
non-Õanishing, i.e. the process iq j™k is possible, if and only if there exist representa-
tiÕes of the orbits V ,V and V whose sum is zero and if in addition there existi j k

c y1c y1 c y1ji k

2 2 2ˆ ˆ ˆrepresentatiÕes of the orbits v V , v V and v V which also sum up toi j k

zero.
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Ž .Quantitatively this means there should exist two triplets of integers j , j , j andi j k
ˆ ˆ ˆŽ .j , j , j such thati j k

ˆj j ql ls g s0 and s g s0 . 49Ž .ˆ ˆÝ Ýl l
lsi , j ,k lsi , j ,k

Ž . w xThe version 49 of the fusing rule was first stated by Chari and Pressley 31 , with the
w xonly difference that our s corresponds to the inverse twisted Coxeter element in 31ˆ

and also gq is defined differently in their formulation. The multiplication of the firstˆ l
Ž .equation in 49 by powers of the Coxeter element s and the second by powers of the

twisted Coxeter element s will produce further solutions, which we regard as equiva-ˆ
lent. Once again there exists a second non-equivalent solution

X ˆX
j j ql ls g s0 and s g s0 , 50Ž .ˆ ˆÝ Ýl l

lsi , j ,k lsi , j ,k

Ž . Ž . Ž . Ž .which is related to the first by the relevant relations in 44 and 48 . Eq. 49 and 50
Ž . Ž . Ž . Ž .may be obtained in the limit q™1 from 42 , 43 and 46 , 47 , respectively. Since

Ž X X X. Žwe have already shown that neither the triplet j , j , j may be obtained from j , j ,i j k i j
ˆX ˆX ˆX ˆ ˆ ˆ. Ž . Ž .j by simple shifts nor j , j , j from j , j , j by the same means, we havek i j k i j k

established the non-equivalence between the two solutions. It is also clear from the
preceding sections that we may construct the second solution always from the first.

3.4. The fusing rule and conserÕed quantities

Ž . Ž . 5Let y n 1(n(r be a vector whose components are labelled by particle types.
Ž .In particular for ns1 we identify y 1 with the quantum mass m of the particle ofi i

species i. Then we may formulate a further variant of the fusing rule:
The generalized three-point-coupling related to three particles of the type i, j and k is

non-Õanishing, i.e. the process iq j™k is possible, if there exist two triplets of integers
( ) ( )h , h , h and h , h , h such thati j k i j k

s Žh u qh u .n l h l He y n s0 . 51Ž . Ž .Ý l
lsi , j ,k

Ž . Ž1.The s 1(n(r label the exponents of the algebra X in increasing order. Wen r

further introduced the angles

ip 2yB ip BŽ .
u :s and u :s , 52Ž .h H2h 2 H

whose deeper origin becomes more apparent when we discuss the scattering matrix in
Section 4. The coupling constant b enters here the expressions through the function

k 2 Ž k 2 .Bs2h b r h b q4p h which takes values between 0 and 2. Obviously, multiply-
m s h u k s h un l h n l HŽ .ing Eq. 51 by e and e , with m, k being arbitrary integers, will also

produce a solution, which we regard as equivalent in the same spirit as in the previous
subsections. Likewise there exists a second non-equivalent solution

X X
s Žh u qh u .n l h l He y n s0 , 53Ž . Ž .Ý l

lsi , j ,k

5 Ž .In fact we see below that this will be the nullvector of a particular matrix as specified in Eq. 100 .
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i " Ž . ŽFig. 1. Mass triangles in the complex velocity plane. The angles are defined as id s h yh u q h yjk j k h j
.h u " ip .k H

related to the first simply as
X X

h syh and h syh . 54Ž .l l l l

s mh u s kh un l h n l HŽ . Ž .Clearly we can not construct 51 from 53 by multiplication of e and e
Ž .unless h sh sh and h sh sh . The latter fact would mean that Ý y n s0,i j k i j k lsi, j,k l

which in particular for ns1 is impossible since all quantities in the sum, the masses,
are positive. We have therefore established that the two solutions are indeed non-equiv-
alent. However, one solution may always be constructed from the other simply by

Ž . Ž .replacing s ™ys or complex conjugation of 51 or 53 .n n

Having obtained the fusing angles h we may immediately compute relations among
Ž . Ž .the quantum conserved quantities. Combining 51 and 53 we derive

y n sinh s h yh u qs h yh uŽ . Ž . Ž .Ž .i n k j h n k j H
s . 55Ž .

y n sinh s h yh u qs h yh uŽ . Ž . Ž .Ž .j n i k h n i k H

w xWe may interpret these relations in the complex velocity plane as explained in 19 . In
particular for s s1 we obtain the important ratios of the quantum masses1

m sinh h yh u q h yh uŽ . Ž .Ž .i k j h k j H
s . 56Ž .

m sinh h yh u q h yh uŽ . Ž .Ž .j i k h i k H

As the main difference to the simply laced case we note that the masses now depend on
the coupling constant. The relevant triangles are depicted in Fig. 1. We will now be
more specific on how to calculate the fusing angles from Lie algebraic properties.

3.5. Relations between the fusing rules

The four versions of the fusing rules are all related to each other, meaning that having
one solution of one particular formulation of the fusing rule we are able to construct all
the other solutions. The precise relations read

ˆ ˆX X
z yz z yzl l l lX Xˆ ˆh sj yj s and h s sj yj for ls i , j,k . 57Ž .l l l l l l2 2
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We see that the interchange of the two solutions of one version of the fusing rule
immediately demands that the two solutions of the other rules should also be exchanged.
In particular it follows that

1yc 1qcl lˆ ˆy2j sz , z sy2j q l y t q1qc for ls i , j,k . 58Ž .l l l l l l l2 2
q ˆ qThese relations do not only relate the fusing rule in V and V to each other, but they

also provide the precise link between the q-deformed and non-deformed versions of the
fusing rule. It will take until Subsection 5.1 to have assembled all the ingredients for the

Ž .proof of 57 .
There is one last question which we should answer with regard to possible solutions

of the fusing rules: Are there any further non-equivalent solutions to these equations?
The answer is no. For the proof of this statement we assume at this point that the rules
are indeed equivalent, such that it suffices to discuss only one version. We adopt the

w xargumentation of 19 for this purpose. The only four triangles which we may construct
in the complex velocity plane from three sides with fixed modulus are the ones depicted
in Fig. 1. Hence there are no further possible angles, meaning no additional non-equiv-

Ž . Ž .alent solution to 51 exist. By 57 this fact is also established for all other versions of
the fusing rule we have stated.

Treating the fusing rule as a pure existence criterion for the possibility of certain
fusing processes, one version is as good as the other. We observed however that the
relevant data from the ‘‘classical’’ fusing rules, which correspond to two equations in
Subsection 3.3, may be merged together into one single equation by the q-deformation.
This is the key feature which can be exploited in the quantum field theory and which
appears to be absolutely necessary for the construction of generic expressions for the
scattering matrices.

4. Block representation

The scattering matrices for affine Toda field theories have been the subject of
w xnumerous investigations 9–16,19,25–28 . Restricting the attention to the case when the

coupling constant is real, the two-particle scattering matrix for all simple Lie algebras,
involving particles of the species i and j as a function of the relative rapidity u , may be
cast into the universal expression

h H
Ž .2 m x , yi j� 4S u s x , y . 59Ž . Ž .Ł Ł ui j

xs1 ys1

Ž .� 4Here x , y are certain combinations of hyperbolic functions and the m x, y arei ju

Ž .positive semi-integers for the given range in 59 .

4.1. The building blocks

Ž .Before explaining how the powers m x, y may be computed, we present severali j

representations of the general building blocks, which will serve different purposes. As a
crucial step in the process of formulating generic expressions for scattering matrices one
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w xshould view the observation of Dorey 26 who noticed that the building blocks may all
be expressed in a very elegant form. We slightly modify them to simplify certain
computations and define6

w xx , y u� 4x , y :s 60Ž .u w xx , y yu

and

² : ² :xy1, yy1 xq1, yq1u u 1² :w xx , y :s , x , y :ssinh uqxu qyu .Ž .uu h H2² : ² :xy1, yq1 xq1, yy1u u

61Ž .

We used the angles u and u as introduced in Subsection 3.4. Notice that theh H
k ˆŽ .strong–weak duality transformation b™4prb B™2yB , hlh , XlX leaves

the scattering matrix invariant. One should stress that besides the strong–weak inter-
change the invariance also demands the interchange of the algebras.

Ž .Alternatively, each block 60 admits an integral representation in the form

` dt u t
h , H� 4x , y sexp f t sinh 62Ž . Ž .Hu x , y ž /tsinh t ip0

with

f h , H t s8sinh q t sinh q t sinh tyxq tyyq t . 63Ž . Ž . Ž . Ž . Ž .x , y h H h H

Ž .This may be verified for instance by the explicit computation of the integral in 62 . We
Ž .abbreviated here q :s 2yB r2h and q :sBr2 H. Particular attention has to be paidh H

Ž .to the convergence of the integral representation 62 , especially when we analytically
continue. Shifting u™uqx X

u qyX
u , convergence requires thath H

0( xyx X y1 q q yyyX y1 q (2 1y 1qx X
q y 1qyX

q . 64Ž . Ž . Ž . Ž . Ž .Ž .h H h H

In particular for real rapidity u the convergence is guaranteed if 0-x-h and
0-y-H.

With regard to several applications, the values of the scattering matrices at us0 are
of special interest and we therefore comment on it for definiteness. In general we have
� 4 � 4x , y s1, apart from the case 1,1 sy1. This means that we have to payus0 us0

attention to the ordering of certain limits. When writing the blocks in form of hyperbolic
Ž .functions 60 , we have to set first xsys1 and then take the limit u™0, whereas in

Ž .the integral representation 62 we have to set xsys1, integrate thereafter and finally
take the limit u™0.

6 w xIn Refs. 25,36 a different type of blocks was used. They may be translated into each other by simple
replacements, e.g. for G and F one sets Hy1 su qu .2 4 h H
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The following obvious identities will turn out to be useful in the course of our
argumentation:

y1� 4 � 4 � 4x , y s xq2h , yq2 H s yx ,yy , 65Ž .u u u

w X X xxqx , yqy u
X X� 4x , y s 66Ž .uqx u qy u X Xh H w xxyx , yyy yu

� 4 � 4 � 4 � 4x , y x , y s xqp , yqq xyp , yyq . 67Ž .uqpu qqu uypu yqu u uh H h H

Furthermore, it will be convenient to adopt the slightly more compact notation for the
product of several blocks

m m m1 2 n m m m1 2 n� 4 � 4 � 4x , y x , y . . . x , y s : x , y ; x , y ; . . . ; x , y 68� 4 Ž .1 1 2 2 n n 1 1 2 2 n nu u u u

from time to time.
Ž .We shall now come to the characterization of the powers m x, y of particulari j

Ž1. ˆ Ž l .� 4blocks x , y , which may be computed either by using the properties of X or X .r nu

4.2. The powers from X (1)
r

Ž .The powers in 59 can be evaluated from the matrix-valued generating function
Ž . Ž .1yc t y 1qc tj j i itc qc ji j qy x2 ˜m 2 xy , y q sy q l Ps g , 69Ž .Ý ž /i j j q iž /2 2y

Ž . Ž .for fixed x. Taking x in the range 3yc r2(x(hq 1yc r2 ensures that the firsti i

argument of m is between 1 and 2h. This formula is a natural generalization of the one
Ž .for the simply laced case 128 , where now the q-deformation incorporates the informa-

Ž .tion of both dual algebras. At this point we have only stated 69 and we shall now
convince ourselves that it is indeed satisfying all the requirements we need.

Ž .When applying formula 59 , we have to guarantee that the properties of the
� 4combinations of hyperbolic functions in the building blocks x , y are reflected in theu

correct way by the Lie algebraic quantities. This means that according to the identities in
Ž .65 we should have

m x , y sm xq2h , yq2 H and m x , y sym 2hyx ,2 Hyy .Ž . Ž . Ž . Ž .i j i j i j i j

70Ž .
Ž . Ž . Ž .Considering 69 , the first relation in 70 follows trivially from 18 . Together with the

Ž . Ž . Ž .r.h.s. of 69 the second relation in 70 may be proven directly with the help of 24 .
The second relation is important, since it ensures that we can always find two blocks
which combine in such a way that the total power of each building block becomes an
integer. Therefore it guarantees that the scattering matrix is a meromorphic function,

Ž . Ž .even if we choose this is sometimes very convenient the ranges in 59 to be 1(x(h
and 1(y(H.

Ž .Having established the formal legitimacy of 59 , it is clear that properties of the m’s
may be carried over into properties of the scattering matrix. We will therefore prove
several identities which we exploit below when discussing the scattering matrix.

First we note that

m x , y sm x , y sym xqh , yqH . 71Ž . Ž . Ž . Ž .i j ji ı j
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The symmetry in the subscripts follows directly from the defining relation for the m’s
Ž . Ž .69 and the symmetry property of the inner product 25 . The second equation follows

Ž . Ž .in view of the definition of the anti-particle 19 and 69 . The latter identity relates the
powers involving the particle on one hand and the anti-particle on the other and will
therefore turn out to be useful to show the crossing relation.

From the fusing rule in V q follows by similar manipulations as we have just
performed

m x"h , y"h s0 , 72Ž .Ž .Ý l p l l
lsi , j ,k

Ž .where the lower sign relates to the first 42 and the upper sign to the second solution
Ž . Ž .43 . The integers h and h are related to the two solutions of the fusing rules by 57 .l l

It still needs to be established that they are indeed the same as the ones occurring in the
Ž . Ž .equations involving the conserved quantities, 51 and 53 . It will turn out that both

Ž .relations in 72 will be crucial to prove the bootstrap equations for the scattering
matrices.

Ž . Ž .The final relation in this section follows from 17 and 69
Iil

m xq1, yq t qm xy1, yy t s m x , yq2ny1y I ,Ž . Ž . Ž .Ý Ýi j i i j i l j i l
ns1 lgD

73Ž .
Ii l Ž .where we understand that the sum Ý yields zero when I s0. We can view 73 asns1 i l

Ž . w xa particular solution of the recursive equations 2.4 quoted in 28 . One may take these
equations as a starting point and use them to construct the powers m recursively.i j

Ž . Ž .However, it remains unclear how to obtain Eq. 73 from first principles. In fact 73
Ž .should be regarded as a consequence of 72 and we therefore view the latter equations

as more fundamental. We demonstrate this fact only for the equivalent equations of the
scattering matrices, since in that setting they correspond to a simple physical property,
see Section 7.

ˆ (l)4.3. The powers from Xn

ˆ Ž l .Alternatively we can use the data of the twisted algebra X in order to compute then

powers of the building blocks. In this case the role of two arguments x and y in the
generating function is reversed, that is now we fix a particular y and read off the
possible values for x from the generating functions

c qci j
yc y1 c y1 q 2i j x y qˆn x , 2 yyc q l y l q sy l Ps g . 74Ž .ˆ ˆÝ i j i i j j q iž /ž /2 2 2x

Since the two descriptions, i.e. in terms of the data of X Ž1. or in terms of the data ofr
ˆ Ž l .X are supposed to be the same, we expect similar relations as we obtained in then

Ž .previous section for the m’s also to hold for the n ’s. Now property 65 of the blocks
demands that

n x , y sn xq2h , yq2 H and n x , y syn 2hyx ,2 Hyy .Ž . Ž . Ž . Ž .i j i j i j i j

75Ž .
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Ž . Ž .The first relation in 75 follows trivially from 35 . Once again we may guarantee that
Ž .the scattering matrix is a meromorphic function by means of the second relation in 75 ,

Ž .which follows from 41 . We also have the identities which imply parity and crossing

n x , y sn x , y syn xqh , yqH . 76Ž . Ž . Ž . Ž .i j ji ı j

Ž . Ž .7The first equation follows now from 40 and the second from 36 . The relation which
implies the bootstrap identity

n x"h , y"h s0 , 77Ž .Ž .Ý l p l l
lsi , j ,k

follows from the version of the fusing rules related to the q-deformed twisted Coxeter
ˆ q Ž . Ž .element in V Section 3.2 . As the counterpart of 73 we derive from the defining

Ž .relations of the n ’s and 34

n xqc , y qn yc xyc , yy2cŽ . Ž .ii j i v Ž i. j i i

1yc 1qci i
s I n x , yq l y l . 78Ž .Ý i l l j i lž /2 2ˆa gDl yci

Having finally assembled the main properties of all the ingredients from which we
construct the scattering matrices, we are now in the position to utilize them in order to
study the properties of S.

4.4. Bootstrap properties

The exact expressions for two-particle scattering matrices of integrable quantum field
theories may be obtained by solving certain consistency equations, the so-called

Ž .bootstrap equations. We will now demonstrate that 59 fulfills indeed all the require-
ments and take this as a proof for the conjectured formulae stated in the previous
subsection.

4.4.1. Unitarity, crossing and parity inÕariance
Ž . Ž .The unitarity-analyticity equation S u S yu s1 follows trivially from the prop-i j i j

� 4 � 4erty x , y x , y s1 of each individual building blocks. The crossing relationu yu

Ž . Ž . w x Ž .S u sS ipyu requires in general a little bit more effort, e.g. 39 . Using 65 andi j ı j
Ž .66 we obtain

h H
Ž .ym xqh , yqHi j� 4S ipyu sS hu qHu yu s xqh , yqH .Ž . Ž . Ł Ł ui j i j h H

xs1 ys1

79Ž .
Ž . Ž . Ž .Employing now the second identity in 71 , the r.h.s. of 79 equals S u , whichı j

establishes the crossing relation. The parity invariance of the scattering matrix, i.e.

7 Ž . Ž .We should keep in mind here that we did not yet prove 41 and 40 . In fact we reverse the logic and
prove first the properties for the n ’s in Subsection 5.2 and deduce from them the inner product identities in
Subsection 2.2.3.
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Ž . Ž .S u sS u , is guaranteed by the symmetry property of the m’s in the lower indices,i j ji
Ž .i.e. the first equation in 71 .

Alternatively we can use the data of the q-deformed twisted Coxeter element and
Ž . Ž .repeat the argumentation once more, using now the relations 76 instead of 71 .

4.4.2. Bootstrap identities
We will now come to the key equations, whose names are sometimes associated with

this whole approach, the bootstrap equations. The claim is that once the fusing rules in
Section 3 hold, the following identity is true for the scattering matrices:

S uqh u qh u s1 . 80Ž .Ž .Ł p l l h l H
lsi , j ,k

The integers h and h may be expressed by using the data from the various versions ofl l
Ž . Ž .the fusing rules 57 . The proofs of the relations 80 are straightforward. We obtain
Ž .with the help of 66

Ž .m x , yp lxqh , yqhl l uŽ .m x , yp l� 4x , y s s1 . 81Ž .uqh u qh uŁ Łl h l H Ž .m x , yp lxyh , yyhx , y x , y l l yu

lsi , j ,k lsi , j ,k

The last step follows by shifting x™xyh and x™xqh in the numerator andl l
Ž .denominator, respectively, such that we can employ the two equations in 72 . We note

that it is crucial to have both solutions at hand. Alternatively we can derive the bootstrap
Ž . Ž .Eq. 80 by exploiting the property 77 of the n ’s and repeating the arguments once

more.
Ž . Ž .With the help of 67 we translate 73 into what we refer to as the ‘‘combined

bootstrap’’ identity for the scattering matrix
Ir il

S uqu q t u S uyu y t u s S uq 2ny1y I u .Ž . Ž . Ž .Ž .Ł Łi j h i H i j h i H jl i l H
ls1 ns1

82Ž .

Here we understand that the product Ł Ii l contributes 1 when I s0. Sometimes thisns1 i l

identity is identical to some bootstrap equation, but in general it has to be constructed by
Ž .combining several identities of the type 80 in a very particular way. Its significance is,

that it may be employed in order to derive the matrix representation for the scattering
Ž . Ž . w xmatrix see Subsection 4.3 . Reducing 82 to the simply laced case, i.e. I ™ I ,i l q i l

w xH™h,t™1, we recover an identity quoted in 37 , see Section 7.i

4.4.3. Occurrence of certain special blocks
For various purposes it is important to exhibit explicitly the occurrence of particular

� 4 Ž .blocks x, y in the general formula 59 . It is possible to extract the blocks of the form
� 4 � X 41, y 2, y from the general product and re-write the scattering matrix asu u

d i j � 4S u s 1,1 2,2 x , y . 83� 4Ž . Ž .� 4 Ł Ł ui j t I ti i j ju u yx/1,2

Ž .For the proof of 83 we exploit the properties of the q-deformed Coxeter element s .q
Ž . � 4Considering the identity 69 , we notice that for is j a block of the form 1, y may only
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Ž .occur for xs0, c sy1 or xs1, c s1. From 17 and the orthogonality of simplei i
c q1 Ž1qc . ti i i˜roots and co-fundamental weights, we obtain l Ps g syq and thereforei q i

2

we get

tiw xt 1qiy t 2 ny1im 1, y q s q s q , 84Ž . Ž .Ý Ýi i 2 2y ns1

Ž .which establishes the first factor in 83 . In order to prove the occurrence of the second
� 4factor, we observe that a block of the form 2, y may only be generated if c /c . Duei j

Ž .to the parity property of the m’s 70 , we may choose c s1 and c sy1 w.l.g., suchi j
˜ 2 t iŽ . w xthat we obtain from 17 l Ps g syq I . Hence we obtainj q i i j q

t I I tt qt j i j i j ji jq 1 1
y 2 ny1 2 ny1 2 nm 2, y q s I t s q q s q .Ž .Ý Ý Ý Ýi j i j jq q2 2 2y ns1 ns1 ns1

85Ž .

In the last equality we have used the fact that either t or I has to be one. Thisj i j
Ž .establishes 83 .

Ž .There are several consequences we may draw from 83 . An immediate conclusion
concerns the value of the scattering matrix at vanishing rapidities. With the remark made

Ž .in Subsection 4.1 we deduce from 83 that

d i jS 0 s y1 . 86Ž . Ž . Ž .i j

The knowledge of this value is for instance important in the context of the thermody-
w xnamic Bethe ansatz 35 .

4.4.4. Singularities and the generalized bootstrap
Ž .As we have seen the blocks of the form 60 are extremely useful to exhibit the Lie

algebraic structure of the scattering matrix. However, they are quite misleading with
regard to the singularity structure due to the possible cancellation of zeros and poles.

� 4 � X X 4 XThis may happen whenever we have a product of two blocks x , y x , y and x, x or
y, yX differ by 2. It suffices to consider the latter case, since it will cover all examples we
shall be constructing. Motivated by this observation we introduce the quantity

ny1

� 4 � 4x , y s x , yq2 l 87Ž .Ł un u
ls0

² : ² :xy1, yy1 xq1, yy1q2nu u y1s = u™yu , 88Ž . Ž .² : ² :xq1, yy1 xy1, yy1q2nu u

and also define the angles

u " s x"1 u q 2nqyy1 u 89Ž . Ž . Ž .x , y ,n h H

which serve to characterize the precise location of the singularities of the blocks
� 4 " "x , y . Obviously the four zeros are situated at "u ,.u and the four poles atn x , y,0 x , y,nu

"u " ,"u . respectively. In order to interpret these singularities from the physicalx , y,n x , y,0

point of view we should know when they are situated on the physical sheet, i.e. 0( Im
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u( ip . Recalling that the range for the possible arguments of the blocks 0-x-h,
0-y-H and the range in which the effective coupling takes its value, i.e. 0(B(2
we evaluate

2 H hyx.1Ž .
"0( Im u (p for B( . 90Ž .Ž .x , y ,n h 2nqyy1 yH x"1Ž . Ž .

The relevant residues are computed to

Ž . yŽ .y2sinhu sinh nu sinh xu q nq yy1 u sinh uŽ . Ž .h H h H x , y ,0� 4yRes x , y s ,usu nx , y ,0 Ž . Ž . Ž .Ž .sinh u q nu sinh xu q yy1 u sinh xy1 u q yq ny1 uŽ . Ž .h H h H h H

91Ž .
Ž . qŽ .2sinhu sinh nu sinh xu q ny1q y u sinh uŽ . Ž .h H h H x , y ,n� 4qRes x , y s .usu nx , y ,n Ž . Ž . Ž .Ž .sinh u q nu sinh 1q x u q nq yy1 u sinh xu q 2nq yy1 uŽ . Ž .h H h H h H

92Ž .

Ž .It is easy to convince oneself that with the stated range for x, y, B, n together with 90
we have

y � 4 q � 4Im Res x , y -0 and Im Res x , y )0 , 93Ž .Ž . Ž .usu n usu nu ux , y ,0 x , y ,n

such that the uq could correspond to the direct channel poles. In the simply laced casex , y,n

this knowledge is enough to judge the sign of the residue of the whole S-matrix, e.g.
w x19 . For the case at hand matters are more involved since the remaining blocks in the
scattering matrix do in general not possess a definite sign. It is this feature which lead

w xthe authors of 25 to the formulation of the generalized bootstrap. According to this
prescription only odd order poles, whose imaginary part of the residue is positive in the
whole range of the effective coupling B, participate in the bootstrap.

� X
X

X 4So let us have a closer look at the behaviour of a block x , y . We obtain a firstqn u x , y,n

criterion for a possible sign change by considering the extreme limits in the coupling
� X

X
X 4 Xconstant. In general we have lim x , y s1. However, if x sx we haveqb™ 0,` n u x , y,n

"1Xy yyy2n
X X

X "� 4lim x , y s , 94Ž .un X Xx , y ,n ž /y yyq2n y2nb™0

� X
X

X 4 "lim x , y s1 . 95Ž .un x , y ,n
b™`

� 4This means if the block responsible for the pole is x , y and the right-hand side ofn u

Ž .94 is negative the imaginary parts of the possible additional blocks

� X
X 4 q � XX

XX 4 qx , y and xq2, y 96Ž .u un nx , y ,n x , y ,n

both change their sign while b runs from zero to infinity. This means the pole uq
x , y,n

Ž .does not participate in the bootstrap if in the scattering matrix also the blocks 96 occur
to an odd power and if they do not cross the real axis at the same position. This means
having the scattering matrix given explicitly in blockform the condition on y, yX,n,nX by

Ž .which the l.h.s. of 94 becomes negative, together with the occurrence of blocks like
Ž .96 provides a simple criterion which allows to judge whether a pole resulting from a
certain block should be excluded from the generalized bootstrap or not.
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Ž .Exploiting the fusing rules and reading off the relative rapidities from 51 we obtain
the precise location, say f, of a pole in the scattering matrix which participates in the
generalized bootstrap

fs" h yh u " h yh u . 97Ž . Ž .Ž .i j h i j H

The two signs result from the two non-equivalent solutions of the fusing rule.

5. Matrix-integral representation

Alternatively to the universal form for the scattering matrix in the form of blocks
there exists a remarkable integral representation. This version of the scattering matrix is
particularly useful when applied in the context of the thermodynamic Bethe ansatz
w x w x35,36 or off-shell when computing form factors 34 . We can express the scattering
matrix as8

` dt u t
S u sexp F t sinh , 98Ž . Ž . Ž .Hi j i j ž /t ip0

with

y1w x Ž .F t s8sinh q t sinh t q t K t . 99Ž .q tŽ . Ž . Ž .Ž .Ž . q i ji j h j H

Ž . Ž . Ž .We introduced here the particular deformation parameters q t sexp q t and q t sh
Ž .exp q t and the matrixH

t y1 yti iK s qq qq q d y I . 100Ž .Ž .i j i j i jqq q

w xIn the limit q™1 and q™1 the matrix K obviously reduces to the ordinaryi j qq

Cartan matrix K , such that one is tempted to view this matrix as a doubly q-deformed
Cartan matrix. However, this viewpoint is slightly misleading as we now argue. For the

w xsimply laced cases it was proven 20,21 that the conserved quantities may be organized
Ž . 2Ž . Ž .as right eigenvectors of the Cartan matrix Ý K y n s4sin s prh y n with sj i j j n i n

labelling the exponents of the algebra as already introduced. In particular we have that
Ž .y 1 ;m . It is then easy to see that this may also be re-written asi i

r

K y n s0 . 101Ž . Ž .Ý i j jŽ . Ž .q ip s q ip sn n
js1

Hence, we can alternatively organize the conserved charges as nullvectors of the matrix
w xK evaluated at exponents of the Lie algebra, i.e. ts is . Based on ai j qŽ ip t .qŽ ip t . n

w x Ž .case-by-case investigation, Oota pointed out 28 that Eq. 101 also holds for the
non-simply laced case. A general proof of this statement is still outstanding. There is,

8 Ž Ž . w x.A very similar formula was first obtained by Oota Eq. 5.2 in Ref. 28 on the base of a case-by-case
Ž . Ž .d i j `study. In comparision, the formula 98 differs only by a factor y1 exp 2d H dtr t sinh u tr ip ,Ž . Ž .Ž .i j 0

which is 1 for u real, but different from one if the rapidity becomes complex. Similar expressions also appear
w xin 40 .
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however, one important difference in comparison with the simply laced case. In general
we can not reverse the interpretation anymore, such that we are not able to recover a
genuine eigenvalue equation. In particular for s s1 this leads to1

I m s2cosh u q t u m . 102Ž . Ž .Ý i j j h i H iŽ .q ip
j

We observe that the eigenvalue depends now through the symmetrizer t on thei

component of the ‘‘eigenvector’’. In the limit b™0 we restore the old picture and
Ž . Ž . Ž .recover the equation Ý I y n s2cos p s rh y n valid for all simple Lie algebras.j i j j n i

Ž . Ž .With the help of 11 we also obtain the equation for the left nullvector x n related toi
Ž . w x Ž .the right as y n s t x n .i i q i

Ž . w xThe determinant of the matrix 100 may be computed 28 to
r

w xdet K s 4sin tqs prh sin s y t prh . 103Ž . Ž . Ž .Ž . Ž .Ž . Ž .q ip t q ip t Ł n n
ns1

We do not have a general proof of this formula, but we have verified it case-by-case.
Two important features which we exploit below should be noticed here, first the
determinant becomes independent of the coupling constant b and second it vanishes for
t being an exponent.

Ž .Before we provide the proof for the representation 98 , we will introduce two further
auxiliary matrices.

5.1. The M-matrix

We restrict now the sum of the generating function for the powers of the building
Ž .blocks 69 to a finite range and also include an additional deformation parameter q into

our consideration. We define the matrix
2h 2 H

x yM q ,q s m x , y q q , 104Ž . Ž . Ž .Ý Ýi j i j
xs1 ys1

where initially we keep both deformation parameters completely generic. From the
properties for the m’s, which we deduced in Subsection 4.2, we can immediately derive
several features for the matrix M,

2 h 2 H y1 y1M q ,q syq q M q ,q sM q ,q . 105Ž . Ž . Ž .Ž .i j i j ji

Ž . Ž .The first identity in 105 is a consequence of the two relations in 70 together with
Ž . Ž .the fact that m 0, y sm 2h, y s0 for all y. The second follows trivially from thei j i j

Ž .symmetry properties of the m’s from the first relation in 71 .
Most crucial is once more the combined bootstrap equation, which on the Lie

Ž .algebraic side corresponds to the property 73 . In fact, this identity will enable us to
compute the matrix M explicitly. By some straightforward manipulations of this relation

Ž . Ž .we deduce with 73 that M q,q has to satisfy

2 h 2 Hr 1yq q
y1 yt ti i w x w xq q qqq M q ,q y I M q ,q s t d .Ž . Ž .Ž . Ý q qi j i k k j i i j2ks1

106Ž .
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Ž .Solving this equation for M q,q yields
2 h 2 H1yq q y1w xM q ,q s K t . 107Ž . Ž .Ž .qq i ji j j q2

Ž . Ž .At first sight 107 does not seem to be a finite polynomial of the form 104 . However,
the doubly q-deformed Cartan matrix becomes singular at certain values and the

2 h 2 HŽ .pre-factor 1yq q ensures the whole expression to remain finite. In other words
w xthis term may always be factorized into the determinant of K and some rest, suchi j qq

Ž . Ž . w xthat the r.h.s. of 107 will indeed be a polynomial as defined in 104 . In 40 a similar
Ž . w x w xmatrix as 107 also occurs. However, apart from the ordering of t , K , the pre-factor

2 h 2 HŽ .1yq q r2, which is crucial for the polynomial aspect we discuss below, is not
mentioned in there.

We will deviate now from our generic consideration and specify the deformation
Ž . Ž . Ž .parameters to be q t and q t as introduced after Eq. 99 . Noting first of all that

2 h 2 H 2 tŽ . Ž . Ž .q t q t se , we observe that for ts ip m the r.h.s. of 106 always vanishes.
Ž . Ž Ž . Ž ..Furthermore it follows from 107 that M q ip m , q ip m is also always zero unless

Ž . Ž Ž . Ž ..m is an exponent by 103 . From this we deduce that M q ip s , q ip s isn n
Ž . Ž .proportional to the right nullvector y n as specified in 101 . In view of the symmetry

Ž .property 105 , we conclude that

M q ip s ,q ip s ;y n y n , 108Ž . Ž . Ž . Ž . Ž .Ž .i j n n i j

where the factor of proportionality neither depends on the particle index i nor on j.
Ž . Ž . Ž .Most importantly we derive from 72 a matrix version of the fusing rule 51 and 53

h hl lq ip s q ip s M q ip s ,q ip s s0 for 1(p(r . 109Ž . Ž . Ž . Ž . Ž .Ž .Ý n n l p n n
lsi , j ,k

Ž . Ž .By means of 108 we may divide out y n and the factor of proportionality fromp
Ž . Ž .109 , such that we have at last established the relation 51 involving the conserved
quantities.

We may specify the deformation parameters further and take q and q to be roots of
unity of order 2h and 2 H, respectively. This may be done safely after we have cancelled
the determinant against the pre-factor. As a consequence this means in particular that

Ž Ž ..together with the periodicity property of the m’s the first property in 70 , we may
Ž .simultaneously shift the upper and lower limit in the sum 104 arbitrarily. The
Ž .properties of the blocks are now also reflected by the polynomial 104 , such that we can

x y� 4not only carry out a one-to-one identification between x, y and q q , but in additionu

� 4 � 4y1we can also manipulate them in an identical way. If in analogy to yx,yy s x, y ,u u
yx yy x ywe further define q q syq q we can even guarantee that the range of x and y is

1(x(h, 1(y(H. With these assumptions in mind we derive
h H y1 y1 h HM q ,q sq q M q ,q syq q M q ,q 110Ž . Ž . Ž .Ž .i j ı j ı j

Ž .from the last relation in 71 .
As a final remark of this section, we note that at roots of unity the defining relation

Ž .for the M-matrix 104 may be viewed as the discrete Fourier transformation of
Ž .m x, y , the inverse of which readsi j

2h 2 H1
m n ym x yn ym x , y s M v ,v v v , 111Ž . Ž . Ž .ˆ ˆÝ Ýi j i j4hH ms1 ns1
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with v and v being the 2hth and 2 H th primitive roots of unity, respectively. Thisˆ
allows us to compute the powers of the blocks, i.e. the m’s, in an alternative way from

Ž . Ž . Ž .the explicit expression of M q,q in matrix form 107 . We may also utilize 111 to
verify the properties of the m’s by exploiting now explicitly matrix representation of
Ž .M q,q , instead of the orbits of the q-deformed Coxeter element as in of Subsection 4.2.

In addition, the computing rules, which we stated in the previous paragraph for generic
q and q are automatically satisfied for q and q being roots of unity.

5.2. The N-matrix

As to be expected, we may also express the scattering matrix in terms of the data of
ˆ Ž l . Ž .the twisted algebra X . In analogy to the M-matrix 104 we define the n=n-matrixn

2h 2 H
x yN q ,q s n x , y q q , 112Ž . Ž . Ž .Ý Ýi j i j

xs1 ys1

where once again we keep both deformation parameters completely generic for the time
Ž .being. It should be clear that our notation in 74 is slightly abused here at the cost of

avoiding the introduction of new symbols. From the Lie algebraic analogue to the
Ž .combined bootstrap Eq. 78 we derive

c y1 c q1i iy2 cit̂ t̂ yc y2 c q l q liq 1 i i i i lycy1 q q N qN y q q I NŽ . 2 2Ž . i Ýi j v Ž i. j i l l j
ˆa gDl yci

1q c2 h 2 H i1yq qŽ .yc 2is qq d . 113Ž . Ž .Ž .i v j2
Ž .Unlike the corresponding equation for the non-twisted case 106 , we can not solve

Ž .113 directly due to the occurrence of indices transformed by the automorphism v.
Ž . yc iŽ .However, we may consider Eq. 113 for i™v i and iterate the resulting equations

as long as we obtain N yl c sN . Thereafter we can safely solve the equation for theiv Ž i. j i j
ˆr=r-submatrix, say N, and obtain

2 h 2 H1yq q y1ˆ ˆw xN q ,q s K l . 114Ž . Ž .qqŽ .i j ji j q2

Here we have introduced the doubly q-deformed twisted Cartan matrix
li

l y1 yli iˆ ˆw x kK s qq qq q d y I . 115Ž .Ž .qq Ý Ž .i j v i j
ks1 q

Note that in the classical limit q,q™1 we recover the transpose of the usual twisted
Cartan matrix. The transposition results from our convention that particles in both dual
algebras are denoted by the same particle index. Similarly as in the non-twisted case the

Ž .determinant of the matrix 115 acquires a very neat form,
n

ˆw xdet K s 4sin tqs prH sin s y t prH , 116Ž .Ž .Ž .ˆ ˆŽ .Ž . Ž . Ž .q ip t q ip t Ł k k
ks1

ˆ Ž l . w xwhere the s denote the lth exponents of X 32 . We also do not have a general proofˆk n

of this formula, but we have verified it once again case-by-case.
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ˆBy direct computation, we may now derive several identities for the matrix N,
namely

2 h 2 H y1 y1ˆ ˆ ˆN q ,q sN q ,q syq q N q ,q . 117Ž . Ž . Ž .Ž .i j ji i j

Ž . Ž .The first and second relation in 117 imply the first property for the n ’s in 76 and the
Ž .second relation in 75 , respectively, which on the other hand finally prove the inner

Ž . Ž .product identities of Subsection 2.2.3. Comparing 107 and 114 we see immediately
ˆ Ž . Ž .that MsN and therefore n x, y sm x, y . A direct Lie algebraic proof of the latter

equality would be desirable since it allows to express quantities of the twisted algebra in
terms of the non-twisted algebra and vice versa. Having established several features of

ˆŽ . Ž .the matrix M q,q and N q,q we will now supply the context in which they naturally
originate.

5.3. From block- to integral representation

Ž .Concerning the representation of the scattering matrix in blockform 59 , an obvious
question which arises is, whether it is possible to compute explicitly the product over x

Ž .and y. Taking the explicit integral representations of the blocks 62 into account, this
problem amounts to the evaluation of

2h 2 H1
h , HF t s m x , y f t , B 118Ž . Ž . Ž . Ž .Ý Ýi j i j x , ysinh t xs1 ys1

8sinh q t sinh q tŽ . Ž .h H ytsy e M q t ,q t 119Ž . Ž . Ž .Ž .
sinh t

8sinh q t sinh q tŽ . Ž .h H yt ˆsy e N q t ,q t 120Ž . Ž . Ž .Ž .
sinh t

Ž .if we want to transform the scattering matrix into the form 98 . From the first identity
2 h 2 H 2 tŽ . Ž . Ž .in 105 , noting that q t q t se , together with the explicit form of the M-matrix

Ž . Ž . Ž .107 , we deduce the integral representation 98 with 99 .
Ž .Some comments are due, since it appears that the convergence condition 64 is

violated by the range we chose for x and y in the defining relation for M. However, for
� 4 Ž .each individual block x, y we can exploit the properties 65 and bring the argumentsu

Ž .x and y into a range for which the integral representation 62 is convergent. These
features are reflected in the M-matrix if it is taken at roots of unity together with the

yx yy x yalready mentioned rule q q syq q .
w xAs an alternative proof we may proceed similar as in 36 for the simply laced case.

This method turns out to be instructive with regard to particular applications as the
thermodynamic Bethe ansatz and it will illustrate the origin of the slight difference

Ž . w xbetween 99 and the formula in 28 . First we notice that the scattering matrix may also
be written as

` dt itu
S u sNNexp w trp sinh , 121Ž . Ž . Ž .˜Hi j i j ž /p t p0
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Fig. 2. The contours CC " in the complex u-plane. The bullets v belong to poles resulting fromD

� 4 � 4 Ž .y idrdu ln 1,1 and the open circles ( to poles of y idrdu ln 2,2 , for the situation B)2 Hr Hq t h .u u i
Ž .When B-2 Hr Hq t h the poles at "2p t q and "2pq reverse their roles.i i H h

when we introduce the quantities
`d

ikuw u syi lnS u and w k s du w u e . 122Ž . Ž . Ž . Ž . Ž .˜ Hi j i j i j i jdu y`

Ž .Due to the differentiation in 122 , we have the freedom of a normalization constant NN
Ž .in 121 , which may be fixed by some asymptotic condition. Acting now with yi times

Žthe logarithmic derivative on the combined bootstrap identity we concentrate here on
. Ž . Ž .the case I s1 82 , multiplying with exp iku and integrating thereafter with respecti l

to u we obtain
r

i kuPP du w uqu q t u qw uyu y t u e s I w k . 123Ž . Ž . Ž . Ž .˜Ž . ÝH i j h i H i j h i H i l l j
ls1

Ž .Here PP denotes the Cauchy principal value. Alternatively we may compute w k˜ i j

directly. For this purpose we shift the Fourier integral into the complex plane and
integrate along the contours CC " as depicted in Fig. 2.D

Ž .Due to 83 we know explicitly the occurrence of the relevant blocks which will give
a contribution when we integrate along CC ".D

lim duw u esw k yPP duw u"u " t u eikŽu " u h " t iuH . 124Ž . Ž . Ž . Ž .˜E Hi j i j i j h i H
"D™` CCD

s2pd e. 2pqh r H yp I e. kp Žqhqq H . . 125Ž .i j i j

Ž .On the other hand, the l.h.s. of 123 may be computed alternatively from the right-hand
Ž . Ž .sides of 124 and 125 , such that we obtain

y1
w krp s2p d y4sinhkq sinhkq 2cosh t q qq y I , 126Ž . Ž . Ž .Ž .˜ i jž /i j i j h H h H

Ž . Ž .and therefore 99 by means of 121 . The other cases when I s2,3 may be obtainedi l

similarly with the singularity structure as indicated in Fig. 2.

6. Reduction to the simply laced case

It is instructive to investigate how the general formulae valid for all simple Lie
algebras behave when we specialize to simply laced Lie algebras. Considering the data
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of X Ž1., we notice first of all that there is no distinction anymore between H and h. Ther

length of all roots is the same in the simply laced case, such that t s1 for all i and thei

incidence matrix becomes therefore symmetric. The q-deformed incidence matrix re-
w xduces now to the usual incidence matrix, i.e. I ™ I , since it does not have entriesi j q i j

Ž .different from 1. As a consequence, the q-deformed Weyl reflections in 6 become the
ordinary Weyl reflections, such that s q

™s . The map t commutes now with thecŽ i. cŽ i.
s and therefore the q-deformed Coxeter element becomescŽ i.

s ™q2s s sq2s , 127Ž .q y q

with s being the ordinary non-deformed Coxeter element of X Ž1.. Noting further thatn
ˆ Ž .co-weights become identical to weights, i.e. l™l , the generating function 69i i

acquires the form

c qcc qc 1 i ji j y 2 xy xm 2 xy , y q sy q l Ps g . 128Ž .2 Ž .Ý i j j iž /2 2y

c q ci jHence we always have ys2 xy and the only type of blocks which emerges is
2

� 4 9x , x . Therefore the block form of the scattering matrix readsu

1
qy l Ps gh i jc qc c qc 2i j i j Ž1.S u s 2 qy ,2 qy , X 'ADE. 129Ž . Ž .Łi j r½ 52 2 uqs1

This means that also conceptually the simply laced case admits a slightly different
formulation. In the generic case we compute the powers of the building blocks indirectly
via a generating function, whilst in the simply laced case we may compute them
directly.

ˆ Ž l .We can also consider the data of X and undo the twist, which means that v™1,n

ˆl ™1 and t™1 for all i, such that the twisted q-deformed Coxeter element becomesi i

s ™q2s s sq2s . 130Ž .ˆq y q

Ž .Therefore the generating function 74 becomes
c qci j

2 yyc qc q 2i j x yn x ,2 yy q sy l Ps g , 131Ž .Ž .Ý i j j iž /2 2x

c q ci jwhich means that xs2 yy and the only type of blocks which emerge are once
2

� 4again x , x . Hence, the scattering matrix reduces also in this analysis to the formu

Ž .129 .
Ž .The matrix inside the integral representation 99 for the simply laced case follows

likewise and acquires the form

Bt 2yB tŽ . y1
F t s8sinh sinh 2cosh trhy I . 132Ž . Ž . Ž .i ji j ž / ž /2h 2h

w x w xHence we have recovered the formulae of 19 or 36 .

9 w x w x� 4 � 4The block x , x corresponds to the block x as defined in 19 or 36 .u u
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7. Case-by-case

In order to illustrate the working of our general formulae it is useful to work them out
explicitly for some concrete examples. We concentrate here on the non-simply laced

w xcase, since the simply laced case is covered extensively in the literature 9–16 . We will
Ž Ž1. Ž3..be most detailed for the G , D case. Our conventions with regard to numbering and2 4

colouring may be read off from the Dynkin diagrams. As usual the arrow points towards
the short roots. A black and white vertex corresponds to the colour value c sy1 andi

c s1, respectively.i

( (1) (3))7.1. G ,D2 4

w xThe S-matrices of the theory read 22–24
2 1

I IS u s 1,1 ; 3,5 ;5,11 , 133Ž . Ž .11 2½ 5
u

1

IS u s 2,2 ; 4,6 , 134Ž . Ž .12 3 3½ 5
u

2

IS u s 1,1 ; 3,3 ;3,5 ;5,7 . 135Ž . Ž .22 3 3 3 3½ 5
u

Here we indicated which block is responsible for which type of fusing process. We have
Ž .hs6 and Hs12 for the Coxeter numbers. With the help of 67 , we easily verify that

Ž . Ž . Ž .for 133 , 134 and 135 the following bootstrap identities hold:

S uqu qu S uyu yu sS u ls1,2 , 136Ž . Ž . Ž . Ž .1 l h H 1 l h H 2 l

S uq2u q4u S uy2u y4u sS u ls1,2 , 137Ž . Ž . Ž . Ž .1 l h H 1 l h H 1 l

S uq2u q4u S uy2u y4u sS u ls1,2 . 138Ž . Ž . Ž . Ž .2 l h H 2 l h H 2 l

As an example for the working of the generalized bootstrap and our criterion provided in
Ž .Subsection 4.4.4, we plotted the imaginary part of the residues of S u in Fig. 3 for22

several poles. We observe that the sign changes throughout the range for poles resulting
� 4 � 4from 1,1 and 3,5 . Only the poles responsible for the self-coupling of particle 2 have3 3

a positive imaginary part of the residue throughout the range of the coupling constant b.
Except at Bs4r3 where it is zero, such that this fusing process decouples.

Ž . Ž .Besides 136 the combined bootstrap identities 82 also yield

S uqu q3u S uyu y3u sS u S uq2u S uy2u ,Ž . Ž . Ž . Ž . Ž .l2 h H l2 h H l1 l1 H l1 H

139Ž .
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Ž .Fig. 3. The imaginary part of several residues of S u as a function of the effective coupling constant.22

Ž . Ž .for ls1,2. These equations may be derived from 136 and 137 or verified directly for
Ž . Ž . Ž . Ž .133 , 134 and 135 , with the help of 67 . The process corresponding to the

Ž .combined bootstrap identity 139 is depicted in Fig. 4.
Reading off the fusing angles from the bootstrap equations we obtain the mass ratios

Ž .according to 56 ,

m sinh u quŽ .1 h H
s . 140Ž .

m sinh 2u q2uŽ .2 h H

We may construct all these formulae from the Lie algebraic data in two alternative
ways.

7.1.1. S u from G(1)( )i j 2

We start by exploiting the properties of GŽ1.. The non-vanishing entries of the2
Ž .incidence matrix are I s1 and I s3. Consequently Eq. 11 yields t s1 and12 21 1

t s3. As indicated in the Dynkin diagram we choose c sy1 and c s1, such that2 1 2

the q-deformed Coxeter element reads s ss qts qt . The result of successive actions ofq 1 2

this element on the simple roots is reported in Table 1. Here and in all further tables we
choose the following conventions: To each g we associate a column in which we reporti

the powers of the q of the coefficients of the simple roots. We abbreviate

" q m1
1
q . . . qq m1

l1
a " . . . " q mr

1
q . . . qq mr

lr
aŽ . Ž .1 r

™"m1 , . . . ,m1 ; . . . ;m1 , . . . ,m1 , 141Ž .1 l r l1 r

with rs rank g. When q m occurs x-times we denote this by m x. Like in the undeformed
case the overall sign of any element in V is definite. Therefore it suffices to report theq

Ž Ž1. Ž3.. Ž .Fig. 4. G , D -combined bootstrap identities 139 .2 4
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Table 1
The orbits V q created by the action of s x on gi q i

xs a syg a sgq 1 1 2 2

1 4,6;4 y4,6,8;6
2 10;8 y8,10,12;8,10
3 y12;) y);12
4 y16,18;16 16,18,20;18
5 y22;20 20,22,24;20,22
6 24;) );24

Ž .sign only once as stated in 141 . In the complete orbit we always have an equal number
of plus and minus signs. When we do not report any signs in the column at all, the signs
of the column to the left are adopted. In case the coefficient of the root is zero, we

Ž 4 6.indicate this by a ). For instance from Table 1 we read off: s g sy q qq a yq 1 1

q4a .2
Ž .For the conventions chosen the generating functions 69 for the powers of the

building blocks are obtainable from the generating functions
xy 1 ˜m 2 xq1, y q syq l P s g r2 , 142Ž . Ž . Ž .Ý ž /11 1 q 1

y

xy y2 ˜m 2 x , y q syq l P s g r2 , 143Ž . Ž . Ž .Ý ž /21 1 q 2
y

xy y3 ˜w xm 2 xy1, y q syq 3 l P s g r2 . 144Ž . Ž . Ž .qÝ ž /22 2 q 2
y

We may now read off the Lie algebraic data from the Table 1 and we can construct the
Ž . Ž . Ž . Ž .scattering matrices 133 , 134 and 135 according to formula 59 .

Ž .The two non-equivalent solutions to 42 corresponding to the S-matrix bootstrap
Ž . Ž . Ž .Eqs. 136 , 137 and 138 read

qsy1g qqy1g sqy3g , qy1g qqsy1g sqy3g , 145Ž .q 1 1 2 1 q 1 2

q3sy1g qqy5s g sqy1g , qy3g qq5sy2g sqsy1g , 146Ž .q 1 q 1 1 1 q 1 q 1

q16s g qs 5g sq20g , q4s 4g qq20g ss 5g , 147Ž .q 2 q 2 2 q 2 2 q 2

Ž . Ž . Ž .respectively. These relations may be obtained either from 136 , 137 and 138
together with the formulae which relate the fusing angles to the solution of the fusing

Ž .rules in terms of the q-deformed Coxeter element 57 or alternatively they may be read
Ž .off directly from Table 1. For a direct comparison with 57 one should cross all term to

Ž .one side of the equation by means of 19 .
It is also instructive to consider explicitly the matrix representation and verify the

general formulae of Section 5. The doubly q-deformed Cartan matrix for generic q and
q reads

y1 y1qqqq q y1
w xK s 148Ž .qq 2 y2 3 y1 y3ž /y 1qq qq qq qq qŽ .
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2 4 y2 y4w xwith determinant det K sq q qq q y1. The right nullvectors are evaluated toqq

y 1 s sinh u qu ,sinh 2u q2u , 149Ž . Ž . Ž . Ž .Ž .h H h H

y 2 s sinh 5u q5u ,sinh 10u q10u . 150Ž . Ž . Ž . Ž .Ž .h H h H

Ž . Ž .From 148 we compute the M-matrix according to 107

Ž .M q ,q

3 7 2 y2qqq q q 1 q q q q

2 4 4 8 2 4 y2 y412 24 1y q q q q q q q q q q y 11 y q q
s

2 y2 3 3 2 42 1q q q q qq q q q 1 q q q qŽ .Ž .� 0
2 4 y2 y4 2 4 4 8q q q q q y 1 1 q q q q q q

2 y2 2 4 4 8 10 20 8 162 4 6 12 8 16 3 7 1q q q q q q q q q y q q y q q1 q q q y q q y q q qq q q q Ž .Ž .Ž . Ž .
2 2

s .
2 y2 2 4 4 8 10 20 8 16 2 4 3 3 6 12 2 4 8 161q q q q q q q q q y q q y q q 1 q q q q qq q q q 1 q q q y q q y q qŽ . Ž .Ž .Ž .Ž .� 0

2 2

151Ž .

Ž Ž . Ž ..Evaluating the M-matrix at M q ip s ,q ip s leads ton n

'2 i 3 1q2coshuŽ .H
M q ip ,q ip s y 1 y 1 , 152Ž . Ž . Ž . Ž . Ž .Ž .i j i jsinh u qu sinh 2u q2uŽ . Ž .h H h H

'y2 i 3 1q2cosh 5uŽ .Ž .H
M q 5ip ,q 5ip s y 2 y 2 ,Ž . Ž . Ž . Ž .Ž .i j i jsinh 5u q5u sinh 10u q10uŽ . Ž .h H h H

153Ž .

Ž .which confirms Eq. 108 including also the precise factor of proportionality.

7.1.2. S u from D(3)( )i j 4

Instead of using the data from GŽ1., we can also employ the properties of DŽ3.. As2 4

indicated in the Dynkin diagram, we choose the values of the bi-colouration to be
c sy1 and c sc sc s1. Our conventions for the incidence matrix I, the action of1 2 3 4

t on the simple roots and the action of the automorphism v on the simple roots areˆ

q2a a1 10 1 1 1
2 aq a1 0 0 0 42Is , t a s , v a s . 154Ž . Ž . Ž .ˆ

1 0 0 0 aa 2� 0 3 � 0� 01 0 0 0 aa 34

The lengths of the orbits are l s1, l s l s l s3 and the q-deformed twisted Coxeter1 2 3 4

element reads therefore s svy1s qts q. Successive actions of this element on theˆ ˆ ˆ ˆq 1 2

representatives of V v are reported in Table 2.i
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Table 2
ˆ q xThe orbits V created by the action of s on gˆi q i

x q qs a syg a sgˆ ˆ ˆ ˆ ˆq 1 1 2 2

1 ););2;) y2;);2;)
2 2;););2 y2;);4;2
3 2;2;4;) y2,4;2;4;4
4 );););4 y4;4;6;4
5 4;4;);) y4;4;);6
6 y6;););) y);6;);)
7 y););8;) 8;);8;)
8 y8;););8 8;);10;8
9 y8;8;10;) 8,10;8;10;10
10 y);););10 10;10;12;10
11 y10;10;);) 10;10;);12
12 12;););) );12;);)

Ž .For the generating functions 74 we obtain
yx ˆn x ,2 yq1 q syq l P s g r2 , 155Ž . Ž .ˆ ˆŽ .Ý ž /11 1 q 1

x
yx ˆn x ,2 y q sy l P s g r2 , 156Ž . Ž .ˆ ˆŽ .Ý ž /12 2 q 1

x
yx y1 ˆn x ,2 yy1 q syq l P s g r2 , 157Ž . Ž .ˆ ˆŽ .Ý ž /22 2 q 2

x

Ž . Ž . Ž .which yield the scattering matrices 133 , 134 and 135 with the help of Table 2.
Ž . Ž . Ž . Ž .The two non-equivalent solutions to 46 corresponding to 136 , 137 and 138

read

q2gqqs gqss gq , s gqqq2gqss gq, 158Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 1 q 2 q 1 1 q 2

qsy1gqqqy3s 3gqsqy1s gq , qy3s 3gqqqsy1gqsqy1s gq , 159Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆq 1 q 1 q 1 q 1 q 1 q 1

qy2s 6gqqq2s 2gqss 4gq , q2s 2gqqqy2s 6gqss 4gq , 160Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆq 2 q 2 q 2 q 2 q 2 q 2

Ž . Ž . Ž .respectively. These relations may be obtained either from 136 , 137 and 138
together with the relation which relates the fusing angles to the solution of the fusing

Ž .rules in terms of the q-deformed twisted Coxeter element 57 or alternatively they may
be read off directly from Table 2. Exploiting the relationship between the different

Ž . Ž . Ž . Ž . Ž .versions of the fusing rules 57 , we may also obtain 158 , 159 and 160 from 145 ,
Ž . Ž .146 and 147 .

( (1) (2))7.2. F ,E4 6
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w xThe S-matrices of the theory read 17,18

� 4S u s 1,1 ;5,7 ;7,9 ;11,15 ,Ž .11 2 2 2 2 u

� 4S u s 2,3 ;4,5 ;6,7 ;6,9 ;8,11 ;10,13Ž .12 2 2 2 2 2 2 u

� 4S u s 3,4 ;5,6 ;7,10 ;9,12 ,Ž .13 2 2 2 2 u

� 4S u s 4,5 ;8,11 ,Ž .14 2 2 u

S u s 1,1 ;3,3 ;3,5 ;5,5 ;5,72 ;7,92 ;7,11 ;9,11 ;9,13 ;11,15 ,Ž . � 422 2 2 2 2 2 2 2 2 2 2 u

S u s 2,2 ;4,4 ;4,6 ;6,82 ;8,10 ;8,12 ;10,14 ,Ž . � 423 2 2 2 2 2 2 2 u

� 4S u s 3,3 ;5,7 ;7,9 ;9,13 ,Ž .24 2 2 2 2 u

� 4S u s 1,1;3,3 ;5,7;5,7 ;7,9 ;7,11;9,13 ;11,17 ,Ž .33 2 2 2 2 u

� 4S u s 2,2;4,6;6,8 ;8,12;10,16 ,Ž .34 2 u

� 4S u s 1,1;5,7;7,11;11,17 .Ž . u44

We have hs12 and Hs18 for the Coxeter numbers. We will not report here all
Ž .boostrap identities, but we state the combined bootstrap identities 82

S uqu q2u S uyu y2u sS u , 161Ž . Ž . Ž . Ž .1 l h H 1 l h H l2

S uqu q2u S uyu y2u sS u S uyu S uqu , 162Ž . Ž . Ž . Ž . Ž . Ž .2 l h H 2 l h H l1 l3 H l3 H

S uqu qu S uyu yu sS u S u , 163Ž . Ž . Ž . Ž . Ž .3 l h H 3 l h H l2 l4

S uqu qu S uyu yu sS u , 164Ž . Ž . Ž . Ž .4 l h H 4 l h H l3

for ls1,2,3,4. Once again there occurs one equation which is more involved than the
usual bootstrap, which we depict in Fig. 5. Reading off the fusing angles from the

Ž .bootstrap equations we obtain the mass ratios from 56 ,

m sinh u q2u m sinh 3u q5uŽ . Ž .1 h H 1 h H
s , s , 165Ž .

m sinh 10u q14u m sinh 7u q10uŽ . Ž .2 h H 3 h H

m sinh 3u q5u m sinh 9u q15uŽ . Ž .1 h H 2 h H
s , s , 166Ž .

m sinh 2u q3u m sinh 2u q2uŽ . Ž .4 h H 3 h H

m sinh 9u q15u m sinh 2u q2uŽ . Ž .2 h H 3 h H
s , s . 167Ž .

m sinh u qu m sinh u quŽ . Ž .4 h H 4 h H

As in the previous case these formulae can be re-constructed from the twisted as well as
the untwisted Lie algebra.

Ž Ž1. Ž2.. Ž .Fig. 5. F , E -combined bootstrap identities 162 .4 6



[ ] ( )A. Fring et al.rNuclear Physics B 567 FS 2000 409–453 443

( ) (1)7.2.1. S u from Fi j 4

According to our conventions the q-deformed Coxeter element reads s sq

s qs qts qs qt . The result of successive actions of this element on the simple roots is1 3 2 4

reported in Table 3.
Ž Ž1. Ž2..By using Table 3 we may recover the F , E S-matrices with the help of4 6

Ž .generating functions 69 . The two non-equivalent solutions of the fusing rule in V areq

g qqy12s 4g sqy6s 2g , sy1g qq12sy5g sq6sy3g , ls1,2,3,4 ,l q l q l q l q l q l

g qqy4s g sqy4s g , sy1g qq4sy2g ssy1g ,1 q 1 q 2 q 1 q 1 q 2

g qqy14s 5g sg , qy4g qq14sy6g ssy1g ,2 q 1 1 2 q 1 q 1

g qqy2s g sg , qy2g qsy1g ssy1g ,4 q 4 3 4 q 4 q 3

g qqy16s 5g sqy16s 5g , qy2g qq16sy6g sq14sy5g ,4 q 3 q 4 4 q 3 q 4

g qqy15s 5g sqy11s 4g , sy1g qq15sy6g sq9sy4g ,1 q 3 q 4 q 1 q 3 q 4

g qqy9s 3g sqy3s g , sy1g qq7sy3g sq3sy2g ,1 q 4 q 3 q 1 q 4 q 3

g qqy14s 5g sqy3s g , sy1g qq12sy5g sq3sy2g ,3 q 4 q 1 q 3 q 4 q 1

g qqy15s 5g sqy1s g , qy4g qq15sy6g sqy1sy1g ,2 q 3 q 4 2 q 3 q 4

g qqy15s 5g sqg , qy4g qq13sy5g sqy1sy1g ,2 q 4 3 2 q 4 q 3

g qqy4s 2g sqy3s g , sy1g qq2sy2g sqy1sy1g ,3 q 4 q 2 q 3 q 4 q 2

g qqy8s 3g sqy3s g , qy2g qq6sy3g sq3sy2g ,4 q 4 q 1 4 q 4 q 1

g qqy13s 4g sqy10s 3g , qy2g qq13sy5g sq8sy3g .4 q 1 q 4 4 q 1 q 4

Once again we can confirm from these solution the equivalence of the bootstrap
Ž .equations and the fusing rules by means of 57 and also verify the relation for the mass

Ž .ratios 56 .

Table 3
The orbits V q created by the action of s x on gi q i

xs a syg a syg a sg a sgq 1 1 3 3 2 2 4 4

1 );4;3,5;) 3;3;2,4;2 y4;4;3,5;) ););2;2
2 22 6;6;5,7;5,7 5;5,7;6 ,8;6 y6;6,8;5,7 ,9;5,7 5;5;6;)

2 2 2 2 23 8;8,10;9,11;) 9;9 ;8,10 ;8,10 y8,10;8,10 ;9 ,11 ;9,11 );9;8,10;8
2 24 );12;11,13;11,13 11;11,13;12,14;12 y12;12 ,14;11,13 ,15;11,13 11;11;12;12

5 14;14;);) );15;16;16 y14;14,16;15,17;15,17 );15;16;)
6 y18;););) ););18;) y);18;);) );););18
7 y);22;21,23;) 21;21;20,22;20 22;22;21,23;) ););20;20

2 28 y24;24;23,25;23,25 23;23,25;24 ,26;24 24;24,26;23,25 ,27;23,25 23;23;24;)
2 2 2 2 29 y26;26,28;27,29;) 27;27 ;26,28 ;26,28 26,28;26,28 ;27 ,29 ;27,29 );27;26,28;26

2 210 y);30;29,31;29,31 29;29,31;30,32;30 30;30 ,32;29,31 ,33;29,31 29;29;30;30
11 y32;32;);) );33;34;34 32;32,34;33,35;33,35 );33;34;)
12 36;););) ););36;) );36;);) );););36
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ˆ(2)( )7.2.2. S u from Ei j 6

The q-deformed twisted Coxeter element in our conventions reads s sˆq

vy1s qs qts qs q. We report successive actions of this element on the representatives ofˆ ˆ ˆ ˆ ˆ1 3 2 4

V v in Table 4.i
ˆ qUsing the orbits V listed in Table 4 we recover with help of the generatingi

Ž . Ž Ž1. Ž2..functions 74 the F , E S-matrices. The two non-equivalent solutions to the fusing4 6
ˆrule in V readq

gqqqy8s 6gqsqy4s 3gq , q2s 2gqqq10sy4gqsq6sy1gq , ls1,2,3,4 ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆl q l f q l q l q l q l

gqqqy2s 2gqsqy2s gq , q2s 2gqqq4gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 1 q 2 q 1 1 q 2

gqqqy10s 8gqss gq , s 2gqqq12sy6gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 q 1 q 1 q 2 q 1 q 1

gqqqy2s gqsgq , s 2gqqq2s gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 q 4 3 q 4 q 4 q 3

gqqqy10s 8gqsqy10s 8gq , s 2gqqq12sy7gqsq10sy6gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 q 3 q 4 q 4 q 3 q 4

gqqqy10s 7gqsqy8s 5gq , q2s 2gqqq12sy6gqsq8sy3gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 3 q 4 q 1 q 3 q 4

gqqqy6s 4gqsqy2s gq , q2s 2gqqq6sy2gqsq4gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 4 q 3 q 1 q 4 3

gqqqy10s 7gqsqy2s 2gq , q2s gqqq10sy5gqsq4gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 q 4 q 1 q 3 q 4 1

gqqqy10s 8gqsqy2s gq , s 2gqqq12sy7gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 q 3 q 4 q 2 q 3 q 4

gqqqy10s 8gqsgq , s 2gqqq10sy6gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 q 4 3 q 2 q 4 q 3

gqqqy4s 2gqsqy2s gq , q2s gqqq4gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 q 4 q 2 q 3 4 q 2

gqqqy6s 4gqsqy2s 2gq , s 2gqqq6sy2gqsq4gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 q 4 q 1 q 4 q 4 1

gqqqy8s 7gqsqy6s 5gq , s 2gqqq10sy5gqsq6sy3gq .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 q 1 q 4 q 4 q 1 q 4

Again we confirm from these solution the equivalence between the bootstrap
Ž .equations and the fusing rules by means of 57 and also verify the relation for the mass

Ž .ratios 56 .
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Table 4
ˆ q xThe orbits V created by the action of s on gˆi q i

x q q q qs a syg a syg a sg a sgˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆq 6 1 3 3 2 2 4 4

1 0;););););) ););2;2;2;2 y););2;);2;2 ););2;2;);)
2 ););2;);2;) 2;2;2;);4;4 y2;2;2,4;4;4;4 ););););4;4

2 23 );2;2,4;4;4;4 4;4;4 ;4;4;) y4;4;4 ;4;4,6;6 4;4;4;););)
2 2 24 4;4;4;4;6;6 );4;4,6;6;6 ;6 y6;4,6;4,6 ;6;6 ;6 ););6;6;6;)

2 2 2 2 25 6;6;6;);6;) 6;6 ;6 ;6;8;8 y6;6 ;6 ,8;6,8;8 ;8 );6;6;);8;8
2 26 );6;6,8;8;8;) 8;8;8;8;8;) y8;8 ;8 ;8;8,10;10 8;8;8;8;);)

7 );8;8;8;10;10 );8;8;);10;) y10;8,10;8,10;10;10;) ););););10;)
8 10;10;);););) );10;10;10;);) y);10;10;10;12;) );10;10;););)
9 y);););););12 ););12;););) y);12;);););) );););12;);)
10 y12;););););) ););14;14;14;14 ););14;);14;14 ););14;14);)
11 y););14;);14;) 14;14;14;);16;16 14;14;14,16;16;16;16 ););););16;16

2 212 y);14;14,16;16;16;16 16;16;16 ;16;16;) 16;16;16 ;16;16,18;18 16;16;16;););)
2 2 213 y16;16;16;16;18;18 );16;16,18;18;18 ;18 18;16,18;16,18 ;18;18 ;18 ););18;18;18;)

2 2 2 2 214 y18;18;18;);18;) 18;18 ;18 ;18;20;20 18;18 ;18 ,20;18,20;20 ;20 );18;18;);20;20
2 215 y);18;18,20;20;20;) 20;20;20;20;20;) 20;20 ;20 ;20;20,22;22 20;20;20;20;);)

16 y);20;20;20;22;22 );20;20;);22;) 22;20,22;20,22;22;22;) ););););22;)
17 y22;22;);););) );22;22;22;);) );22;22;22;24;) );22;22;););)
18 );););););24 ););24;););) );24;);););) );););24;);)

( (1) (2))7.3. C ,D2 3

The S-matrices are given as

� 4 � 4 � 4S u s 1,1;3,5 , S u s 2,2 , S u s 1,1 ;3,3 .Ž . Ž . Ž .u11 12 2 22 2 2u u

We have hs4 and Hs6 for the Coxeter numbers. The combined bootstrap edquations
Ž .82 yield

S uqu qu S uyu yu sS u , 168Ž . Ž . Ž . Ž .1 l h H 1 l h H l2

S uqu q2u S uyu y2u sS uyu S uqu . 169Ž . Ž . Ž . Ž . Ž .2 l h H 2 l h H l1 H l1 H

Ž .for ls1,2 see Fig. 6 .

Ž Ž1. Ž2.. Ž .Fig. 6. C , D -combined bootstrap identities 169 .2 3
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Table 5
The orbits V q created by the action of s x on gi q i

xs a syg a sgq 1 1 2 2

1 4;3 y3,5;4
2 y6;) y);6
3 y10;9 9,11;10
4 12;) );12

Ž .The mass ratio according to 56 are

m sinh u quŽ .1 h H
s . 170Ž .

m sinh 2u q4uŽ .2 h H

( ) (1)7.3.1. S u from C :i j 2

The result of successive actions of the q-deformed Coxeter element on the simple
roots is reported in Table 5.

The two non-equivalent solutions to the fusing rule in V readq

g qqy2s g sqy3s g , sy1g qq2sy2g sqy1sy1g ,1 q 1 q 2 q 1 q 1 q 2

g qqy7s 2g sqy4s g , sy1g qq3sy2g sq4sy2g .1 q 2 q 1 q 1 q 2 q 1

ˆ (2)( )7.3.2. S u from D :i j 3

The result of successive actions of the q-deformed twisted Coxeter element on the
simple roots is reported in Table 6.

ˆThe two non-equivalent solutions to the fusing rule in V readq

gqqqy2s gqsqy2s gq , q2s gqqq4gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 1 q 2 q 1 1 q 2

gqqqy4s 3gqsqy2s 2g , q2s gqqq4sy1gqsq4sy1gq .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 2 q 1 q 1 q 2 q 1

Table 6
ˆ q x qThe orbits V created by the action of s on gˆ ˆi q i

x q qs a syg a sgˆ ˆ ˆ ˆ ˆq 1 1 2 2

1 ););2 y2;);2
2 2;2;) y2;2;4
3 y4;);) y);4;)
4 y););6 6;);6
5 y6;6;) 6;6;8
6 8;);) );8;)
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Table 7
The orbits V q created by the action of s x on gi q i

xs a sg a sg a sygq 1 1 3 3 2 2

1 y2;2;) );3,5;4 2;2,4;3
2 y);6;5 5,7;5,7;6 6;6;5
3 y8;);) ););8 y);8;)
4 10;10;) );11,13;12 y10;10,12;11
5 );14;13 13,15;13,15;14 y14;14;13
6 16;);) ););16 );16;)

( (1) (2))7.4. C ,D3 4

The S-matrices are

� 4 � 4 � 4S u s 1,1;5,7 , S u s 2,2;4,6 , S u s 1,1 ;3,3 ;5,5 ,Ž . Ž . Ž .u u11 12 33 2 2 2 u

� 4 � 4 � 4S u s 1,1;3,3 ;5,7 , S u s 2,2 ;4,4 , S u s 3,3 .Ž . Ž . Ž .22 2 23 2 2 13 2u u u

We have hs6 and Hs8 for the Coxeter numbers. The combined bootstrap identities
read

S uqu qu S uyu yu sS u , 171Ž . Ž . Ž . Ž .1 l h H 1 l h H l2

S uqu qu S uyu yu sS u S u , 172Ž . Ž . Ž . Ž . Ž .2 l h H 2 l h H l1 l3

S uqu q2u S uyu y2u sS uyu S uqu . 173Ž . Ž . Ž . Ž . Ž .3 l h H 3 l h H l2 H l2 H

The mass ratios turn out to be

m sinh u qu m sinh u quŽ . Ž .1 h H 1 h H
s , s ,

m sinh 4u q6u m sinh 3u q5uŽ . Ž .2 h H 3 h H

m sinh 2u q2uŽ .2 h H
s . 174Ž .

m sinh 3u q5uŽ .3 h H

( ) (1)7.4.1. S u from Ci j 3

The result of successive actions of the q-deformed Coxeter element on the simple
roots is reported in Table 7.

The solutions of the fusing rule in V q are

g qqy2s g sg , qy2g qsy1g ssy1g ,1 q 1 2 1 q 1 q 2

g qqy6s 2g sqy6s 2g , qy2g qq6sy3g sq4sy2g ,1 q 2 q 1 1 q 2 q 1

g qqy2s g sqy3s g , qy2g qq2sy2g sqy1sy1g ,1 q 2 q 3 1 q 2 q 3

g qqy7s 2g sqy4s g , qy2g qq3sy2g sq4sy2g ,1 q 3 q 2 1 q 3 q 2

g qqy9s 3g sqy6s 2g , sy1g qq5sy3g sq4sy2g .2 q 3 q 1 q 2 q 3 q 1
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Table 8
ˆ q x qThe orbits V created by the action of s on gˆ ˆi q i

x q q qs a sg a sg a sygˆ ˆ ˆ ˆ ˆ ˆ ˆq 1 1 3 3 2 2

1 y2;2;);) );2;);2 2;2;);2
2 y);););4 4;2,4;2;4 );2;2;4
3 y);4;4;) 4;4;4;6 4;4;4;)
4 y6;););) ););6;) y);6;);)
5 8;8;);) );8;);8 y8;8;);8
6 );););10 10;8,10;8;10 y);8;8;10
7 );10;10;) 10;10;10;12 y10;10;10;)
8 12;););) ););12;) );12;);)

ˆ (2)( )7.4.2. S u from Di j 4

The result of successive actions of the q-deformed twisted Coxeter element on the
simple roots is reported in Table 8.

ˆ qThe solutions of the fusing rule in V are

gqqqy2s gqsgq , s 2gqqq2s gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 1 2 q 1 q 1 q 2

gqqqy4s 3gqsqy4s 3gq , s 2gqqq6sy2gqsq4sy1gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 2 q 1 q 1 q 2 q 1

gqqqy2s gqsqy2s gq , s 2gqqq4gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 2 q 3 q 1 2 q 3

gqqqy4s 3gqsqy2s 2gq , s 2gqqq4sy1gqsq4sy1gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 3 q 2 q 1 q 3 q 2

gqqqy6s 4gqsqy4s 3gq , q2s gqqq6sy2gqsq4sy1gq .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 q 3 q 1 q 2 q 3 q 1

( (1) (2))7.5. B ,A2 3

The S-matrices read

� 4 � 4 � 4S u s 1,1 ;3,3 , S u s 2,2 , S u s 1,1;3,5 .Ž . Ž . Ž . u11 2 2 12 2 22u u

We have hs4 and Hs6 for the Coxeter numbers. The combined bootstrap identities
are

S uqu q2u S uyu y2u sS uyu S uqu , 175Ž . Ž . Ž . Ž . Ž .1 l h H 1 l h H l2 H l2 H

S uqu qu S uyu yu sS u . 176Ž . Ž . Ž . Ž .2 l h H 2 l h H l1
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Table 9
The orbits V q created by the action of s x on gi q i

xs a sg a sygq 1 1 2 2

1 y4;3,5 3;4
2 y6;) y);6
3 10;9,11 y9;10
4 12;) );12

The mass ratio is

m sinh 2u q4uŽ .1 h H
s . 177Ž .

m sinh u quŽ .2 h H

( ) (1)7.5.1. S u from Bi j 2

The result of successive actions of the q-deformed Coxeter element on the simple
roots is reported in Table 9.

Solutions of the fusing rule in V q

g qqy3s g sqg , qy4g qq3sy2g sqy1sy1g ,1 q 2 2 1 q 2 q 2

g qqy2s g sqy3s g , sy1g qq2sy2g sqy1sy1g .2 q 2 q 1 q 2 q 2 q 1

ˆ(2)( )7.5.2. S u from Ai j 3

The result of successive actions of the q-deformed twisted Coxeter element on the
simple roots is reported in Table 10.

ˆ qThe solutions to the fusing rule in V read

gqqqy2s 2gqsgq , s 2gqqq4sy1gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 2 2 q 1 q 2 q 2

gqqqy2s gqsqy2s g , q2s gqqq4gqsq2s gq .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 q 2 q 1 q 2 2 q 1

Table 10
ˆ q x qThe orbits V created by the action of s on gˆ ˆi q i

x q qs a sg a sygˆ ˆ ˆ ˆ ˆq 1 1 2 2

1 y);2;2 ););2
2 y2;2;4 2;2;)
3 y4;);) y);4;)
4 );6;6 y););6
5 6;6;8 y6;6;)
6 8;);) );8;)
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Table 11
The orbits V q created by the action of s x on gi q i

xs a syg a syg a sgq 1 1 3 3 2 2

1 );4;3,5 3;3;4 y4;4;3,5
2 6;6;) );7;8 y6;6,8;7,9
3 y10;);) ););10 y);10;)
4 y);14;13,15 13;13;14 14;14;13,15
5 y16;16;) );17;18 16;16,18;17,19
6 20;);) ););20 );20;)

( (1) (2))7.6. B ,A3 5

The S-matrices read

� 4 � 4S u s 1,1 ;5,7 , S u s 2,3 ;4,5 ,Ž . Ž .11 2 2 12 2 2u u

� 4S u s 1,1;3,5;5,9 ,Ž . u33

� 4 � 4S u s 1,1 ;3,3 ;3,5 ;5,7 , S u s 2,2 ;4,6 ,Ž . Ž .22 2 2 2 2 23 2 2u u

� 4S u s 3,4 .Ž .13 2 u

We have hs6 and Hs10 for the Coxeter numbers. The combined bootstrap identities
read

S uqu q2u S uyu y2u sS u , 178Ž . Ž . Ž . Ž .1 l h H 1 l h H l2

S uqu q2u S uyu y2u sS u S uyu S uqu , 179Ž . Ž . Ž . Ž . Ž . Ž .2 l h H 2 l h H l1 l3 H l3 H

S uqu qu S uyu yu sS u . 180Ž . Ž . Ž . Ž .3 l h H 3 l h H l2

The mass ratios are

m sinh u q2u m sinh 2u q4uŽ . Ž .1 h H 1 h H
s , s ,

m sinh 4u q6u m sinh 2u q3uŽ . Ž .2 h H 3 h H

m sinh 4u q8uŽ .2 h H
s . 181Ž .

m sinh u quŽ .3 h H

( ) (1)7.6.1. S u from Bi j 3

The result of successive actions of the q-deformed Coxeter element on the simple
roots is reported in Table 11.

The solutions of the fusing rule in V q are

g qqy4s g sqy4s g , sy1g qq4sy2g ssy1g ,1 q 1 q 2 q 1 q 1 q 2

g qqy10s 3g sqy6s 2g , sy1g qq6sy3g sq6sy3g ,1 q 2 q 1 q 1 q 2 q 1

g qqy7s 2g sqy3s g , sy1g qq7sy3g sq3sy2g ,1 q 3 q 3 q 1 q 3 q 3

g qqy7s 2g sqg , qy4g qq7sy3g sqy1sy1g ,2 q 3 3 2 q 3 q 3

g qqy6s 2g sqy3s g , sy1g qq6sy3g sq3sy2g ,3 q 3 q 1 q 3 q 3 q 1

g qqy2s g sqy3s g , sy1g qq2sy2g sqy1sy1g .3 q 3 q 2 q 3 q 3 q 2
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Table 12
ˆ q x qThe orbits V created by the action of s on gˆ ˆi q i

x q q qs a syg a syg a sgˆ ˆ ˆ ˆ ˆ ˆq 5 1 3 3 2 2

1 0;);););) );););2;2 y););2;2;2
2 ););2;2;) 2;2;2;);) y2;2;2;4;4
3 );2;2;4;4 );););4;) y4;4;4;4;)
4 4;4;););) );4;4;);) y);4;4;6;)
5 y););););6 ););6;);) y);6;););)
6 y6;);););) );););8;8 ););8;8;8
7 y););8;8;) 8;8;8;);) 8;8;8;10;10
8 y);8;8;10;10 );););10;) 10;10;10;10;)
9 y10;10;););) );10;10;);) );10;10;12;)
10 ););););12 ););12;);) );12;);),)

ˆ(2)( )7.6.2. S u from Ai j 5

The result of successive actions of the q-deformed twisted Coxeter element on the
simple roots is reported in Table 12.

ˆ qThe solutions of the fusing rule in V

gqqqy2s 2gqsqy2s gq , q2s 2gqqq4gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 1 q 2 q 1 1 q 2

gqqqy6s 4gqsqy4s 3gq , q2s 2gqqq6sy2gqsq6sy1gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 2 q 1 q 1 q 2 q 1

gqqqy4s 3gqsqy2s gq , q2s 2gqqq6sy2gqsq4gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 q 3 q 3 q 1 q 3 3

gqqqy4s 4gqsgq , s 2gqqq6sy3gqsq2s gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 q 3 3 q 2 q 3 q 3

gqqqy4s 3gqsqy2s 2gq , q2s gqqq6sy2gqsq4gq ,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 q 3 q 1 q 3 q 3 1

gqqqy2s gqsqy2s gq , q2s gqqq4gqsq2s gq .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 q 3 q 2 q 3 3 q 2

8. Conclusion

We have systematically developed the properties of the q-deformed Coxeter element
and its twisted counterpart. The vanishing of the three-point coupling is governed by the

ˆso-called fusing rules. They rules may be formulated either in the orbits V , V or Vq q
ˆ Ž .and V . The precise relation between these alternative rules is worked out 57 . All of

these identities may be proven by appealing to physical arguments. The scattering
matrices of affine Toda field theories with real coupling constant related to any dual pair
of simple Lie algebras may be expressed in a completely generic way in terms of
combinations of hyperbolic functions whose powers are computed from generating

Ž .functions involving either q-deformed Coxeter elements 69 or alternatively twisted
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Ž .q-deformed Coxeter elements 74 . The q-deformation appears to be vital in the
construction since it achieves that the properties of the two dual algebras are merged
together. It would be interesting to investigate whether it is possible at all to construct
generic formulae solely from non-deformed quantities as it is possible in the simply
laced case. However, it appears to us that the q-deformation is vital to describe
non-simply laced theories. Closely related to this is the question of how to derive the
q-deformed versions of the fusing rules directly from the non-deformed versions. We
have demonstrated that the proposed scattering matrices fulfill all the requirements of
the generalized bootstrap equations. In particular, we established the equivalence of the
fusing rules and the generalized S-matrix boostrap equations. Furthermore, we provide a
simple criterion which allows to exclude poles from the participation in the bootstrap.

Ž .It is intriguing that the combined bootstrap equation 82 incorporates the information
of all individual fusing processes. These equations do in fact not constitute anything
new since they may always be obtained from the individual fusing processes. They

Ž .correspond to particular graphs see Figs. 5 and 6 of higher order.
w xThe matrix K plays a central role in several ways. The components of itsqq

nullvectors constitute conserved quantities, e.g. the particle masses. We show how these
w xquantities are related to the fusing rules. The properties of the matrix K are furtherqq

utilized in order to formulate a matrix M which serves to derive and prove a generic
integral representation for the scattering matrix. The same goal may be achieved by

ˆw xexploiting the properties of the matrix K which is related to the twisted algebra andqq
ˆallows to define the matrix N. We established the equality between these two matrices.

It is interesting to note that the properties of the blocks are reflected by the
Ž . � 4polynomial 104 , such that we can carry out a one-to-one identification between x, y u

x yand q q . In addition we can also manipulate them in an identical way if we further
yx yy x y y1� 4 � 4define q q syq q in analogy to yx,yy s x, y or choose q and q to beu u

roots of unity. This means we can treat the whole bootstrap properties in an entirely
polynomial fashion.

ˆ Ž .From the matrix relation NsM one deduces immediately the equality m x, y s
Ž .n x, y . However, it remains a challenge to develop a more direct Lie algebraic

understanding of the equation.
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