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Abstract

By exploiting the properties of g-deformed Coxeter elements, the scattering matrices of affine
Toda field theories with real coupling constant related to any dual pair of simple Lie algebras may
be expressed in a completely generic way. We discuss the governing equations for the existence of
bound states, i.e. the fusing rules, in terms of g-deformed Coxeter elements, twisted g-deformed
Coxeter elements and undeformed Coxeter elements. We establish the precise relation between
these different formulations and study their solutions. The generalized S-matrix bootstrap equa-
tions are shown to be equivalent to the fusing rules. The relation between different versions of
fusing rules and quantum conserved quantities, which result as nullvectors of a doubly g-deformed
Cartan like matrix, is presented. The properties of this matrix together with the so-called combined
bootstrap equations are utilised in order to derive generic integral representations for the scattering
matrix in terms of quantities of either of the two dual algebras. We present extensive case-by-case
data, in particular on the orbits generated by the various Coxeter elements. © 2000 Elsevier
Science B.V. All rights reserved.

PACS: 11.10.Kk; 11.55.Ds

1. Introduction

The perturbation of 1 + 1 dimensional conformal field theories' [1] in a suitable way
leads to massive quantum field theories which possess a rich underlying structure. Soon
after the seminal paper by Zamolodchikov [3] a decade ago on the perturbation of the
Ising model, it was realized [4,5] that most of these massive theories are closely related
to affine Toda field theories [6—8], €ither in a ‘“minimal’’ sense or with the coupling

! There exist earlier considerations of field theories in 1+ 1 dimensions which focus on the aspect of
conformal invariance, e.g. Ref. [2]. However, the key feature, i.e. the role played by the Virasoro algebra,
which lead to a more universal formulation and allowed to find their solution was first realised and exploited
in[1].
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constant included. On the base of case-by-case studies for various algebras several
explicit scattering matrices were constructed thereafter [9—16]. For the simply laced
algebras (ADE) this series of investigations culminated with the formulation of universal
formulae which encompass all these algebras at once [17-19]. The universal nature of
these representations for the scattering matrices allowed also to establish the equivalence
between the bootstrap equations and a classica fusing rule [17,18] formulated with the
orbits generated by Coxeter elements of the related algebra [20,21]. Furthermore the
fusing rule is closely linked to the quantum conservation laws. The origin for the
structural interrelation between the classical and the quantum field theory is the fact that
for the simply laced theories all masses of the theory renormalise with an overall factor
[9-16]. It is the breakdown of this property for theories related to a non-simply laced
algebra which congtituted the main obstacle in the construction of consistent scattering
matrices on the base of the boostrap principle. Once again numerous candidates were
proposed on the base of case-by-case studies [22—27], but it remained a challenge to find
a closed universal representation similar to the simply laced case for these theories, until
Oota recently [28] succeeded.

The main conceptual breakthrough towards this goal was the proposa by Dorey [29],
that one may regard these theories in a dual sense, mathematicaly in a Lie algebraic
way and physically equivalent to this in the strong-weak duality sense in the coupling
constant and the generalization of the bootstrap principle [25] by Corrigan, Dorey and
Sasaki. From this point of view affine Toda theories congtitute some concrete simple
examples for the Olive—Montonen duality [30]. Technically it was also very important to
express the scattering matrices in the adequate building blocks [26]. Chari and Pressley
[31] succeeded thereafter to work out in detail the suggested [4,5] fusing rules in terms
of the two dual algebras which reproduced precisely the allowed fusing processes. Oota
[28] suggested to re-formulate these fusing rules in terms of g-deformed Coxeter
transformations of either of the two dual Lie algebras. Viewing matters in the latter
fashion allows to link the fusing rules to the scattering matrices and find closed
universal representations.

One of the purposes of this paper is to precisely establish and derive the interrelation
between the different versions of the fusing rules. We further demonstrate that these
fusing rules are equivalent to the Smatrix bootstrap equations. Numerous identities
which were hitherto only claimed on the base of case-by-case analysis are rigorously
derived. We manifest the relation between quantum conserved quantities and the various
versions of the fusing rules. We derive a set of egquations, which we refer to as combined
bootstrap equations, and exploit them systematically to derive generic integral represen-
tations for the scattering matrix.

Our paper is organized as follows. We first develop the mathematics needed and
apply it thereafter in the physical context. In Section 2 we define two different
g-deformed Coxeter elements related to two Lie algebras dua to each other. We derive
some of their properties which we need later on in the physical context. In particular
their action in the root space and inner product relations. In Section 3 we formulate
several equivaent versions of the fusing rule, study their different solutions and
establish their relation to quantum conserved quantities. In Section 4 we apply our
results to a universal formula for the scattering matrices of affine Toda field theories in
terms of basic building blocks consisting of specific combinations of hyperbolic
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functions, whose powers may be obtained from g-deformed quantities of either of the
two dual algebras. An aternative formulafor the scattering matrix in form of an integral
representation is derived in Section 5. We exploit the properties of matrices M and N
related to the untwisted and twisted algebra, respectively, and establish their equality. In
Section 6 we reduce the expressions for the scattering matrix to the simply laced case. In
Section 7 we provide a case-by-case analysis for all non-simply laced algebras. Our
conclusions are stated in Section 8.

2. g-deformed Coxeter elements of dual pairs

Adopting the standard notation of [32], we let XY be a simple simply laced Lie
algebra of rank n endowed with a Dynkin diagram automorphism o of order |I.
Employing this automorphism to fix a subalgebra in X" we obtain the twisted Lie
algebra X(" of rank r. Changing the orientation of the arrows of the Dynkin diagram
related to this twisted Lie algebra X(') that is interchanging long and short roots,
produces a Dynkin diagram related to a Lie algebra X™. Two Lie algebras which are
related by this map are referred to as dual pair (X, X<'>) Simply laced Lie algebras are
self-dual in this sense.

Before we move on to the g-deformed case we shall collect a few well known factsin
order to define our notations. To each simple root o; of X® or & of X(" areflection
on the hyperplane through the origin orthogonal to «; or &; may be assomated

a; O
a?

cri(x)=x—2X

a, o G(x)= (1)
Note that there is no sum over i implied here on the r.h.s. These are the Weyl reflections
congtituting the Weyl group which are used to construct the so-called Coxeter and

twisted Coxeter element
r r
o=]]o ad 6=]]Gw (2)
i=1 i=1

for X® and X, respectively. The latter definition is originally due to Springer [33].
We also note here that these elements are not unique and only defined up to conjugation.
There are several Coxeter numbers (see e.g. [32]), whose intimate relations we wish to
exploit. Expressing the highest root of X as ¢=X/_;ne;, the corresponding
Coxeter- and the dual Coxeter numbers are defined as

r r
h=1+ ) n and hY=1+ ) nY. (3)
i=1 i=1

The so-called marks n, (or Kac labels) and co-marks n.¥ are related by nY=n,a?/2.
Since dual algebras are obtained from each other by the interchange of roots and
co-roots, i.e. a; — 2a;/a, one deduces easily that

h=h" and h'=h, (4)
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where hY, h are the Coxeter numbers of X(". The order of the Coxeter elements read
c"=1 and =1 (5)
where H is the Ith Coxeter number of X{", i.e. H=Ih.

Following now essentially Oota [28] the definitions of the Coxeter elements (2) can
be generalized by introducing a g-deformation.

2.1. g-deformed Coxeter element of X

2.1.1. Definitions

Using the standard notation [n], = (q" —q~")/(q" — g~ ) for g-deformed integers,

we define the action of the g-deformed Weyl reflection ;% on asimple root «; as

O'iq(aj):=aj—(ZBiJ—[Iji]q)ai. (6)
Here | denotes the incidence matrix, i.e. twice the unit matrix minus the Cartan matrix
Ki;=2a;- a;/af, related to the smply laced Lie algebra X®. We easily verify the
usual properties of a reflection (o:%)? = 1. For the time being we assume the deforma-
tion parameter g to be completely generic, that is some complex number which is not a
root of unity. In some later applications we will specify g to be a root of unity and also
introduce a particular parameterization q( 8), where B is a coupling constant. In that
situation the ‘“‘classical’’ limit g — 1 corresponds to the vanishing of the coupling
constant.

Since in genera Weyl reflections do not commute, Coxeter elements, i.e. the
products of all Weyl reflections related to simple roots, only form a conjugacy class.
However, by introducing a particular ordering amongst the simple roots, one is able to
define the Coxeter element uniquely. For this purpose we partition the set of simple
roots, denoted by A, into two digoint sets of roots, say A ,, by associating the values
c,= +1 to the vertices i of the Dynkin diagram of X®, in such a way that no two
vertices related to the same set are linked together. Then it clearly holds by (6) that two
reflections related to simple roots belonging to the same colour set commute,

[0:%0;%] =0 forc =c;. (7)
Consequently the two special elements
ol:= [I o°, (8)
€A,

are uniquely defined, having obviously the property (02)2 = 1. For reasons that become
more apparent below, it is convenient to introduce the simple root times its colour value
as a separate quantity vy;: = ¢; «;. Then, the action of the reflections on these elements is
easily worked out. With the help of (6), (7) and (8) we obtain

Uc?(?’i):_% and U'—qci(%):%_ Z ['ij]q')’j- (9

aj €A_ ¢
Here we introduced the notation o, meaning that it takes the values o' or o when
c;=1or ¢, = —1, respectively. Denoting now by a, € A, and «, € A, the short and the
long roots, respectively, we define some integers
1 for a; € A

t.

= 10
Yol a?/al fora, €A, (10)



A. Fring et al. / Nuclear Physics B 567 [FS (2000) 409-453 413
which symmetrize the incidence matrix
it =1t (11)

The ratio a?/a? isindeed an integer, which follows directly from the definition of the
Cartan matrix. In fact it equals | (1, 2 or 3), the highest order of the Dynkin diagram
automorphism of the algebra X{V. The occurrence of quantities of X", despite the fact
that we are discussing XY, is a feature we will encounter more frequently in the course
of our discussion and indicates the close interrelation between the two dual algebras. We
employ the symmetrizers (10) to introduce the map

(%) =a". (12)

We have now assembled al the ingredients in order to define the g-deformed Coxeter
element

oy =oralT. (13)
Having eliminated the ambiguity in the ordering of the g-deformed Weyl reflections
within o, the only matter left to convention with regard to the g-deformed Coxeter
element is the ordering of the four maps in (13) and the two possible choices for the
colour values we attribute to the vertices of the Dynkin diagram. The former ambiguity
is fixed by the choice in (13) and the latter by choosing the unique vertex of the short
root which is connected to along root as ¢; = — 1. Note also that lim,, _, ;0, = o, that is

in the ‘“classica’’ limit we recover the usual Coxeter element (2) from the g-deformed
Coxeter element (13).

2.1.2. Action of g, in the root space
There are severa properties of the g-deformed Coxeter element which we wish to
explait in the context of the scattering matrix of affine Toda field theories. First we state

the identities

1+¢ 1+g¢ 1+g¢ 1+g¢

X _pt—— Qo —— — X ——— _( —

Of1=T "2 0T "2 04°T 2 0T 2 (14)
1-g; 1-g¢ Ci+¢; 1+g¢ 1+g¢

et — +—— —X+ — -

=72 00T 2 o T ol o, (15)

which follow immediately by noting that under the interchange of q and q ! the
elements ¢ remain invariant and 7— 7. In fact the r.h.s. of these equations
correspond to several equations which are combined to one by including the colour
values ¢; and c; in the way we need them. Obviously, (o) ™' =7 o lr o9 is the

inverse g-deformed Coxeter element?.

2 We differ here from the definition of the inverse in [28].
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We further need to know the action of o, on the simple roots. From (9), (12) and
(13) we obtain

gy @) + 9%y,

3+¢; 1+g¢

— i+ ——t Ci—l
= X q? K J[Iij]q7j+ 5 )y qti+tj[|ij]q[|j|]q3’| (16)
ajEA_C‘ ai€A+
€A

and also the crucia identity

1+g¢ l1+¢
- t

(qfciti(a'q)q'f‘qciti)(')’i)= Z thl Tj[lij]q’)’j. (17)

ajEA,c‘

Acting now successively with o, on vy; and the multiplication with powers of g will
create an orbit which we denote by 9, i.e. for x, y being arbitrary integers a typical
element in Q% reads q’s,*(+;). The periodicity of these orbits reads

q (o))" = 1. (18)

We do not have a genera proof of (18), but it is confirmed on the base of a case-by-case
analysis in Section 7 as may be seen from the data presented. To each orbit 27 we
associate a particle species. The anti-particle is identified with the orbit in which we find
the element
a—c LA

—q " et =y enf. (19)
The property c;c, = (— 1)" [19] ensures that the power of the Coxeter element is aways
an integer. Conjugating i once more in (19) leads to (18), when t,=t,. For the
non-simply laced algebras, the relation (19) reduces to

h

oZvi=—9", (20)
since in that case al particles are self-conjugate. The motivation of this definition is
analogue to the one known from the simply laced case [20,21]. This means complex
conjugating the field which creates the particle of type i in the classical theory
corresponds to the creation of the anti-particle 1, suggesting to associate —y; to the
anti-particle. However, one should keep in mind that in this context the classical theory
is only known in the extreme weak or extreme strong limit of the coupling constant. In
the classical limit we recover the known identity [19] for the simply laced case

h c—c
o (2 4 ) v, = v Which relates particles and anti-particles.

2.1.3. Inner product identities .

We introduce now the co-fundamental weights A;, related to the fundamental weights
A as A= 2);/a?, such that they constitute a dual base to the simple roots, i.e.
A+ @; = §;;. In comparison to the non-deformed (simply laced) case, it is important to
note that o, doesin general not preserve the inner product, i.e. A; - (g)%y; # (g,) ;-
Yi-
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In view of (9), (12) and the orthogonality of roots and co-fundamental weights we
can write

)~tj Cogy; = /\ ol qul JXJ- CTOY, - (21)
Using now (9), (15) and epr0|t| ng (21) we derive

c—1 c—1 ci+c l+g; 1+g

Aroyi=A 12 O'ECIT 2 0" T2 T2 oMtz (22)
D+ @A+t y Gt
¢ — Dt + (L+cpt; —x+ -

q( i~ D+ ( i) IA] . O-Cfl 2 Vi (23)

which may also be re-written as
A-cptj— A+t (cj—l)ti+(l+ci)ti

q—z ) qul + q —2 /\j qh X+ (cj+cC )/2 0 (24)
with the help of (18).
As the last inner product identity we show that
(= DX (0) ") = (@* = (X (o) ). (25)

We prove (25) by induction and demonstrate therefore first that it holds for x = 1. With
the help of (16) we obtain

(th]_l) ( ))\
1-g
:(thl_l)(_ 2 ZA qtithp[Iipq[lpj]q_qm‘éij
ped_g
3+ct+1+cjt
+cq 2 2 J['ij]qac,,cj)' (26)

Noting that (11) also holds for the g-deformed quantities, i.e. [1;;1[t;1, =[1;1[t;],, itis
easy to verify that the r.h.s. of Eq. (26) is symmetricin i and j. Assuming now relation
(25) to be vdid for x, one deduces by the similar reasoning as for the case x = 1, that
(25) aso holds for x + 1 and therefore for all integers x. This establishes (25).

It should be mentioned that once we have the matrix representation of Subsection 5.1
the symmetry property (25) follows more easily.

2.2. g-deformed twisted Coxeter element of X{"

2.2.1. Definitions

Let us now consider a Lie algebra XV, whose associated Dynkin diagram is
endowed with an automorphism « which acts on a simple root «; with length I;, i.e.
o'i; = ;. The largest value of |, corresponds to |. Sometimes we will also use the
common notation wa; = a,,;,- We may employ this automorphism to define the orbits
£,* by successive actions of w on asimpleroot «;. By selecting a representative of the
orblt £2,*, we can build up a set of roots, WhICh we denote by &; € A. The agebra
related to these roots is the twisted Lie algebra X(". To each of the r elementsin A we
associate a particular particle species. We choose the conventions in such a way that we

may carry out a one-to-one correspondence between the two dual algebras without
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renaming the particles, see Section 7. The Weyl reflections related to these representa
tives are now defined in the usual fashion asin (1)

g(a) =a;—K;a, (27)

where K denotes the Cartan matrix of X". Analogously to the non-twisted case, treated
in the previous section, we can bi-colour the Dynkin diagram related to XM and divide
the set of representatives into two sets A_ and A,. Note that roots related by the
automorphism o possess naturally the same colour value. Hence we may define
uniquely the elements

.= H o . (28)

aGEeEA,

Besides the absence of the g-deformation, the difference between these special elements
of the Weyl group in comparison with the non-twisted case is that the product runs only
over the representatives. We define now the integers

A 1 fora;€ A
0 fora;¢A
With the help of (27) we easily compute the action of ¢, on some y;: = ¢;«;, Where
we stress that «; is not necessarily a representative

&c‘%:(_l)t'% and &—cﬁ’i:}’i_ Z: Iij")\’j' (30)

uszA,c‘

The incidence matrix | is here related to XY, but notethat 1<i<nand1<j<r.In
addition we introduce the map which will serve as a g-deformation

() =0 . (31)

At last we are in the position to define, analogously to [28], the g-deformed twisted
Coxeter element as

0 =w 0 70, . (32)
Once again by means of the bi-colouration, we have achieved that &, is uniquely
defined up to the ordering of the maps occurring in (32). For g — 1 we obtain one of the
standard twisted Coxeter elements in the conjugacy class as originally introduced by
Springer, Eq. (2). We will not elaborate here on the alternative characterization of the
twisted Coxeter element, which may be obtained from the folding of an affine ssimply
laced Dynkin diagram, see e.g. [32,38,39].

2.2.2. Action of g, in the root space

a +ci—-1

Introducing for convenience the quantities y,*:=w 2 v,, the action of &q on the
simple roots is computed to

1-g R
(%) + Y=~ Z q2|ijw71aj+Tq2 > il % (33)

aEA_ aj€A,

wed
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and

vi‘=(—q‘zci)t‘&q°‘(%+) + Z lij:)\’j+ , (34)
oc»EA

with the help of (30), (31) and (32).
Acting successively with g, and g on the elements of A, we construct the orbits of
the g-deformed twisted Coxeter element, which we denote by _Qq The order of the

g-deformed twisted Coxeter element reads
quh&qH =1. (35)

—ci

Thus in comparison with (18) the roles of h and H are just interchanged. Like in the
non-twisted case we do not have a generic proof of this periodicity property, but we
have verified it case-by-case in Section 7.

The anti-particle is identified with the orbit in which we find the element

C—¢ H

_q—h+ 5 'flé\_qz+ (2 I),y+_ ,YI = Qiq . (36)
Conjugating 1 once more in (36) leads to (35), when |, = |,. For the non-simply laced

algebras, the relation (19) reduces to

H
625 = —a% (37)

since in that case al particles are self-conjugate. In the limit gq— 1 we obtain
+'@=103+ = 3+ which relates particles and anti-particles in twisted algebras.

AH
g

2.2.3. Inner product identities
To each orhit Qq we associate now a fundamental weight A which is dua to all
elements inside the w-orbit, i.e.

|
]

X.' Zwk(aj):5ijv (38)

k=1

for «; being aroot of X(M. With the help of (31), (30) and the orthogonality relation
(38) we derive easily

Gy = A 63, 64, = q 20N, 76.%; . (39)
We aso have the identities
~ = ~ . c¢—¢ ¢-1 1-¢ R
A G =6 T T T g (40)
and
2h+c+c '*H x+c+1 Cil,+c_ I+
Gy = A 6 2 2 Y (41)

To prove these identities directly is much more involved as for the equivalent relations
in the untwisted case. We will therefore postpone the proof until Subsection 5.2, where
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we can exploit properties of a different quantity which then implies the validity of (40)
and (41).

3. The fusing rules

We are now in a position to formulate the universal fusing rules. This may be done
either by exploiting the properties of the orbits of the g-deformed Coxeter element of
X® or the g-deformed twisted Coxeter element of X(" similar to the approach of Oota
[28] or aternatively in the spirit of Chari and Pressley [31] one may consider the orbits
of the non-deformed Coxeter element of X and simultaneously the non-deformed
twisted Coxeter element of X(. Addmonally one may formulate the fusing rule in
terms of the quantum conserved guantities. We will discuss the solutions to these
different fusing rules and prove in genera that they are in fact all equivalent. We derive
the precise quantitative relation between the relevant quantities.

3.1. The fusing rule in 21

The generalized® three-point-coupling related to three particles of the type i,j and k
is non-vanishing, i.e. the process i +j — k is possible, if and only if there exist
representatives of the g-deformed orbits (2%, (2 and £} whose sumis zero.

This means there should exist two triplets of integers (&, &, &) and (¢, &, &) such
that

b qg'o'qg")ﬂ =0. (42)
I=i,j,k
Multiplying (42) by g" or a," corresponds naturally to the same process and we should
therefore view the triplets as equivalence classes®. In this sense we regard two pairs of
triplets as equivalent if they may be constructed from each other by the displacements
L= ¢ +mor é — & +n. Similarly as in the simply laced case [19], it will turn out to
be crucial that there exists a second solution to (42),
Y dlgfly =0. (43)
I=i,j.k
The two solutions may not be obtained from each other by simple shifts, but they are
related as

C
§|,= —&+

Nonetheless, as an existence criterion for the fusing process, the variant (42) is
sufficient, since the second solution may always be constructed from the first as we now

and ¢'=-¢—-(1+¢c)t, I=i,jk (44)

3 Usually we really refer to the three-point-coupling in the common sense, i.e. related to the process
i + j— k The only exceptions are the processes 2+2 — 2 and 3+3— 3 in (F{Y,E®), which are possible
from the fusing rule point of view. However, on the Smatrix bootstrap side these processes correspond to
third order poles.

 We shall see below that from a physical point of view this corresponds to a simple shift in the bootstrap
functional equations which involve the scattering matrix.
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demonstrate. Changing g to q 1

obtain

in the fusing rule (42) and using (14) thereafter, we

1+g¢ 1+g 1+g
Y q 5'7 2 O'q’T 2 O'q_g'T_TO'CIqT_T’)q =0. (45)
I=i,j,k

Acting on this equation with 7o 3771 yields (43), with the help of (9), (12) and (13).
What remains to be shown is that these two solutions are indeed non-equivalent in the
sense defined above. For this purpose we may take the limit g — 1 and note that the
quantities &, and & are related to each other in the same way as in the smply laced
case. We may now simply refer to [19] for the proof of the non-equivalence of this two
triplets. This is sufficient to establish the non-equivalence between the two solutions. In
addition we shall demonstrate below that there exists in fact no further non-equivalent
solution.

3.2. The fusing rule in 0

The generalized three-point-coupling related to three particles of the typei,j and k is
non-vanishing, i.e. the processi -|-j —kis possble if and only if there exist representa-
tives of the g-deformed orbits w 2 .(Zq w 2 (Zq ad o 2 .Qq whose sum is zero.

This means there should exist two triplets of mtegers(g,, 51, gk) and (gl, gl, gk) such
that

Y q4|0§m+ 0. (46)
I=i,j,k

Equivalence of two solutions is defined as in the previous section, i.e. two triplets which

are obtained by simple shifts of the type & — & + m and ¢, — ¢, + n are considered

equivalent to the original solution. However, as in the non-twisted case, also (46) always

admits a second non-equivalent solution

T aféfiz=o0. (47)
I=i,j,k
The relations between the two solutions read

1-c

J=-4+1-c and &=-§+ 2 HHldg, =ik (48)

As in the previous section the second solution may be constructed from the first, and
therefore the variant (46) is sufficient as an existence criterion.

3.3. The fusing rule in 2 and 1%}

The generalized three-point-coupling related to three particles of the type i,j and k is
non-vanishing, i.e. the processi + j — kis possible, if and only if there exist representa-
tives of the orbits (2;,(2;, and (2, whose sum is zero and if in addition there exist

ci—1 " -1 ~ ck—1 ~
representatives of the orbits w 2 ), o 2 (; and @ 2 (2, which also sum up to

i
Zero.



420 A. Fring et al. / Nuclear Physics B 567 [FS (2000) 409-453

_Quantitatively this means there should exist two triplets of integers (&, &, &) and
(&, &, &) such that
Y. ofy=0 and ) &4%'=0. (49)
I=i,j,k I=i,j,k
The version (49) of the fusing rule was first stated by Chari and Pressley [31], with the
only difference that our & corresponds to the inverse twisted Coxeter element in [31]
and aso ¥, is defined differently in their formulation. The multiplication of the first
equation in (49) by powers of the Coxeter element ¢ and the second by powers of the
twisted Coxeter element & will produce further solutions, which we regard as equiva
lent. Once again there exists a second non-equivalent solution
Y ofly=0 and Y &9%=0, (50)
I=i,j.k I=i,jk
which is related to the first by the relevant relations in (44) and (48). Eq. (49) and (50)
may be obtained in the limit g — 1 from (42), (43) and (46), (47), respectively. Since
we have aready shown that neither the triplet (&/, £/, &) may be obtained from (&, &,
&) by smple shifts nor (¢/, &/, &) from (¢, &, &) by the same means, we have
established the non-equivalence between the two solutions. It is also clear from the
preceding sections that we may construct the second solution always from the first.

3.4. The fusing rule and conserved quantities

Let y(n) (1 <n<r) be avector® whose components are labelled by particle types.
In particular for n= 1 we identify y,(1) with the quantum mass m, of the particle of
species i. Then we may formulate a further variant of the fusing rule:

The generalized three-point-coupling related to three particles of the type i, j and k is
non-vanishing, i.e. the processi +j — k is possible, if there exist two triplets of integers
(n, s ) and (7, ), m,) such that

Z esn(’flleh+71|9H)yl(n) =0. (51)
I=i,j,k
The s, (1<n<r) label the exponents of the algebra X in increasing order. We
further introduced the angles
o i7(2—B) 4 o imB -
T T (52)
whose deeper origin becomes more apparent when we discuss the scattering matrix in
Section 4. The coupling constant B enters here the expressions through the function
B=2h"B2/(hY B2+ 4mh) which takes values between 0 and 2. Obviously, multiply-
ing Eq. (51) by ™% and eks™% with m, k being arbitrary integers, will aso
produce a solution, which we regard as equivaent in the same spirit as in the previous
subsections. Likewise there exists a second non-equivalent solution
Y ety (n) =0, (53)
I=i,j,k

® In fact we see below that this will be the nullvector of a particular matrix as specified in Eq. (100).
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Fig.1. Mass triangles in the complex velocity plane. The angles are defined as i/t = (n; — )0, + G —
MOy Tim.

related to the first simply as

m=—m ad m=-7. (54)

Clearly we can not construct (51) from (53) by multiplication of e>™% and eSkm%
unless n, = n, = m, and 1, = m; = 7. The latter fact would mean that =, _; ; , y;(n) =0,
which in particular for n=1 is impossible since all quantities in the sum, the masses,
are positive. We have therefore established that the two solutions are indeed non-equiv-
alent. However, one solution may aways be constructed from the other simply by
replacing s, = —s, or complex conjugation of (51) or (53).

Having obtained the fusing angles n we may immediately compute relations among
the quantum conserved quantities. Combining (51) and (53) we derive

yi(n) _ Sinh(sn(nk_nj)9h+5n(77k_77j)9H)
y;(n)  sinh(s,(n — M) O+ S,(T — 7))

We may interpret these relations in the complex velocity plane as explained in [19]. In
particular for s; = 1 we obtain the important ratios of the quantum masses

mo_ Sinh((ﬂk_nj)eh+(7lk_7lj)‘9H) (56)
m,  sinh((m — m) 0, + (T — M) O
As the main difference to the simply laced case we note that the masses now depend on

the coupling constant. The relevant triangles are depicted in Fig. 1. We will now be
more specific on how to calculate the fusing angles from Lie algebraic properties.

(55)

3.5. Relations between the fusing rules

The four versions of the fusing rules are all related to each other, meaning that having
one solution of one particular formulation of the fusing rule we are able to construct all
the other solutions. The precise relations read

(-4 Q-4 Ny
”’7|=§|,_§|=% and 7= |2 L - [—§ forl=i,jk. (57)
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We see that the interchange of the two solutions of one version of the fusing rule
immediately demands that the two solutions of the other rules should also be exchanged.
In particular it follows that
1- cI 1+¢
_2§| §|: §|__25| ||_

t+1+¢ forl=i,j.k. (58)

These relations do not only relate the fusing rule in 29 and 09 to each other, but they
also provide the precise link between the g-deformed and non-deformed versions of the
fusing rule. It will take until Subsection 5.1 to have assembled all the ingredients for the
proof of (57).

There is one last question which we should answer with regard to possible solutions
of the fusing rules. Are there any further non-equivalent solutions to these equations?
The answer is no. For the proof of this statement we assume at this point that the rules
are indeed equivalent, such that it suffices to discuss only one version. We adopt the
argumentation of [19] for this purpose. The only four triangles which we may construct
in the complex velocity plane from three sides with fixed modulus are the ones depicted
in Fig. 1. Hence there are no further possible angles, meaning no additional non-equiv-
alent solution to (51) exist. By (57) this fact is also established for all other versions of
the fusing rule we have stated.

Treating the fusing rule as a pure existence criterion for the possibility of certain
fusing processes, one version is as good as the other. We observed however that the
relevant data from the ‘*classical’’ fusing rules, which correspond to two equations in
Subsection 3.3, may be merged together into one single equation by the g-deformation.
This is the key feature which can be exploited in the quantum field theory and which
appears to be absolutely necessary for the construction of generic expressions for the
scattering matrices.

4. Block representation

The scattering matrices for affine Toda field theories have been the subject of
numerous investigations [9—16,19,25-28]. Restricting the attention to the case when the
coupling constant is real, the two-particle scattering matrix for al simple Lie algebras,
involving particles of the species i and j as afunction of the relative rapidity 6, may be
cast into the universal expression

Si(6) = ﬁ ﬁ {x,y} ), (59)

Here {x,y}, are certain combinations of hyperbolic functions and the w;;(x,y) are
positive semi-integers for the given range in (59).

4.1. The building blocks
Before explaining how the powers ,uij(x, y) may be computed, we present severa

representations of the general building blocks, which will serve different purposes. As a
crucia step in the process of formulating generic expressions for scattering matrices one
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should view the observation of Dorey [26] who noticed that the building blocks may all
be expressed in a very elegant form. We dlightly modify them to simplify certain
computations and define®

[x,y]s
{x,y}e: ~ vl (60)
and
_1, _19 1, 19
[x,y]s:= éi—l,erlieéiil,zil; , (X, ¥)p:=siNh3( 60+ X6, +Y0,).

(61)

We used the angles 60, and 6, as introduced in Subsection 3.4. Notice that the
strong-weak dudlity transformation 8 — 4w/8 (B—2—B), hhY, X X leaves
the scattering matrix invariant. One should stress that besides the strong—weak inter-
change the invariance also demands the interchange of the algebras.

Alternatively, each block (60) admits an integral representation in the form

ot
(xyho e s ) (62)
with
fou'(t) = 8sinh( 9, t)sinh( 9, t)sinh(t — xd,t — ydy t) . (63)

This may be verified for instance by the explicit computation of the integral in (62). We
abbreviated here 9,: = (2 —B)/2h and 9,;: = B/2H. Particular attention has to be paid
to the convergence of the integral representation (62), especially when we analytically
continue. Shifting 6 — 6 + x6, + y6,,, convergence requires that

O0<(x=—X-1)0+(y-y -1, <2(1-(1+x)%—(1+Yy)9).

In particular for real rapidity # the convergence is guaranteed if 0 <x<h and
O<y<H.

With regard to several applications, the values of the scattering matrices at 6 = 0 are
of special interest and we therefore comment on it for definiteness. In general we have
{X,y}y_o=1, apart from the case {1,1},_,= —1. This means that we have to pay
attention to the ordering of certain limits. When writing the blocks in form of hyperbolic
functions (60), we have to set first x =y =1 and then take the limit § —» 0, whereas in
the integral representation (62) we have to set x =y = 1, integrate thereafter and finally
take the limit  — 0.

®In Refs. [25,36] a different type of blocks was used. They may be translated into each other by simple
replacements, e.g. for G, and F, onesets H™' =6, + 6,,.
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The following obvious identities will turn out to be useful in the course of our
argumentation:

(X, y}o={x+2hy+2H},={-x,—V}, ", (65)
[x+x’,y+ y’]o

{va}9+x'9h+Y'9H_ [X—X’,y—y’],g (66)

{ XY} o+ po,+ a0 { X, Y} 0-po,—a, = { X+ P,y + Q}o{ Xx— P,y — a} .- (67)

Furthermore, it will be convenient to adopt the slightly more compact notation for the
product of severa blocks

(XY o {0 Vo) o7 (% Yad 0" = X0 Y12 X0, Y2 X Vi) (68)
from time to time.

We shall now come to the characterization of the powers wu; J-(x,y) of particular
blocks { x,y},, which may be computed either by using the properties of X® or X(V.

4.2. The powers from X®

The powers in (59) can be evaluated from the matrix-valued generating function
[ tj ] . (1—cpty— 1+t

— d 2 (A o). (69)

c +

I y)qy= -
2 b

%Mij(zx_

for fixed x. Taking x intherange (3 —c,)/2<x<h+ (1 —c,)/2 ensures that the first
argument of w is between 1 and 2h. This formulais a natural generalization of the one
for the simply laced case (128), where now the g-deformation incorporates the informa-
tion of both dual algebras. At this point we have only stated (69) and we shall now
convince ourselves that it is indeed satisfying all the requirements we need.

When applying formula (59), we have to guarantee that the properties of the
combinations of hyperbolic functions in the building blocks { x,y}, are reflected in the
correct way by the Lie algebraic quantities. This means that according to the identitiesin
(65) we should have

i (X y) = pi(x+2h,y+2H) and  w;(x,y) = —u;;(2h—x2H-y).
(70)

Considering (69), the first relation in (70) follows trivially from (18). Together with the
r.h.s. of (69) the second relation in (70) may be proven directly with the help of (24).
The second relation is important, since it ensures that we can always find two blocks
which combine in such a way that the total power of each building block becomes an
integer. Therefore it guarantees that the scattering matrix is a meromorphic function,
even if we choose (this is sometimes very convenient) the rangesin (59)tobe 1 <x<h
and 1<y<H.

Having established the formal legitimacy of (59), it is clear that properties of the u’s
may be carried over into properties of the scattering matrix. We will therefore prove
several identities which we exploit below when discussing the scattering matrix.

First we note that

i (X Y) = pi(X,y) = —p(x+hy+H). (71)
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The symmetry in the subscripts follows directly from the defining relation for the w's
(69) and the symmetry property of the inner product (25). The second equation follows
in view of the definition of the anti-particle (19) and (69). The latter identity relates the
powers involving the particle on one hand and the anti-particle on the other and will
therefore turn out to be useful to show the crossing relation.

From the fusing rule in 29 follows by similar manipulations as we have just
performed

h M|p(xinl1yi7]|)=ov (72)

I=i,jk
where the lower sign relates to the first (42) and the upper sign to the second solution
(43). The integers n, and 7, are related to the two solutions of the fusing rules by (57).
It till needs to be established that they are indeed the same as the ones occurring in the
equations involving the conserved quantities, (51) and (53). It will turn out that both
relations in (72) will be crucial to prove the bootstrap equations for the scattering
matrices.

The final relation in this section follows from (17) and (69)
it
pi(X+Ly+t) +u(x—Ly—t)= 2 X mi(x,y+2n—1-1,),
n=1leA

(73)

where we understand that the sum X}, yields zero when |,; = 0. We can view (73) as
a particular solution of the recursive equations (2.4) quoted in [28]. One may take these
equations as a starting point and use them to construct the powers w;; recursively.
However, it remains unclear how to obtain Eq. (73) from first principles. In fact (73)
should be regarded as a consequence of (72) and we therefore view the latter equations
as more fundamental. We demonstrate this fact only for the equivalent equations of the
scattering matrices, since in that setting they correspond to a simple physical property,
see Section 7.

4.3. The powers from X("

Alternatively we can use the data of the twisted algebra >Zrﬁ') in order to compute the
powers of the building blocks. In this case the role of two arguments x and y in the
generating function is reversed, that is now we fix a particular y and read off the
possible values for x from the generating functions

¢c—1 c—1 - ~
=S are A (R ). o

i+

ZVij X,2y—¢ + 5 i 2

Since the two descriptions, i.e. in terms of the data of X™® or in terms of the data of
X(" are supposed to be the same, we expect similar relatlons as we obtained in the

previous section for the w’s also to hold for the »’s. Now property (65) of the blocks
demands that

vii(Xy) =y;(x+2h,y+2H) and »;(xy)=—»;(2h—x,2H-Yy).
(75)
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The first relation in (75) follows trivially from (35). Once again we may guarantee that
the scattering matrix is a meromorphic function by means of the second relation in (75),
which follows from (41). We also have the identities which imply parity and crossing

vi(X,y) = vi(X,y) = —y(Xx+hy+H). (76)

The first equation follows now from (40) and the second from (36)”. The relation which
implies the bootstrap identity

> V|p(xi”’h-yi77l):01 (77)
I=i,j.k

follows from the version of the fusing rules related to the g-deformed twisted Coxeter
element in 029 (Section 3.2). As the counterpart of (73) we derive from the defining
relations of the v’s and (34)

vii(X+C,Y) + ey (X— ¢,y — 2¢))
1—ciI 1+c;
2 ! 2

= X vyl Xy + - (78)

O‘IEA—C,

Having finally assembled the main properties of all the ingredients from which we
construct the scattering matrices, we are now in the position to utilize them in order to
study the properties of S.

4.4. Bootstrap properties

The exact expressions for two-particle scattering matrices of integrable quantum field
theories may be obtained by solving certain consistency eguations, the so-called
bootstrap equations. We will now demonstrate that (59) fulfills indeed all the require-
ments and take this as a proof for the conjectured formulae stated in the previous
subsection.

4.4.1. Unitarity, crossing and parity invariance

The unitarity-analyticity equation §;(6)S;(— 6) = 1 follows trivialy from the prop-
erty {X,y},{x,y}_,=1 of each individual building blocks. The crossing relation
S;(0)=S,(im— ) requiresin general alittle bit more effort, e.g. [39]. Using (65) and
(66) we obtain

H
S;(im—0) =S;(h6, + Ho, — 6) = TT TT{x+hy+H]}, ",
x=1y=1

(79)

Employing now the second identity in (71), the r.h.s. of (79) equals S;(6), which
establishes the crossing relation. The parity invariance of the scattering matrix, i.e.

7 We should keep in mind here that we did not yet prove (41) and (40). In fact we reverse the logic and
prove first the properties for the »’s in Subsection 5.2 and deduce from them the inner product identities in
Subsection 2.2.3.
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S;(0) = S;(0), is guaranteed by the symmetry property of the w’s in the lower indices,
i.e. the first equation in (71).

Alternatively we can use the data of the g-deformed twisted Coxeter element and
repeat the argumentation once more, using now the relations (76) instead of (71).

4.4.2. Bootstrap identities
We will now come to the key equations, whose names are sometimes associated with

this whole approach, the bootstrap equations. The claim is that once the fusing rules in

Section 3 hold, the following identity is true for the scattering matrices:
IHkSpI(0+nI6h+?I|0H):l' (80)
=i.j,

The integers n, and m, may be expressed by using the data from the various versions of

the fusing rules (57). The proofs of the relations (80) are straightforward. We abtain

with the help of (66)

_ (x,y)
(x.y) [ X+, y+m]5"
H {X!y}gg'lnfa:ﬁﬁlf)r-i = l—l — (X, y) =
X,y xy [X=m,y—m]%%
I=i,j,k I=i,jk

1. (81)

The last step follows by shifting x —>x—m, and x— X+ 7, in the numerator and
denominator, respectively, such that we can employ the two equations in (72). We note
that it is crucial to have both solutions at hand. Alternatively we can derive the bootstrap
Eq. (80) by exploiting the property (77) of the v's and repeating the arguments once
more.

With the help of (67) we translate (73) into what we refer to as the ‘‘ combined
bootstrap’’ identity for the scattering matrix

Sj(0+ 0, +16,)S;(0— 0, —t6,) = lL[ ﬁ%l(6+(2n_l_lil)0H)'
I=1n=1
(82)

Here we understand that the product [T}, contributes 1 when I;; = 0. Sometimes this
identity isidentical to some bootstrap equation, but in general it has to be constructed by
combining several identities of the type (80) in a very particular way. Its significance is,
that it may be employed in order to derive the matrix representation for the scattering
matrix (see Subsection 4.3). Reducing (82) to the smply laced case, i.e. [1;],— I,
H — h,t; = 1, we recover an identity quoted in [37], see Section 7.

4.4.3. Occurrence of certain special blocks

For various purposes it is important to exhibit explicitly the occurrence of particular
blocks { x,y} in the general formula (59). It is possible to extract the blocks of the form
{1,y},{2,y}, from the genera product and re-write the scattering matrix as

$,(0) = (10522, TT TTOx9)o- (83)

For the proof of (83) we exploit the properties of the g-deformed Coxeter element Ty
Considering the identity (69), we notice that for i = ablock of the form {1, y} may only
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oceur for x=0, ¢;= —1 or x=1, ¢;= 1. From (17) and the orthogonality of smple
roots and co-fundamental weights, we obtain A; - o, %1y, = —q** %" and therefore
2
we get
Y — [t ]q 1y an-1
ZMII(]' y)q = E Z (84)

y

which establishes the first factor in (83). In order to prove the occurrence of the second
factor, we observe that a block of the form {2,y} may only be generated if c; # c;. Due
to the parity property of the u’s (70) we may choose ¢; =1 and ¢; = —1 w.l.g,, such
that we obtain from (17) /\ -0y, = —9%[1;;],. Hence we obtain

i

[lu] [ ]qzégj“ 2n-1 ZanIZ% Y g2n.

n=1 n=1

t+;

H(2,y)gY =
Xy‘,u( y)d 5

(85)

In the last equality we have used the fact that either t; or I;; has to be one. This
establishes (83).

There are several consequences we may draw from (83). An immediate conclusion
concerns the value of the scattering matrix at vanishing rapidities. With the remark made
in Subsection 4.1 we deduce from (83) that

S;(0) = (-1, (86)

The knowledge of this value is for instance important in the context of the thermody-
namic Bethe ansatz [35].

4.4.4. Sngularities and the generalized bootstrap

As we have seen the blocks of the form (60) are extremely useful to exhibit the Lie
algebraic structure of the scattering matrix. However, they are quite misleading with
regard to the singularity structure due to the possible cancellation of zeros and poles.
This may happen whenever we have a product of two blocks { x,y}{x',y'} and x,x or
y,y differ by 2. It suffices to consider the latter case, since it will cover al examples we
shall be constructi ng. Motivated by this observation we introduce the quantity

{X,Yn} H{x y+ 21}, (87)

(x—1,y—1){x+1,y—1+2n),
C{(x+1,y—-1){x—1,y—1+2n),

X (60— —6)"", (88)

and also define the angles

=(x+1)6,+(2n+y—1)6, (89)

xyn

which serve to characterize the precise location of the singularities of the blocks
{X,¥n} 4. Obviously the four zeros are situated a + 6,%,,, F 6,%, , and the four poles at
+ 63 v T HX o respectively. In order to interpret these singularities from the physical

point of view we should know when they are situated on the physical sheet, i.e. 0 < Im
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0 <iw. Recalling that the range for the possible arguments of the blocks 0 < x < h,
0 <y < H and the range in which the effective coupling takes its value, i.e. 0 <B <2
we evaluate

o< Iml ok for B 2H(h—-x+1) %
<Im( 6, < orb< .
(Biyn) < |h(2n+y—1) —H(x+1)] )
The relevant residues are computed to
. B — 2sinh,sinh(néy, ysinh( X8, +(n+ y —1)6,)sinh( 6, o)
0030 GGy 18 ST xBy + (5~ )by STA((X Dy +(y + n—116y,)
(91)
2sinhgy,sinh(ngy )sinh( x8y, + (n—1+ y) 6, )sinh( 65, )
Re59=9+ {len}:

X,y.n

sinh(8y, + ndy )sinh((1+ x) 6, +(n+ y—1)6,)sinh(x0, + (2n+ y—1)6,)
(92)

It is easy to convince oneself that with the stated range for x, y, B, n together with (90)
we have

Im(Resy_,,, {X.%},) <0 and Im(Res,_,; {xy,},)>0, (93)

such that the 6, y.n could correspond to the direct channel poles. In the smply laced case
this knowledge is enough to judge the sign of the residue of the whole Smatrix, e.g.
[19]. For the case at hand matters are more involved since the remaining blocks in the
scattering matrix do in general not possess a definite sign. It is this feature which lead
the authors of [25] to the formulation of the generalized bootstrap. According to this
prescription only odd order poles, whose imaginary part of the residue is positive in the
whole range of the effective coupling B, participate in the bootstrap.

So let us have a closer look at the behaviour of ablock { x',y;},+ . Weobtain afirst
criterion for a possible sign change by considering the extreme limits in the coupling
constant. In genera we have limg _, ,.{ x’,y;{}‘,;yn = 1. However, if X' =x we have

y-y-2n )“

e %
B'_r)no{x yn}ex,y,n (y’—y+ 2n,_2n ( )

fim (X Yabos,, = 1. (95)
B— e

This means if the block responsible for the pole is { x,y,}, and the right-hand side of
(94) is negative the imaginary parts of the possible additional blocks

{X.¥i}or,, and {x+2,yi}e; (96)

x,y.n

both change their sign while 8 runs from zero to infinity. This means the pole 6, ,
does not participate in the bootstrap if in the scattering matrix also the blocks (96) occur
to an odd power and if they do not cross the real axis at the same position. This means
having the scattering matrix given explicitly in blockform the condition on y,y',n,n" by
which the I.h.s. of (94) becomes negative, together with the occurrence of blocks like
(96) provides a simple criterion which allows to judge whether a pole resulting from a
certain block should be excluded from the generalized bootstrap or not.
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Exploiting the fusing rules and reading off the relative rapidities from (51) we obtain
the precise location, say ¢, of a pole in the scattering matrix which participates in the
generalized bootstrap

¢=i(77i_771)‘9hi(77i_771)0r4- (97)

The two signs result from the two non-equivalent solutions of the fusing rule.

5. Matrix-integral representation

Alternatively to the universal form for the scattering matrix in the form of blocks
there exists a remarkable integral representation. This version of the scattering matrix is
particularly useful when applied in the context of the thermodynamic Bethe ansatz
[35,36] or off-shell when computing form factors [34]. We can express the scattering
matrix as®

o« dt ot
$.(0) = ep[ T, (s ). (%)
with
®,,(t) = 8sinh(,t)sinh(t;9,t) ([ K Jawacn);; - (99)

We introduced here the particular deformation parameters g(t) = exp(9,t) and g(t) =
exp(9,, 1) and the matrix

[Kij]gq=(a@" +a7a )8, — [ 1], (100)

In the limit g— 1 and §— 1 the matrix [K;;],, obviously reduces to the ordinary
Cartan matrix K, such that one is tempted to view this matrix as a doubly g-deformed
Cartan matrix. However, this viewpoint is slightly misleading as we now argue. For the
simply laced cases it was proven [20,21] that the conserved quantities may be organized
as right eigenvectors of the Cartan matrix X;K;;y,(n) = 4sin’(s,m/h) y,(n) with s,
labelling the exponents of the algebra as already introduced. In particular we have that
y,(1) ~ m,. It is then easy to see that this may also be re-written as

r

Y. [Kijl qimspatinsy ¥i(N) = 0. (101)
-1

Hence, we can alternatively organize the conserved charges as nullvectors of the matrix
[Kijlgintyginy evaluated a exponents of the Lie algebra, i.e. t=is,. Based on a
case-by-case investigation, Oota pointed out [28] that Eg. (101) also holds for the
non-simply laced case. A genera proof of this statement is still outstanding. There is,

8 A very similar formula was first obtained by Oota (Eq. (5.2) in Ref. [28]) on the base of a case-by-case
study. In comparision, the formula (98) differs only by a factor (—1)%iexp(25;; /5 (dt/t)sinh(6t/im)),
whichis 1 for 6 real, but different from one if the rapidity becomes complex. Similar expressions also appear
in [40].
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however, one important difference in comparison with the simply laced case. In general
we can not reverse the interpretation anymore, such that we are not able to recover a
genuine eigenvalue equation. In particular for s, = 1 this leads to

2 [ 1] qcimy My = 2c0Sh( 8 + ;6,4 ) M . (102)
i
We observe that the eigenvalue depends now through the symmetrizer t; on the
component of the ‘‘eigenvector’’. In the limit 8 — O we restore the old picture and
recover the equation X, I;; y;(n) = 2cos(ws, /h) y,(n) vaid for al simple Lie algebras.
With the help of (11) we also obtain the equation for the left nullvector x;(n) related to
the right as y;(n) = [t;1;x,(n).
The determinant of the matrix (100) may be computed [28] to

det[ K Jqcimoatinn = n1%[143”1((t +s,)m/h)sin((s, —t)m/h). (103)

We do not have a general proof of this formula, but we have verified it case-by-case.
Two important features which we exploit below should be noticed here, first the
determinant becomes independent of the coupling constant 8 and second it vanishes for
t being an exponent.

Before we provide the proof for the representation (98), we will introduce two further
auxiliary matrices.

5.1. The M-matrix

We restrict now the sum of the generating function for the powers of the building
blocks (69) to a finite range and also include an additional deformation parameter g into
our consideration. We define the matrix

2h 2H
Mij(q,q)= DM Mij(XvY)qqua (104)
x=1y=1
where initially we keep both deformation parameters completely generic. From the
properties for the w's, which we deduced in Subsection 4.2, we can immediately derive
severa features for the matrix M,

Mi;(9,8) = —9*'a*"M;(a~4,a7!) = M;(q,9) . (105)

The first identity in (105) is a consequence of the two relations in (70) together with

the fact that w,;;(0,y) = w;;(2h,y) =0 for al y. The second follows trivialy from the
symmetry properties of the w's from the first relation in (71).

Most crucial is once more the combined bootstrap equation, which on the Lie

algebraic side corresponds to the property (73). In fact, this identity will enable us to

compute the matrix M explicitly. By some straightforward manipulations of this relation

we deduce with (73) that M(q,q) has to satisfy

r 1- qg2"
(q_lq_t' + qqt')Mij(q!q) - [Iik]quj(q!q) = T[ti]q(sij .
k=1

(106)
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Solving this equation for M(q g) yields

M;;(d,9) = q o ([K]qq)ul[ ] : (107)
At first sight (107) does not seem to be a finite polynomial of the form (104). However,
the doubly g-deformed Cartan matrix becomes singular at certain values and the
pre-factor (1 — q2"g?") ensures the whole expression to remain finite. In other words
this term may always be factorized into the determinant of [K;;],, and some rest, such
that the r.h.s. of (107) will indeed be a polynomial as defined in (104). In [40] a similar
matrix as (107) also occurs. However, apart from the ordering of [t], [ K], the pre-factor
(1-qg2"g2") /2, which is crucial for the polynomial aspect we discuss below, is not
mentioned in there.

We will deviate now from our generic consideration and specify the deformation
parameters to be g(t) and G(t) as introduced after Eq. (99). Noting first of all that
q(t)?"g(t)?" = e?!, we observe that for t=imm the r.h.s. of (106) always vanishes.
Furthermore it follows from (107) that M(q(i=m), g(i==m)) is also always zero unless
m is an exponent by (103). From this we deduce that M(q(iws,), g(iws,) is
proportional to the right nullvector y(n) as specified in (101). In view of the symmetry
property (105), we conclude that

Mij(q(iﬂ-sn)’q(iﬂ-sn))~yi(n)yj(n)’ (108)
where the factor of proportionality neither depends on the particle index i nor on j.
Most importantly we derive from (72) a matrix version of the fusing rule (51) and (53)

Y q(ims)"a(ins,)"M(a(irs,),d(ins,))=0 forl<p<r. (109

I=i,j.k
By means of (108) we may divide out y,(n) and the factor of proportionality from
(109), such that we have at last established the relation (51) involving the conserved
quantities.

We may specify the deformation parameters further and take g and @ to be roots of
unity of order 2h and 2H, respectively. This may be done safely after we have cancelled
the determinant against the pre-factor. As a consequence this means in particular that
together with the periodicity property of the w’s (the first property in (70)), we may
simultaneously shift the upper and lower limit in the sum (104) arbitrarily. The
properties of the blocks are now also reflected by the polynomial (104), such that we can
not only carry out a one-to-one identification between {x,y}, and q*g?, but in addition
we can also manipulate them in an identical way. If in analogy to { —x,— y}, ={x,y},; %,
we further define g™ *§ Y = —g*q¥ we can even guarantee that therange of x and y is
1<x<h, 1 <y<H. With these assumptions in mind we derive

M;;(a.8) =a"g"M;;(a 1d ) = —q"g"M,;(9.q) (110)
from the last relation in (71).
As afinal remark of this section, we note that at roots of unity the defining relation

for the M-matrix (104) may be viewed as the discrete Fourier transformation of
wii(X,y), the inverse of which reads

1
(X, i M —mxa-ny 111
B (%Y) = 7 mzlnzl (om0 0 ™ (111)
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with @ and @ being the 2hth and 2Hth primitive roots of unity, respectively. This
allows us to compute the powers of the blocks, i.e. the u’s, in an aternative way from
the explicit expression of M(q,G) in matrix form (107). We may also utilize (111) to
verify the properties of the w's by exploiting now explicitly matrix representation of
M(q,d), instead of the orhits of the g-deformed Coxeter element asin of Subsection 4.2.
In addition, the computing rules, which we stated in the previous paragraph for generic
g and g are automatically satisfied for g and @ being roots of unity.

5.2. The N-matrix

As to be expected, we may also express the scattering matrix in terms of the data of
the twisted algebra X{". In analogy to the M-matrix (104) we define the n X n-matrix

2h 2H
N;(q,q) = Y X v;(X,¥)q"q”, (112)
x=1y=1
where once again we keep both deformation parameters completely generic for the time
being. It should be clear that our notation in (74) is dightly abused here at the cost of
avoiding the introduction of new symbols. From the Lie agebraic analogue to the
combined bootstrap Eq. (78) we derive

; . -2¢ —Ci=—2C+ E| +ci—+ll
(_1) |+1(q.q) Nj+Nw7ci(i)j_ Z q “g i 2 2 ||i|N|j

oqEA,Cl

e (L) e
= (d0) 8.0 (113)

Unlike the corresponding equation for the non-twisted case (106), we can not solve
(113) directly due to the occurrence of indices transformed by the automorphism w.
However, we may consider Eq. (113) for i — «~ (i) and iterate the resulting equations
as long as we obtain N,-i;); = N;;. Thereafter we can safely solve the equation for the
r X r-submatrix, say N, and obtain

~ 1— qthzH .

Nj(Q:q)=T([K]qq) [lj]q' (114)

Here we have introduced the doubly g-deformed twisted Cartan matrix

-1
ij

Ii
[K]qqz(qqli“‘qlqli)Sij_[Z Iwk(i)jl . (115)
k=1 q
Note that in the classical limit g,q — 1 we recover the transpose of the usua twisted
Cartan matrix. The transposition results from our convention that particles in both dual
algebras are denoted by the same particle index. Similarly as in the non-twisted case the
determinant of the matrix (115) acquires a very neat form,

det[ K\]q(int)q(iwt) = If[145in(('[ + Q()W/H )sin(( Q( - t)7T/H ) , (116)

where the § _denote the |th exponents of )Z,ﬁ') [32]. We also do not have a general proof
of this formula, but we have verified it once again case-by-case.
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By direct computation, we may now derive several identities for the matrix N,
namely

N;(a.8) = N;(q.9) = —92'g2"N; (g~ 1,g7%). (117)

The first and second relation in (117) imply the first property for the v’sin (76) and the
second relation in (75), respectively, which on the other hand finally prove the inner
product identities of Subsection 2.2.3. Comparing (107) and (114) we see immediately
that M =N and therefore v(Xx,y) = u(X,y). A direct Lie algebraic proof of the latter
equality would be desirable since it allows to express quantities of the twisted algebrain
terms of the non-twisted algebra and vice versa. Having established several features of

the matrix M(q,q) and N(q,d) we will now supply the context in which they naturally
originate.

5.3. From block- to integral representation

Concerning the representation of the scattering matrix in blockform (59), an obvious
guestion which arises is, whether it is possible to compute explicitly the product over x
and y. Taking the explicit integral representations of the blocks (62) into account, this
problem amounts to the evaluation of

bi(t) = mxil yzil,“«ij(x:y) f;,'yH(t!B) (118)
8sinh(J,t)sinh(d,t) _

- — o e 'M(q(t),q(t)) (119)
8sinh( Y; t)sinh( 9, t) o B

. e e 'N(q(t).a(t)) (120)

if we want to transform the scattering matrix into the form (98). From the first identity
in (105), noting that q(t)2"g(t)?" = e?', together with the explicit form of the M-matrix
(107), we deduce the integral representation (98) with (99).

Some comments are due, since it appears that the convergence condition (64) is
violated by the range we chose for x and y in the defining relation for M. However, for
each individual block {x,y}, we can exploit the properties (65) and bring the arguments
x and y into a range for which the integra representation (62) is convergent. These
features are reflected in the M-matrix if it is taken at roots of unity together with the
already mentioned rule q7*q Y= —g*q".

As an dternative proof we may proceed similar as in [36] for the simply laced case.
This method turns out to be instructive with regard to particular applications as the
thermodynamic Bethe ansatz and it will illustrate the origin of the dlight difference
between (99) and the formulain [28]. First we notice that the scattering matrix may aso
be written as

. dt (it
Sj(9)==4/eXp[j(; ;@ij(t/ﬂ-)snh(7”' (121)
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Im(6)
27t 9y
27r(19;, +t;0y)

27(19;,

=270y

G

-2m(0p + tidH)
27t

Fig.2. The contours E;’f in the complex 6-plane. The bullets @ belong to poles resulting from
—id/d6In{1,1}, and the open circles  to poles of —id/d6#In{2,2},, for the situation B> 2H /(H + t;h).
When B <2H /(H +t;h) the polesat +27t;9, and +279, reverse their roles.

when we introduce the quantities
d ~ o .
¢i;(0) = _'%lnSj(e) and  ¢;(k) = '[7 do ¢;;(0)e'. (122)
Due to the differentiation in (122), we have the freedom of a normalization constant .#"
in (121), which may be fixed by some asymptotic condition. Acting now with —i times
the logarithmic derivative on the combined bootstrap identity (we concentrate here on

the case I, = 1) (82), multiplying with exp(ikf) and integrating thereafter with respect
to 6 we obtain

@fdo @ (0+ 0+ 1,0,) + (60— 6, —t,6,))e* = ZI”(p,J(k) (123)

Here . denotes the Cauchy principal value. Alternatively we may compute &;;(k)
directly. For this purpose we shift the Fourier integral into the complex plane and
integrate along the contours %Qi as depicted in Fig. 2.

Due to (83) we know explicitly the occurrence of the relevant blocks which will give
a contribution when we integrate along Z, *,

nmgS dog,;(0)e= (k) =2 [dog; (0 £ 0, 1,0,) € 7= neth  (124)

o—>®©
= zmsije+ 2min/n — g7l @F KOt i), (125)

On the other hand, the I.h.s. of (123) may be computed alternatively from the right-hand
sides of (124) and (125), such that we obtain

& (k/m) = 27( 8 — 4sinhk, sinhkdy,(2c0sht (8, + 0,,) —1);;") (126)

and therefore (99) by means of (121). The other cases when |;; = 2,3 may be obtained
similarly with the singularity structure as indicated in Fig. 2.

6. Reduction to the simply laced case

It is instructive to investigate how the general formulae valid for al simple Lie
algebras behave when we specialize to simply laced Lie algebras. Considering the data
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of X®, we notice first of al that there is no distinction anymore between H and h. The
length of all roots is the same in the simply laced case, such that t; = 1 for al i and the
incidence matrix becomes therefore symmetric. The g-deformed incidence matrix re-
duces now to the usual incidence matrix, i.e. [1;;]1, = I;;, since it does not have entries
different from 1. As a consequence, the g-deformed Wey! reflections in (6) become the
ordinary Wey! reflections, such that oyl — o). The map 7 commutes now with the
g, and therefore the g-deformed Coxeter element becomes

o,~0qv_ o, =qv, (127)
with o being the ordinary non-deformed Coxeter element of X{". Noting further that
co-weights become identical to weights, i.e. A, — A;, the generating function (69)
acquires the form

%:Mij(zx_

Ci+Cj y 1 2X7Ci+01
> ,y)q =-34 2 (A-0%y). (128)

G+

Hence we always have y=2x — and the only type of blocks which emerges is

2
{x,x}}. Therefore the block form of the scattering matrix reads

h c +c¢ c +c¢
§,(0) = IT {20~ =5~ 2a- -~

a-1 2

Ao
} , Xr(l) = ADE. (129)
0

This means that also conceptually the simply laced case admits a dlightly different
formulation. In the generic case we compute the powers of the building blocks indirectly
via a generating function, whilst in the simply laced case we may compute them
directly.

We can also consider the data of X¢" and undo the twist, which means that w — 1,
|, > 1 and t, — 1 for al i, such that the twisted g-deformed Coxeter element becomes

0y qv_o,.=Qq%. (130)

Therefore the generating function (74) becomes
¢+
c+c

) 2y
Zyij(X,Zy_ ;)qxz _q—2
X

> > (A 0%), (131)

ci+g

which means that x=2y — and the only type of blocks which emerge are once

2
again { x,x},. Hence, the scattering matrix reduces aso in this anaysis to the form
(129).
The matrix inside the integral representation (99) for the simply laced case follows
likewise and acquires the form

. Bt (2-B)t 1
(Dij(t)=8$|nh(ﬁ)smh(T)(ZCosht/h—I)ij . (132)

Hence we have recovered the formulae of [19] or [36].

® The block {x,x}, corresponds to the block {x}, as defined in [19] or [36].
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7. Case-by-case

In order to illustrate the working of our general formulae it is useful to work them out
explicitly for some concrete examples. We concentrate here on the non-simply laced
case, since the simply laced case is covered extensively in the literature [9-16]. We will
be most detailed for the (G, D{>) case. Our conventions with regard to numbering and
colouring may be read off from the Dynkin diagrams. As usual the arrow points towards
the short roots. A black and white vertex corresponds to the colour value ¢, = —1 and

C; = 1, respectively.
Oy
dQ ~ Qg3

The S-matrices of the theory read [22—-24]

7.1. (G, D)

Su(6) = { ba; LSZ ;5,11} : (133)
) 0

S12(‘9) = {2:23; !1163 } ) (134)
, 0

S,(6) = {1,13; 5,33 ;3,53;5,73} : (135)

Here we indicated which block is responsible for which type of fusing process. We have
h=6 and H = 12 for the Coxeter numbers. With the help of (67), we easily verify that
for (133), (134) and (135) the following bootstrap identities hold:

Sy(0+ 0+ 60,4)S,(0—0,—04) =S(0) =12, (136)
Sy(0+ 26, +46,)S,(6— 26, —46,) =S,(6) 1=12, (137)
S, (0+ 20, +40,) S, (0 — 26, — 46, ) = S, (0) 1=1,2. (138)

As an example for the working of the generalized bootstrap and our criterion provided in
Subsection 4.4.4, we plotted the imaginary part of the residues of S,,(9) in Fig. 3 for
several poles. We observe that the sign changes throughout the range for poles resulting
from {1,1,} and {3,5,}. Only the poles responsible for the self-coupling of particle 2 have
a positive imaginary part of the residue throughout the range of the coupling constant 3.
Except a B =4/3 where it is zero, such that this fusing process decouples.

Besides (136) the combined bootstrap identities (82) also yield

32(0+ 9h+30H)32(0_ 0h_30H) =Sl(0)51(0+20H)Sl(G_20H)'
(139)
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Fig.3. Theimaginary part of several residues of S,,(6) asafunction of the effective coupling constant.
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3/2 2

for | = 1,2. These equations may be derived from (136) and (137) or verified directly for
(133), (134) and (135), with the help of (67). The process corresponding to the
combined bootstrap identity (139) is depicted in Fig. 4.
Reading off the fusing angles from the bootstrap equations we obtain the mass ratios
according to (56),
m, sinh( 6, + 6,,)

= . 140
m, sinh(26, +26,) (140)

We may construct al these formulae from the Lie algebraic data in two aternative
ways.

7.1.1. §;(6) from G§

We start by exploiting the properties of G{". The non-vanishing entries of the
incidence matrix are 1, =1 and |, =3. Consequently Eq. (11) yields t; =1 and
t, = 3. As indicated in the Dynkin diagram we choose ¢, = —1 and ¢, = 1, such that
the g-deformed Coxeter element reads o, = o,'ta,'r. The result of successive actions of
this element on the simple roots is reported in Table 1. Here and in all further tables we
choose the following conventions: To each y; we associate a column in which we report
the powers of the q of the coefficients of the simple roots. We abbreviate

+(g4+ . +q ) a . (gF L +gH ),
—>ip&,...,,u,lll;...;,u%,...,,u%’, (141)

with r = rank g. When g* occurs x-times we denote this by u*. Like in the undeformed
case the overall sign of any element in (2, is definite. Therefore it suffices to report the

Fig.4. (GSY, D{»)-combined bootstrap identities (139).
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Tablel

The orbits (% created by the action of o* on v,

(qu ==Y Ay =72

1 4,6;4 —4,6,8,6

2 10;8 —-8,10,12;8,10
3 —12; % —%:12

4 —16,18;16 16,18,20;18

5 —22,20 20,22,24;20,22
6 24, x *,24

sign only once as stated in (141). In the complete orbit we always have an equal number
of plus and minus signs. When we do not report any signs in the column at al, the signs
of the column to the left are adopted. In case the coefficient of the root is zero, we
indicate this by a . For instance from Table 1 we read off: o,y, = —(q*+g®a, —
q4a2.

For the conventions chosen the generating functions (69) for the powers of the
building blocks are obtainable from the generating functions

Y nu(2x+1,y)q" = _ql(xl'(o-q)xyl)/z’ (142)
y
Y na(2x,y)qY = _q_z(xl‘(o'q)xyz)/zl (143)
y
Y ma(2x—-1y)q¥ = _q_3[3]q(xz‘(‘7q)x')’2)/2- (144)

y

We may now read off the Lie algebraic data from the Table 1 and we can construct the
scattering matrices (133), (134) and (135) according to formula (59).

The two non-eguivalent solutions to (42) corresponding to the Smatrix bootstrap
Egs. (136), (137) and (138) read

Qog it A v =0, q My +aogtyi=09"%,, (145)
qsffq_ Yy, + q_SUq'Yl =q Y, Q%+ qsa'q_z')’l =(qoy o (146)
qQ0qY2 + 0y, =A%, Aoy, + %%, =07y, (147)

respectively. These relations may be obtained either from (136), (137) and (138)
together with the formulae which relate the fusing angles to the solution of the fusing
rules in terms of the g-deformed Coxeter element (57) or alternatively they may be read
off directly from Table 1. For a direct comparison with (57) one should cross al term to
one side of the equation by means of (19).

It is also instructive to consider explicitly the matrix representation and verify the
general formulae of Section 5. The doubly g-deformed Cartan matrix for generic g and
g reads

g +q gt -1

K1, =
[ -(1+9°+9?%) w@+q g’

(148)
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with determinant det{ K], =9°G* + g~ g~ * — 1. The right nullvectors are evaluated to
y(1) = (sinh( 6, + 6,,),snh(26, + 26,,)), (149)
y(2) = (sinh(56,, + 56,, ) ,Sinh(106,, + 106, )). (150)
From (148) we compute the M-matrix according to (107)

M(a.d)
qa+ a’q’ 1+0?+q°?
_ 1— q12q24 1— q2q4 + q4q8 q2q4 + q*Zq*A -1
1+8°+q°? (qa+a’a®)(1+a*+7a%)
q2q4+ q*qull_ 1 1+ q2q4+ q4q8
(1+ 9254 - q°q12 — ngm)(qq+ 9%) (1+q%+ q—Z)(qqu+ qg® — q1°g%° — qaqls)
2 2
B (1+ 92 + q—Z)(qzqzt+ q%g® — q0q%° — q8q16) 1+ a2 + q4)(qq+ q3q3)(1 + g2 — g%q* - qsqus)
2 2
(151)
Evaluating the M-matrix at M(q(i7s,),q(iws,)) leads to
M Calio) o 2iv/3 (1 + 2coshfy,) (1 15
- | s | = — - ; . ,
i(acim),gdim)) snh(0h+0H)anh(20h+20H)y( )%(D) (152)
M Ca(5im) G5 —2iV3(1+ 2cosh(56,,)) (2
i | 1 | = - - i i 1
1(aGIm).a0I™) = G50, + 56, ysinh(108, + 106, ¥ (2 ¥ ()
(153)

which confirms Eq. (108) including also the precise factor of proportionality.

7.1.2. §;(6) from D{

Instead of using the data from G$, we can also employ the properties of D{®. As
indicated in the Dynkin diagram, we choose the values of the bi-colouration to be
¢, = —land c,=c;=c, = 1. Our conventions for the incidence matrix 1, the action of
7 on the simple roots and the action of the automorphism » on the simple roots are

0 1 1 1 gy oy

|1 0 0 o - _ | %, | e

=17 o o o (@ o | o(a) o (154)
1 0 0O o, oy

The lengths of the orbitsare |, =1, |, =1; =1, = 3 and the g-deformed twisted Coxeter
element reads therefore G, = ™ 'G,7G,". Successive actions of this element on the
representatives of (2, are reported in Table 2.
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Table2 .
The orbits ()% created by the action of 6,* on v,
3, d= -5 & =73
1 2k =22
2 20k %2 —2;%:4:2
3 2:2:4; % —-24,2,4,4
4 R | —4;4,6;4
5 44, % —4;4; %6
6 — 6w — %06 % ®
7 — ;%8 8 #.8; %
8 —8;%:;%:8 8;+;10;8
9 —8;8;10; 8,10;8;10;10
10 —;%;%;10 10;10;12;10
11 —10;10; #; * 10;10; *;12
12 127 5y #1120 %
For the generating functions (74) we obtain
S A\ YA
ZVll( X,2y+1)q*= _Q()\l'(‘fq) 71)/2’ (155)
X
o ANYA
Y rn(x2y)a = — (%, (8,)'%:) /2. (156)
X
X __ -1 3 ~\Y2
Zsz(X-zy_l)q =—q ()\2'(%) 'Yz)/za (157)
X

which yield the scattering matrices (133), (134) and (135) with the help of Table 2.
The two non-equivalent solutions to (46) corresponding to (136), (137) and (138)
read

1 + G Y1 =093 . G4¥1 + 997 = 3,73, (158)
a0, Y1+ a0y =a7 0y . a6y a0, i =a 0 (159)
Q%05 + Q03 =093+ Q0Ys+ 9 0% = 6595 (160)

respectively. These relations may be obtained either from (136), (137) and (138)
together with the relation which relates the fusing angles to the solution of the fusing
rules in terms of the g-deformed twisted Coxeter element (57) or alternatively they may
be read off directly from Table 2. Exploiting the relationship between the different
versions of the fusing rules (57), we may also obtain (158), (159) and (160) from (145),
(146) and (147).

7.2. (F{V E®)
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The S-matrices of the theory read [17,18]
Su(6) ={1.1,;5,7,;7,9,;11,15,} ,,
SL(0) ={23,;45,;6,7,;6,9,;8,11,;10,13,} ,
Sis(0) ={3.4,;56,;7,10,;9,12,} .,
Su(60) ={45,;811,},,
S,(0) ={1,1,;3,3,;35,:5,5,;5,72;7,92;7,11,;9,11,;9,13,;11,15,}
S;s(0) ={2,2,:4,4,,4,6,;6,83;8,10,;8,12,;10,14,}
Su(0) ={3.3,15,7,;7,9,;9,13,} ,
Su(0) ={1,1;33,,5,7;5,7,:7,9,;7,11;9,13,;11,17} ,,
Su(60) ={2,2;4,6:6,8,:8,12;10,16} ,,
Su(0) ={1,1;5,7;7,11;11,17},..

We have h=12 and H = 18 for the Coxeter numbers. We will not report here all
boostrap identities, but we state the combined bootstrap identities (82)

Su( 0+ 6,+26,)S,(0—6,—26,) =S,(0), (161)
S0+ 0,+260,4)S,(0—0,—20,) =S.1(0)S3(0— 0,4)S5(0+6,), (162)
Sy (0+ 0y + 6,)S5(0— 0, — 0y) =S,(0)S4(0), (163)
Sy(0+ 60y + 60,4)Sy (60— 0, — 0,4) =S3(0), (164)

for | = 1,2,3,4. Once again there occurs one eguation which is more involved than the
usual bootstrap, which we depict in Fig. 5. Reading off the fusing angles from the
bootstrap equations we obtain the mass ratios from (56),

m o sinh( 6, +26,) m o sinh(36, + 56,) (165)
m,  sinh(106, + 146,,) ' m,  sinh(76, + 106,,)

m o sinh(36,, + 56, ) m sinh(96,, + 156,) (166)
m, sinh(26,+36,) ' m,  sinh(26,+26,)

m sinh(96,, + 156,) m sinh(26,, + 26) (167)
m, sinh(6,+6,) m, snh(6,+6,)

Asin the previous case these formulae can be re-constructed from the twisted as well as
the untwisted Lie algebra.

14

Fig.5. (F{Y, E®)-combined bootstrap identities (162).
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7.2.1. §;(0) from F{"

According to our conventions the g-deformed Coxeter element reads o, =
olojrayo, 7. The result of successive actions of this element on the simple roots is
reported in Table 3.

By using Table 3 we may recover the (F{,E{®)S-matrices with the help of
generating functions (69). The two non-equivalent solutions of the fusing rule in 0, are

V+a Yoy =a %%y, oty + 9%y =% %, 1=1234,
i+ 9 0y, =0y, oty +aY v = oy tys,
’)/2 + q7140'q5'}/1 = Yl ’ q74'}’2 + q140-(]76’)/1 = Uc;l’yl 1

O e

a9~ %y, + 9%y %5 = ¥y %y,

Yat q720q74 = Y3
Yat q_le >

o-q 73 = q_16 >
Y1t q7150-q5’),3 =q ! q474 ,

(Tq 74 ’
(fc;lyl + qlso'(;673 = qgffc;47’4 ,

v+ q’90q3y4 = q’3crq73 , Ucflyl + q7(1'(;374 = QSU'JZ'Ya '

Y3+ (:]_140'(]5’)/4 = q‘3crqvl ) O'q_l’)’s + q12‘7q_574 = qso'q_z'h ,
Yo+ A 0y =0 oy, S A 2 I A 7
Y2t q_150q574 =0qvs, q %y, + q130'q_5')’4 = q_qu_ Ya

Y3t q740-q2’Y4 = q730-q),2 ' O'c;lys + q20;274 = q710;172 ;
Yat q_80'q374 = q_ag'q'}’l ; q %y + q60'q_374 = q30'q_27’1 ;
Yat q—130_q4y1 = q_loa'q374 ) q 2y, + q13(7q_5'}’1 = q80'q_374 .

Once again we can confirm from these solution the equivalence of the bootstrap
equations and the fusing rules by means of (57) and also verify the relation for the mass

ratios (56).

Table3

The orbits (2% created by the action of o* on v

(qu 0 ="""1 A3 ="73 A =72 Ay ="Ya

1 #,4,3,5; * 3,3,2,4,2 —4,4,3,5; * %22

2 6:6;5,7;5,7 5:5,7,62,8:6 —6:6,8,5,72,9;5,7 5:5;6; *

3 8,8,10;9,11; 9,9%,8,102;8,10 —8,10;8,10%;9%,11%,9,11 %,9;8,10;8
4 %;12;11,13;11,13 11;11,13;12,14;12 —12;122,14;11,13%,15;11,13 11;11;12;12
5 14;14; = = %:15:16;16 —14;14,16;15,17;15,17 #;15;16;
6 —18; ;%% %% 18 % — %18 % % #7% %18
7 — %;22,21,23; 21;21;20,22;20 22;22;21,23; #;%20;20
8 —24:24:2325:2325  23;23,25,24%,26;24 24;24,26,23,252,27:23,25 23;23;24;
9 —26,26,28;27,29; * 27,27%,26,28%,26,28  26,28;26,28%;272,292;27,29 %:27,26,28,26
10 — %;30;29,31;29,31 29;29,31;30,32;30 30;302,32;29,317,33;29,31 29;29;30;30
11 —32,32; % ;% %;33;34;34 32;32,34;33,35;33,35 %;33;34; *
12 36; % ;% * ® ;3% 1306, * #;30; % ;% %% %36
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7.2.2. 5,(6) from E?

The ¢-deformed twisted Coxeter element in our conventions reads &q =
o 5687575, We report successive actions of this element on the representatives of
0 in Table 4. .

Using the orbits Q9 listed in Table 4 we recover with help of the generating
functions (74) the (F”, E®’) S-matrices. The two non-equivalent solutions to the fusing
rulein (2, read

WHACH=a 0 H . G+ N =A%y, 1=1234,
YIHAGHT=A 65 . 9+ A% = AG,Ys

Yo+ QI CHI =G . G+ a6 N = v

WHAG =V G+ A = a5

VA 6y =a 6N 6P T a6, = a6,

Y+ 'Y =a 0y . 90+ 9%, %5 =95 %
Yi+a 6 =a7%y5 . 99,91+ 9%, %% =9%5
Vi+a 6 =a %6 . 90Ys + 9" v =a%1
Vs+aq Yo s=a %y . 6+ 9%, T =90
Y+ =%, 0+ 9%, % =9,95

Y5+ a7 63 =a7%0,Y; . A0, ¥3+ a9 =ad0,95

Y+ A0 =a G . 6 A%, W =a%r

Vit a oy =a 6N . 6+ 9" H =%,

Again we confirm from these solution the equivalence between the bootstrap
equations and the fusing rules by means of (57) and also verify the relation for the mass
ratios (56).
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Table4
The orbits 0 created by the action of Gy on vy,
&qx ag=—%] az=-7%;3 a,=%; ay=%
1 O s 5 o o o [ 22:2,2 — ey 2,22 220 %
2 ®)%,2,%,2 % 2;2;2;%4,4 —2,2,2,4,4,4,4 %0 w0 w44
3 x224444 44,4744, % —4,4,4,4,4,6,6 il
4 4444606 #;4;4,6,6,6%,6 —6;4,6,4,6%,6,6%,6 *;%,6;6;6; *
5 6;6;6; *;6; 6,62;6%;6;8;8 —6;6%,6%,8;6,8;8%;8 #:6:6;%:8;8
6  %,6,6888; 88;8,8;8; —8,8%;8%,8,8,10;10 8,8,8,8; x;
7 %:8;8;8;10;10 %:8;8; %,;10; * —10;8,10;8,10;10;10; * w5 %10; %
8 10:10; = ;% ;5 % %;10;10;10; * ; = — %;10;10;10;12; = #;10;10; ;%
9 — k%12 R A — 2wk w% EREE N A
10 — 12wk *;%:;14,14,14;14 #;% 14, %;14,14 w0 14,14 % ;%
11 — %14y %14, % 14;14,14; = ;16;16 14;14;14,16;16;16;16 *5 %% %:16;16
12 —%;14;14,16;16;16;16  16;16;16%;16;16; * 16;16;162;16;16,18;18 16;16;16; * ; = %
13 —16;16;16;16;18;18 +;16;16,18;18;18%,18  18,16,18;16,18%;18;18%,18  *;+,;18;18;18;

14  —18;18;18;%;18;*
15 — %,18;18,20;20;20; *
16— #;20;20;20;22;22
17 —22;22; % ;%% %

18 wywiwiww 24

18;182;182;18;20;20
20;20;20;20;20; *
#,20;20; % ;22; *
%,22,22;,22; % ;%

ey o 20

18;182:182,20:18,20;20%;20
20;202;202;20;20,22;22
22:20,22;20,22;22:22; *
%,22,22;22;24; *

N N

%:18;18; ;20,20
20;20;20;20; * ; *
sk kK220 %
#2222 %k

serk w24 %

7.3. (C, DY)

(o7} Q9 an-—2 QON-1, QN
o—o- —o——cio
¢ = —1if N even

The S-matrices are given as

Su(0) ={1,1;3,5},,

512(‘9) = {szz}e )

S,(0) ={1,1,:33,},-

We have h =4 and H = 6 for the Coxeter numbers. The combined bootstrap edquations

(82) yield

Sll(0+0h+ HH)Sll(G_Oh_ 9H) =Sz(9)v

Su(0+0,+260,,)S,(0—0,—20,) =S(0—0,)S.(60+06,).

for | = 1,2 (see Fig. 6).

Fig.6. (CY, D¥)-combined bootstrap identities (169).

(168)
(169)
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Table5

The orbits 2% created by the action of gyt on vy,

oy* a="" @ =72
1 4;3 —-354
2 —6;* — %6
3 -10;9 9,11;10
4 12; % %;12

The mass ratio according to (56) are

m, sinh( 6, + 6)

— = 170
m, sinh(26, +46,) (170)

7.3.1. S,(6) from C{":
The result of successive actions of the g-deformed Coxeter element on the simple
roots is reported in Table 5.

The two non-equivalent solutions to the fusing rule in (2, read
Y1t q720q71 = q730q72 ; 0'4;1717’1 + qzac;zyl = q710'q7172 )
')’1+q770' =q “ 041 oy ’)/1+CIO' 2y, = QO' %y, .
7.3.2. §(6) from D@
The result of successive actions of the g-deformed twisted Coxeter element on the

simple roots is reported in Table 6.
The two non-equivalent solutions to the fusing rule in _(2 read

yitda 0' =q 0'721 9%, 7’1"'(3171 9%, 72-
> ~45 3 4n—1. 4~ 1.
¥i+4 2= 0, 90T A6 =0
Table 6 ~
The orbits ()% created by the action of 6* on %
" ay= ¥ d=%
1 )2 —2;%;2
2 2;2; % —2,2,4
3 — 4 — x4 %
4 — #;%6 6, +,6
5 —6;6; * 6;6;8
6 8% #.8;




A. Fring et al. / Nuclear Physics B 567 [FS (2000) 409-453 447
Table7
The orbits 29 created by the action of ¢* on ;
‘qu A=Y a3 =73 Ay ==—7%2
1 —2,2;% %,3,5;4 2:2,4;3
2 — %;6;5 5,7,5,7,6 6;6;5
3 — 8% % %8 — %8
4 10;10; %:11,13;12 —10;10,12;11
5 #:14;13 13,15;13,15;14 —14;14;13
6 16; * ;= * %16 %16 *

7.4. (C D)

The S-matrices are

Su(6) ={1.15,

S,(0) ={1.1;3.3,:5,7},,

Ure

512(9) = {2:2;4:6}9 ,
Si(0) =1{2,2,;4,4,},,

Si(60) ={1,1,:3,3,:5,5,},

Sia(0) = {3.3:}-

We have h= 6 and H = 8 for the Coxeter numbers. The combined bootstrap identities

read

Sy(0+ 6+ 64)S(0—0,—04) =S,(0),
9H) 231(0)33(9)1

S(0+0,+60,)S,(0— 6, —
Sy (0+ 0, +26,)S;(0— 6, —

The mass ratios turn out to be
m, sinh( 6, + 6y)
m,  sinh(46, + 66,,) '
m,  sinh(26, +26,)
m,  sinh(36, +56,)

7.4.1. S,(6) from C{"

20H) =32(0_0H)SZ(0+ HH)-

m, sinh( 6, + 6y)

m,  sinh(36, +56,) '

(171)
(172)
(173)

(174)

The result of successive actions of the g-deformed Coxeter element on the simple
roots is reported in Table 7.
The solutions of the fusing rulein 029 are

yitad ‘73’1 Y2

yita 0")’2

q 0")’11

vyita ‘772 q? 04Y3

Y1+ aq 0")’3

Y2t a 0'73

q 0972 s

q (7711

q %yt oyt =

q_z'}’l + q60'q_372 =

q ')’1+q0' 72

q 'Yl"'qo' 73

— -3, —
Jq 172 + q50.q Y3 =

-1
a-q Y2

q40'q_2')’1 ,
q 0' Ys,
q 0' 72 )

q4Uq_ %y, .



448 A. Fring et al. / Nuclear Physics B 567 [FS (2000) 409-453

Table 8

The orbits 0 created by the action of Gy* on %'

&qx Q= 3’; az=7%3 G,=-%;
1 — 2,25 % 72, %2 2,2;%,2

2 — k%4 4,2,4;2,4 %:2:2:4

3 — %44, % 4:4,4,6 4:4,4; %

4 — Bk ® % 0] % — %6 % ®
5 88 * #;8%:8 —88,+;8
6 w0% %10 10;8,10;8;10 — %:8;8;10
7 %,;10;10; * 10;10;10;12 —10;10;10; *
8 12; 5 ;% % w0 w120 % #1120 5% %

7.4.2. 5,(6) from DY

The result of successive actions of the g-deformed twisted Coxeter element on the
simple roots is reported in Table 8.

The solutions of the fusing rulein 029 are

Vi e = G A= as
VIHACH =a 0N G+ A% = a6
Y+ A ¥, =0 Gys . O+ A% =aG,Y;
;)*/1-4_ q—46_q3:)*,3—= q—Z&qZ:}\/; , 6’2”})I+ q46_q— 1;)*/%—= q46,q—1;}>;— ,
V3 +a°%6,935=a76H1 . qT,ys + 9%, H3=06, 51 .
7.5. (BY,A2)
Q1 0y QN2 QN-1 ON & G ay QaN-2 Q2N-1

o—0- -e—O)® O—O- e

. \—/
¢y =—-1if N odd ~

¢ = —1if N odd

The S-matrices read

Su(0) ={11,;33,},, S(0) ={22,},, S,»(0) ={1,1;35}4.

We have h=4 and H = 6 for the Coxeter numbers. The combined bootstrap identities
are

Su(0+ 6, +26,)S,(6— 6, —26,) =S5(0— 0)S2(0+ 64), (175)
S0+ 60, + 6,)S, (60— 60, — 6y) =Sy(6). (176)
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Table9

The orbits 2% created by the action of gyt on vy,

oy* ;=Y @ ="7%2
1 —4,35 34

2 —6;* — %6

3 10;9,11 -9;10

4 12; % %12

The mass ratio is

m o sinh(26, + 46,,) (177)
m,  sinh(6,+6,)

75.1. S,(6) from BV

The result of successive actions of the g-deformed Coxeter element on the simple
roots is reported in Table 9.

Solutions of the fusing rule in 21

v+ q_30'q72 =y, , q %y, + q30'q_2’)’2 = q_qu_l'Yz ;
v, + q‘zaqyz = q‘Squl , O'q_l')’2 + q20q_272 = q_ltfq_lh .
7.5.2. 5,(6) from A®
The result of successive actions of the g-deformed twisted Coxeter element on the

simple roots is reported in Table 10.
The solutions to the fusing rule in 29 read

S+ —2728+ _ o+ ~ 25t AA—1n4 _ 2~ A4
YitA 07V, =% »  Oq¥1+90, ¥:=0970,Y; ,
> —28 Ab_ 28 2 2~ 2 4ot _ 28 A
Y2+ Q%6 =0q Gy, A0+ 9% =00y -
Table10
The orbits (2% created by the action of 6% on ¥
Z G =7 G2=—%
1 —%;2:2 ® %02
2 -2,24 2,2, %
3 — 4% — x4
4 %:6:6 —*;%,6
5 6;6;8 —6,6; =
6 8% ;% %8 %
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Table 11
The orbits 2% created by the action of gyt on vy,
‘qu ==Y 3= "73 @ =72
1 #:4,3,5 3,34 —4,4;35
2 6,6; * *,7,8 —6,6,8,7,9
3 —10; % * #5%;10 — *,;10; %
4 — %;14;13,15 13;13;14 14;14;13,15
5 —16;16; = %;17;18 16;16,18;17,19
6 20; % ; * *;%,20 *,;20; %
1) A2

7.6. (B, AD)

The S-matrices read

Su(0) ={11;57},, S(0) = {23,145},

Si(0) ={1,1;3,5:5,9},,

S»(0) ={1,1,:3,3;;3,5,:5,75} , Si(0) ={22,;4.6,},,
Si(8) = {3-42}9-

We have h= 6 and H = 10 for the Coxeter numbers. The combined bootstrap identities
read

Su(0+ 6, +26,)S,(6— 0, —26,) =S,(0), (178)

%|(9+ 6h+20H)%I(0_ Hh_ZOH) = 31(9)33(9_ GH)SS(0+ GH)' (179)

S5 (0+ 6+ 6,)Sy (60— 0, — 6y) =S2(0) . (180)
The mass ratios are

m,  sinh(6,+26,) m,  sinh(26, +46,)

m, sinh(46,+66,) m, sinh(20,+36,)

m, _ sinh(46, + 86,,) (181)
m,  sinh(6,+6y)

7.6.1. §;(6) from B{Y

The result of successive actions of the g-deformed Coxeter element on the simple
roots is reported in Table 11.

The solutions of the fusing rulein 029 are

Y1t q740q71 = q740-q’)’2 ) 0';171 + q40];271 = O'c;l')’z )

,yl + qflOO_q?:,y2 — qfﬁo_qZ,yl , 0_(; 1,}/:L + qﬁa_l;S,yz — qﬁo_c;3,y1 ,
Y1t q770-q273 = q730q73 ) Uc;lyl + q7(7-(;373 = q30c;273 '
Yot 0 0=y, O %y, + 00y =0 0y ty,,
Y3+ q760'q273 = q730q71 ) U'Jl')’a + qso'(;&}’s = qaa_q—z,yl J

vs+ q*20q73 = q’strqyg , 05173 + quf({z?’a = qflUJle .
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Table 12

The orbits 0 created by the action of Gy* on %'

&q 0‘5=7§’1+ &3=7«A/§ a,=%;

1 (VR *H 22 — #1222
2 w2020 % 2,2;2; % ;% —2,2,2,4,4
3 #2244 wH A E — 4444«
4 A A — 44,6,
5 — % k%) %0 N SR — %0 %% %
6 — Bk %088 *;%,8,8,8

7 — % %;8;8; % 8;8;8; % * 8;8;8;10;10
8 — %:8:8;10;10 w0100 % 10;10;10;10; *
9 —10;10; 5 ; *; * #;10;10; *; * %;10;10;12; *
10 sk k]2 N A #0120 % % ®

7.6.2. 5,(0) from A®

The result of successive actions of the g-deformed twisted Coxeter element on the
simple roots is reported in Table 12.

The solutions of the fusing rule in Q9

YVi+AT AT =70y . A0+ A% =a7T,%;5
Vi+a %9 =a76%1 . 9991 + 9%, 55 =991
Yi+a 055 =a%y . 90 A%, Y5 =a%; .
Va6 =, G+ A% Y= a5
Vi+a0%5=a9%67 . 9G,¥; + A%, 5 =a%1 ,
Yo+ A G ys=a 0y . 9%+ =a,ys

8. Conclusion

We have systematically developed the properties of the g-deformed Coxeter element
and its twisted counterpart. The vanishing of the three-point coupling is governed by the
so-called fusing rules. They rules may be formulated either in the orbits 2., £, or £
and 2. The precise relation between these alternative rules is worked out (57). All of
these identities may be proven by appealing to physical arguments. The scattering
matrices of affine Toda field theories with real coupling constant related to any dual pair
of simple Lie algebras may be expressed in a completely generic way in terms of
combinations of hyperbolic functions whose powers are computed from generating
functions involving either g-deformed Coxeter elements (69) or aternatively twisted
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g-deformed Coxeter elements (74). The g-deformation appears to be vital in the
construction since it achieves that the properties of the two dual algebras are merged
together. It would be interesting to investigate whether it is possible at al to construct
generic formulae solely from non-deformed quantities as it is possible in the simply
laced case. However, it appears to us that the g-deformation is vital to describe
non-simply laced theories. Closely related to this is the question of how to derive the
g-deformed versions of the fusing rules directly from the non-deformed versions. We
have demonstrated that the proposed scattering matrices fulfill al the requirements of
the generalized bootstrap eguations. In particular, we established the equivalence of the
fusing rules and the generalized S-matrix boostrap equations. Furthermore, we provide a
simple criterion which alows to exclude poles from the participation in the bootstrap.

It isintriguing that the combined bootstrap equation (82) incorporates the information
of all individual fusing processes. These equations do in fact not constitute anything
new since they may aways be obtained from the individual fusing processes. They
correspond to particular graphs (see Figs. 5 and 6) of higher order.

The matrix [K],, plays a central role in several ways. The components of its
nullvectors constitute conserved quantities, e.g. the particle masses. We show how these
quantities are related to the fusing rules. The properties of the matrix [K],, are further
utilized in order to formulate a matrix M which serves to derive and prove a generic
integral representation for the scattering matrix. The same goal may be achieved by
exploiting the properties of the matrix [K],, which is related to the twisted algebra and
allows to define the matrix N. We established the equality between these two matrices.

It is interesting to note that the properties of the blocks are reflected by the
polynomial (104), such that we can carry out a one-to-one identification between {x, y},
and g*g”. In addition we can aso manipulate them in an identical way if we further
define %G~ Y= —q*g” in analogy to {—x,— y},={x,y}, * or choose q and § to be
roots of unity. This means we can treat the whole bootstrap properties in an entirely
polynomial fashion. .

From the matrix relation N= M one deduces immediately the equality w(x,y)=
v(X,y). However, it remains a chalenge to develop a more direct Lie algebraic
understanding of the equation.
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