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What do classical physicists measure?
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1795:

1960: 1650763.73 wavelengths of light from a specified transition
in krypton-86
1983: The metre is the length of the path travelled by light in
vacuum during a time interval of 1/299 792 458 of a second.
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A physical measurement is
• a real number (0.56826125)

• with a unit (litre or cm3 )

• and a mistake (±0.01 )

• interrelated by mathematical equations to other
measurements. (pV = nRT )

More examples of measurable quantities:
Length (meter,m)
Time (second,s)
Mass (kilogram,kg)
Temperature (kelvin,K)
Electric current (ampere,A)
Force (newton,N = kg m/s2)
Velocity (m/s)
Momentum (kg m/s)
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Why are quantitative measurements useful?
• You can find the shortest way

• You can decide which theory is “right” and which one is wrong
For example:
Aristotle:
The speed of a falling object dependents on its weight.
Galilei:
The speed of a falling object is independent of its weight.

⇒ Aristotle was wrong
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Why are quantitative measurements useful?
• You can predict what will happen in the future by constructing

an equation

• How do physicists construct equations?

height (m) falling time (s)

City University clock tower 21 2.02
Big Ben 80 4.04
Gherkin 170 5.89
Shard 306 7.90
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Why are quantitative measurements useful?

height = 1
2
g time2

gravitational acceleration: g = 9.81m
s2

Prediction: Burj Khalifa height = 828m

√
2× 828m/9.81 s2

m
= 12.99s
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Limitations, Assumptions and Approximations:
• Reductionist approach

e.g. neglect friction from air, shape of the falling object, ...

• Universality
challenged by gpole = 9.83, gequator = 9.78, gmoon = 1.63

• Falsification
Galilei’s equation approximates of Newton’s law of gravity,
which approximates of Einstein’s theory of general relativity
which approximates ??? Here is where research sets in

• Scientific realism
A classical theory represents an objective reality composed of
measurable primitive quantities.

Heisenberg: ”What we observe is not nature in itself but nature
exposed to our method of questioning.”
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Measuring two quantities at the same time
Velocity:

Location:
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There are mistakes in the measurements:

• mistake in measuring velocity: ∆v
• mistake in measuring the location: ∆x

In classical physics we can achieve ∆v → 0 and ∆x → 0.
It just depending on the precision of our instruments.

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 12/25

12/25



There are mistakes in the measurements:

• mistake in measuring velocity: ∆v
• mistake in measuring the location: ∆x

In classical physics we can achieve ∆v → 0 and ∆x → 0.
It just depending on the precision of our instruments.

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 12/25

12/25



There are mistakes in the measurements:

• mistake in measuring velocity: ∆v
• mistake in measuring the location: ∆x

In classical physics we can achieve ∆v → 0 and ∆x → 0.
It just depending on the precision of our instruments.

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 12/25

12/25



Heisenberg’s uncertainty relation:
In quantum mechanics we can no longer measure certain
quantities simultaneously:

∆x∆p ≥ ~
2

∆x : mistake in measuring x
∆p: mistake in measuring the momentum p (mass × velocity)
≥: greater or equal
~: reduced Planck constant, that is a constant of nature (like g)
Its value is 1.054× 10−34kg m2

s

= 0.0000000000000000000000000000000001054kg m2

s
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What does this mean?
Take ~ = 2:

∆x∆p ≥ 1

Demand ∆x = 1 ⇒ ∆p ≥ 1
Demand ∆x = 0.1 ⇒ ∆p ≥ 10
Demand ∆x = 0.01 ⇒ ∆p ≥ 100

...
Demand ∆x = 0.000001 ⇒ ∆p ≥ 1000000
Demand ∆x = 0 ⇒ ∆p →∞
Thus demanding to know exactly where the particle is implies
that we can not know its speed.
In turn, demanding to know exactly the speed of the particle
implies that we can not know its location.
This is a fundamental property of nature and does not depend on
our instruments!
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Where does this come from?
De Broglie: Every object in the universe is a wave.

Waves with different momentaSum of waves with momentum 1 and 2
Sum of several waves
Sum of 100 waves

Now we have a good localisation, but have used 100 different
momenta to achieve this.
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Classical particles

Concept and key properties:

• localised objects (lumps)

• no interference

• intensity is 0 or 1
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An interference experiment with classical particles

a) bullets go through slit 1 or 2 and are detected at the backstop
b) bullets go through slit 1 ⇒ P1 or (2 ⇒ P2)
c) bullets go through slit 1 or 2 ⇒ P12 = P1 + P2
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Classical waves

Concept and key properties:

• nonlocalised objects

• waves interfere

• intensity can take any value
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An interference experiment with water waves

a) wave goes through slit 1 or 2, height h1/2 detected at absorber
b) wave goes through slit 1 ⇒ I1 = |h1|2 or (2 ⇒ I2 = |h2|2)
c) wave goes through slit 1 or 2 ⇒ I12 = |h1 + h2|2 6= I1 + I2

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 19/25

19/25



An interference experiment with water waves

a) wave goes through slit 1 or 2, height h1/2 detected at absorber

b) wave goes through slit 1 ⇒ I1 = |h1|2 or (2 ⇒ I2 = |h2|2)
c) wave goes through slit 1 or 2 ⇒ I12 = |h1 + h2|2 6= I1 + I2

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 19/25

19/25



An interference experiment with water waves

a) wave goes through slit 1 or 2, height h1/2 detected at absorber
b) wave goes through slit 1 ⇒ I1 = |h1|2 or (2 ⇒ I2 = |h2|2)

c) wave goes through slit 1 or 2 ⇒ I12 = |h1 + h2|2 6= I1 + I2

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 19/25

19/25



An interference experiment with water waves

a) wave goes through slit 1 or 2, height h1/2 detected at absorber
b) wave goes through slit 1 ⇒ I1 = |h1|2 or (2 ⇒ I2 = |h2|2)
c) wave goes through slit 1 or 2 ⇒ I12 = |h1 + h2|2 6= I1 + I2

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 19/25

19/25



An interference experiment with electrons (e−)

a) always hear the same clicks in detector, e− arrive in lumps
Proposition: Each e− passes either through slit 1 or slit 2

b) block slit 2 ⇒ P1 = |φ1|2 or (block slit 1 ⇒ P2 = |φ2|2)
c) open slit 1 and 2 ⇒ P12 = |φ1 + φ2|2 6= P1 + P2

e− arrive in lumps, but interfere like waves
⇒ The proposition must be false.
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Watching the e−

a) we see a flash at slit 1 or 2 when e− passes through it

b) block slit 2 ⇒ P ′1 or (block slit 1 ⇒ P ′2)
c) open slit 1 and 2 ⇒ P ′12 = P ′1 + P ′2

when we watch e− it behaves like a particle.

⇒ The proposition seems to be correct.
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Can we modify the experiment?

• lower intensity
◦ dim the light
◦ same flash at slit 1 or 2 and click in detector → P ′1 or P ′2
◦ no flash at slit 1,2 and click in detector → P12 6= P ′1 + P ′2

• increased wavelength
◦ momentum is p = h/λ
◦ one can only resolve two distinct points up to the wavelength
◦ wavelength larger than distance from slit 1 to slit 2

Heisenberg’s uncertainty relation:
It is not possible to design an experiment so that we know the
position of the object without disturbing it.
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Modern variations of Heisenberg’s uncertainty relation:
We change now the right hand side of the inequality:

∆x∆p ≥ ~
2

(1 + (∆p)2)

Now we obtain a minimal length

We can never achieve ∆x = 0, even when ∆p →∞.
Below ∆xmin = 0 we can not know anything.

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 23/25

23/25



Modern variations of Heisenberg’s uncertainty relation:
We change now the right hand side of the inequality:

∆x∆p ≥ ~
2

(1 + (∆p)2)

Now we obtain a minimal length

We can never achieve ∆x = 0, even when ∆p →∞.
Below ∆xmin = 0 we can not know anything.

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 23/25

23/25



Modern variations of Heisenberg’s uncertainty relation:
We change now the right hand side of the inequality:

∆x∆p ≥ ~
2

(1 + (∆p)2)

Now we obtain a minimal length

We can never achieve ∆x = 0, even when ∆p →∞.

Below ∆xmin = 0 we can not know anything.

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 23/25

23/25



Modern variations of Heisenberg’s uncertainty relation:
We change now the right hand side of the inequality:

∆x∆p ≥ ~
2

(1 + (∆p)2)

Now we obtain a minimal length

We can never achieve ∆x = 0, even when ∆p →∞.
Below ∆xmin = 0 we can not know anything.

Andreas Fring A generalised version of Heisenberg’s uncertainty relation 23/25

23/25



If we knew what we were doing, it would not be called research,
would it?
Albert Einstein

It is a capital mistake to theorize before one has data.
Sherlock Holmes

It is a good thing for a research scientist to discard a pet
hypothesis every day before breakfast.
Konrad Lorenz

Nothing has such power to broaden the mind as the ability to
investigate systematically and truly all that comes under thy
observation in life.
Marcus Aurelius

Research is creating new knowledge.
Neil Armstrong
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