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What do

physicists do?

Measure what is measurable, and make
measurable what is not so.

(Galileo Galilei)

izquotes.com
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1795:

1960: 1650763.73 wavelengths of light from a specified transition
in krypton-86
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1795:

1960: 1650763.73 wavelengths of light from a specified transition

in krypton-86
1983: The metre is the length of the path travelled by light in
vacuum during a time interval of 1/299 792 458 of a second.
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A physical measurement is
* a real number (0.56826125)
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A physical measurement is
* a real number (0.56826125)

e with a unit (litre or cm® )
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A physical measurement is
a real number (0.56826125)
e with a unit (litre or cm® )

* and a mistake (£0.01 )

e interrelated by mathematical equations to other
measurements. (pV = nRT)
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A physical measurement is
* a real number (0.56826125)
e with a unit (litre or cm® )
 and a mistake (£0.01 )

e interrelated by mathematical equations to other
measurements. (pV = nRT)

More examples of measurable quantities:
Length (meter,m)
Time (second,s)
Mass (kilogram,kg)
Temperature (kelvin,K)
Electric current (ampere,A)
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A physical measurement is
a real number (0.56826125)
e with a unit (litre or cm® )

* and a mistake (£0.01 )

e interrelated by mathematical equations to other
measurements. (pV = nRT)

More examples of measurable quantities:
Length (meter,m)
Time (second,s)
Mass (kilogram,kg)
Temperature (kelvin,K)
Electric current (ampere,A)
Force (newton,N = kg m/s?)
Velocity (m/s)
Momentum (kg m/s)
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You can find the shortest way
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You can find the shortest way

You can decide which theory is “right” and which one is wrong
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Why are quantitative measurements useful?
You can find the shortest way

You can decide which theory is “right” and which one is wrong
For example:

Aristotle:

The speed of a falling object dependents on its weight.

Galilei:

The speed of a falling object is independent of its weight.
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Why are quantitative measurements useful?
You can find the shortest way
You can decide which theory is “right” and which one is wrong
For example:
Aristotle:
The speed of a falling object dependents on its weight.
Galilei:
The speed of a falling object is independent of its weight.
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Why are quantitative measurements useful?

You can predict what will happen in the future by constructing
an equation
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You can predict what will happen in the future by constructing
an equation

How do physicists construct equations?

| height (m) | falling time (s)
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Why are quantitative measurements useful?

You can predict what will happen in the future by constructing
an equation

How do physicists construct equations?

h=)

| height (m) | falling time (s)
City University clock tower ‘ 21 ‘ 2.02
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Why are quantitative measurements useful?

You can predict what will happen in the future by constructing
an equation

How do physicists construct equations?

| height (m) | falling time (s)
City University clock tower 21 2.02
Big Ben 80 4.04
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Why are quantitative measurements useful?

You can predict what will happen in the future by constructing
an equation

How do physicists construct equations?

h

| height (m) | falling time (s)
City University clock tower 21 2.02
Big Ben 80 4.04
Gherkin 170 5.89
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Why are quantitative measurements useful?

You can predict what will happen in the future by constructing
an equation

How do physicists construct equations?

h

falling time (s)
City University clock tower 2.02
Big Ben 4.04
Gherkin 5.89
Shard 7.90

Andreas Fring A generalised version of Heisenberg's uncertainty relation @




Why are quantitative measurements useful?

Andreas Frin A generalised version of Heisenberg's uncertainty relation
g 8 g Ly



Why are quantitative measurements useful?

City Tower
Big Ben
Gherkin
Shard
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Why are quantitative measurements useful?

City Tower
Big Ben
Gherkin

Shard
time

gravitational acceleration: g = 9.815
S
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Why are quantitative measurements useful?

* City Tower
* Big Ben
* Gherkin

+ Shard
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Limitations, Assumptions and Approximations:

e.g. neglect friction from air, shape of the falling object, ...
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challenged by gpole = 9.83, equator = 9.78, gmoon = 1.63
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Limitations, Assumptions and Approximations:

e.g. neglect friction from air, shape of the falling object, ...
challenged by gpole = 9.83, equator = 9.78, gmoon = 1.63

Galilei's equation approximates of Newton's law of gravity,
which approximates of Einstein's theory of general relativity
which approximates ?77 Here is where research sets in
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Limitations, Assumptions and Approximations:
e.g. neglect friction from air, shape of the falling object, ...
challenged by gpole = 9.83, equator = 9.78, gmoon = 1.63

Galilei's equation approximates of Newton's law of gravity,
which approximates of Einstein's theory of general relativity
which approximates ?77 Here is where research sets in

A classical theory represents an objective reality composed of
measurable primitive quantities.
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Limitations, Assumptions and Approximations:

e.g. neglect friction from air, shape of the falling object, ...
challenged by gpole = 9.83, equator = 9.78, gmoon = 1.63

Galilei's equation approximates of Newton's law of gravity,
which approximates of Einstein's theory of general relativity
which approximates ?77 Here is where research sets in

A classical theory represents an objective reality composed of
measurable primitive quantities.

Heisenberg: "What we observe is not nature in itself but nature
exposed to our method of questioning.”
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Measuring two quantities at the same time

Velocity:
|
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Measuring two quantities at the same time
Velocity:

Location:
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There are mistakes in the measurements:

e mistake in measuring velocity: Av
e mistake in measuring the location: Ax
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There are mistakes in the measurements:

e mistake in measuring velocity: Av
e mistake in measuring the location: Ax

Driver wins speeding ticket battle after
proving that the road markings used by

y camera to indicate speed were the wrong
distance apart

« David Erasmus, 55, was sent a ticket for allegedly speeding past a primary
» He noticed markings used to work out speed were three inches too short

. His case was formally dismissed after a trial at Llanelli Magistrates' Court
« Decision means other drivers may be able to appeal their convictions

By HANNAH PARRY FOR MAILONLINE
PUBLISHED: 1810, 12 December 2014 | UPDATED: 00:52, 13 December 2014,
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There are mistakes in the measurements:

e mistake in measuring velocity: Av
e mistake in measuring the location: Ax

Driver wins speeding ticket battle after
proving that the road markings used by

§ camera to indicate speed were the wrong
ll distance apart

« David Erasmus, 55, was sent a ticket for allegedly speeding past a primary
» He noticed markings used to work out speed were three inches too short

. His case was formally dismissed after a trial at Llanelli Magistrates' Court
« Decision means other drivers may be able to appeal their convictions

By HANNAH PARRY FOR MAILONLINE

"""""" PUBLISHED: 1810, 12 December 2014 | UPDATED: 00:52, 13 December 2014,

In classical physics we can achieve Av — 0 and Ax — 0.
It just depending on the precision of our instruments.
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Heisenberg's uncertainty relation:

In quantum mechanics we can no longer measure certain
quantities simultaneously:

AxAp >

h
2
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Heisenberg's uncertainty relation:

In quantum mechanics we can no longer measure certain
quantities simultaneously:

AxAp >

h
2

Ax: mistake in measuring x
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Heisenberg's uncertainty relation:

In quantum mechanics we can no longer measure certain
quantities simultaneously:

AxAp >

Ax: mistake in measuring x
Ap: mistake in measuring the momentum p (mass x velocity)
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Heisenberg's uncertainty relation:

In quantum mechanics we can no longer measure certain
quantities simultaneously:

AxAp >
Ax: mistake in measuring x

Ap: mistake in measuring the momentum p (mass x velocity)
>: greater or equal
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Heisenberg's uncertainty relation:

In quantum mechanics we can no longer measure certain
quantities simultaneously:

AxAp >

Ax: mistake in measuring x

Ap: mistake in measuring the momentum p (mass x velocity)
>: greater or equal

h: reduced Planck constant, that is a constant of nature (like g)
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Heisenberg's uncertainty relation:

In quantum mechanics we can no longer measure certain
quantities simultaneously:

AxAp >

h
2

Ax: mistake in measuring x

Ap: mistake in measuring the momentum p (mass x velocity)
>: greater or equal

h: reduced Planck constant, that is a constant of nature (like g)
Its value is 1.054 x 10_34kg"’?2

= 0.0000000000000000000000000000000001054kg"’?2
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What does this mean?
Take h = 2:

AxAp >1
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What does this mean?
Take h = 2:

AxAp >1
Demand Ax=1= Ap>1
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What does this mean?
Take h = 2:
AxAp >1

Demand Ax=1= Ap>1
Demand Ax =0.1 = Ap > 10
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What does this mean?
Take h = 2:

AxAp >1

Demand Ax=1= Ap>1
Demand Ax =0.1 = Ap > 10
Demand Ax = 0.01 = Ap > 100
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What does this mean?
Take h = 2:

AxAp >1

Demand Ax=1= Ap>1
Demand Ax =0.1 = Ap > 10
Demand Ax = 0.01 = Ap > 100

Demand Ax = 0.000001 = Ap > 1000000
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What does this mean?
Take h = 2:

AxAp >1

Demand Ax=1= Ap>1
Demand Ax =0.1 = Ap > 10
Demand Ax = 0.01 = Ap > 100

Demand Ax = 0.000001 = Ap > 1000000

Demand Ax =0 = Ap =

Thus demanding to know exactly where the particle is implies
that we can not know its speed.
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What does this mean?
Take h = 2:

AxAp >1

Demand Ax=1= Ap>1
Demand Ax =0.1 = Ap > 10
Demand Ax = 0.01 = Ap > 100

Demand Ax = 0.000001 = Ap > 1000000

Demand Ax =0 = Ap =

Thus demanding to know exactly where the particle is implies
that we can not know its speed.

In turn, demanding to know exactly the speed of the particle
implies that we can not know its location.
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What does this mean?
Take h = 2:

AxAp >1

Demand Ax=1= Ap>1
Demand Ax =0.1 = Ap > 10
Demand Ax = 0.01 = Ap > 100

Demand Ax = 0.000001 = Ap > 1000000

Demand Ax =0 = Ap =

Thus demanding to know exactly where the particle is implies
that we can not know its speed.

In turn, demanding to know exactly the speed of the particle
implies that we can not know its location.

This is a fundamental property of nature and does not depend on
our instruments!
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Where does this come from?
De Broglie: Every object in the universe is a wave.

Andreas Fring A generalised version of Heisenberg's uncertainty relation @



Where does this come from?
De Broglie: Every object in the universe is a wave.

Andreas Fring A generalised version of Heisenberg's uncertainty relation @



Where does this come from?
De Broglie: Every object in the universe is a wave.
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Where does this come from?
De Broglie: Every object in the universe is a wave.

------ sum of 2 waves
------ sum of 3 waves
sum of 4 waves

—— sum of 5 waves
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Where does this come from?
De Broglie: Every object in the universe is a wave.

— sum of 100 waves
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Where does this come from?
De Broglie: Every object in the universe is a wave.

— sum of 100 waves

Now we have a good localisation, but have used 100 different
momenta to achieve this.
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Classical particles
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Classical particles

Molecule Atom Nucleus Nucleon

Composed of two or Electrons revolving Composed of protons Protons and neutrons

more atoms around the atomic and neutrons comprising the nucleus of
nucleus Located in the center an atom

(Example) == of an atom

Molecule of water o . Neutron

Oxygen atom _—

==
Electron —«

Nucleus

Proton

Concept and key properties:
localised objects (lumps)
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Classical particles

Molecule Atom Nucleus Nucleon

Composed of two or Electrons revolving Composed of protons Protons and neutrons

more atoms around the atomic and neutrons comprising the nucleus of
nucleus Located in the center an atom

(Example) == of an atom

Molecule of water e S Neutron

Oxygen atom __— Neutron

Electron —s_ 7} 4 .
Nucleus =7 To/T 5o __.~ =
-~ {2\ | N Protan\\
I e

Hydrogen atom

Proton

Concept and key properties:
localised objects (lumps)

no interference
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Classical particles

Molecule Atom Nucleus

Composed of two or Electrons revolving Composed of protons
more atoms around the atomic and neutrons

nucleus Located in the center
(Example) == of an atom
Molecule of water s

Oxygen atom __— Neutron

~ )
Electron —s_ 7} 4 .
Nucleus =7 | _ ‘

Hydrogen atom

Concept and key properties:
localised objects (lumps)
no interference

intensity is 0 or 1

-~ [ 4", | N Protan\\
I e

Nucleon

Protons and neutrons
comprising the nucleus of
an atom

Neutron

Proton
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An interference experiment with classical particles
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An interference experiment with classical particles

MOWVABLE
DETECTOR
v 1 =
- L x
o .hI
O - e el i s s s o = N
I:::l 3\::—.._ g
GUN \,‘:. 712
WALL BACKSTOP

(a)

a) bullets go through slit 1 or 2 and are detected at the backstop
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An interference experiment with classical particles

L
] MOVABLE
[{ DETECTOR
=] Py
v /1
L _dal e
el % LI
o v P e BN
O €557
-~
N R g A
/
]
WALL BACKSTOP

(a) (b)

a) bullets go through slit 1 or 2 and are detected at the backstop
b) bullets go through slit 1 = P; or (2 = P,)
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An interference experiment with classical particles

MOVABLE
DETECTOR
7 =1 Py Pz
- (41 x
e
[b &= ----F}--—---= -
"\«-.:—-L ¢
GUN e M2 B,
WALL BACKSTOP Po=RA1+hA

(a) (b) (c)

a) bullets go through slit 1 or 2 and are detected at the backstop
b) bullets go through slit 1 = P; or (2 = P,)
c) bullets go through slit 1 or 2 = P, = P, + P,

17 /
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Classical waves
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Classical waves

VWA WWW

Ulraviolet  Keray  Gamma ray
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Classical waves

Concept and key properties:
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Classical waves

Concept and key properties:

nonlocalised objects
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Classical waves

Concept and key properties:

nonlocalised objects

waves interfere
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Classical waves

Concept and key properties:

nonlocalised objects
waves interfere

intensity can take any value
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An interference experiment with water waves
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An interference experiment with water waves

Sousci// - j

WALL ABSORBER

L

a) wave goes through slit 1 or 2, height hy, detected at absorber
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An interference experiment with water waves

WALL ABSORBER |, = \f‘?ﬂz
= \f?z\g
(a) (b)

L

a) wave goes through slit 1 or 2, height hy, detected at absorber
b) wave goes through slit 1 = I, = |h;]? or (2 = h = |h]?)
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An interference experiment with water waves

X
™
DETECTOR I I
)
@
WAVE _))
SOURCE 5 I
WALL ABSORBER 1, = |j|2 fo = | + hof?
I = |ho?
(a) (b) (@)

a) wave goes through slit 1 or 2, height h1/2 detected at absorber
b) wave goes through slit 1 = I, = |h;]? or (2 = h = |h]?)
c) wave goes through slit 1 or 2 = o = |hy + ho|> £ | + b
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An interference experiment with electrons (e™)
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An interference experiment with electrons (e™)

DETECTOR
N
P
i ui
3 <% < I _
= "N :E E
ELECTRON "~y N2
GUN
WALL BACKSTOP

a) always hear the same clicks in detector, e~ arrive in lumps

Andreas Fring
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An interference experiment with electrons (e™)

a) always hear the same clicks in detector, e~ arrive in lumps
Proposition: Each e~ passes either through slit 1 or slit 2
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An interference experiment with electrons (e™)

X

DETECTQ\R P
K1
»
| — T
EIT . — -
ELECTRON ~yo 12 Py
GUN
WALL BACKSTOP P, — |42
P =|¢ol?

(a) (b)

a) always hear the same clicks in detector, e~ arrive in lumps
Proposition: Each e~ passes either through slit 1 or slit 2
b) block slit 2 = P; = |¢,]? or (block slit 1 = P, = |¢,|?)
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An interference experiment with electrons (e™)

X X
DETECTOR P P
K1
— 7l
=T
ELECTRON ™o :2 P
GUN
WALL BACKSTOP P, = |¢1?  Pia = by + al?
Py = ¢

(a) (b) (©

a) always hear the same clicks in detector, e~ arrive in lumps
Proposition: Each e~ passes either through slit 1 or slit 2

b) block slit 2 = P; = |¢,]? or (block slit 1 = P, = |¢,|?)

c) openslit 1 and 2 = Py = |y + 0,2 # P1 + Ps

20 /
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An interference experiment with electrons (e™)

X X
DETECTOR P P
K1
— 7l
=T
ELECTRON ™o :2 P
GUN
WALL BACKSTOP P, = |¢1?  Pia = by + al?
Py = ¢

(a) (b) (©

a) always hear the same clicks in detector, e~ arrive in lumps
Proposition: Each e~ passes either through slit 1 or slit 2
b) block slit 2 = P; = |¢,]? or (block slit 1 = P, = |¢,|?)
c) openslit 1 and 2 = Py = |y + 0,2 # P1 + Ps
e” arrive in lumps, but interfere like waves

20 /
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An interference experiment with electrons (e™)
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Watching the e~
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a) we see a flash at slit 1 or 2 when e~ passes through it
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a) we see a flash at slit 1 or 2 when e~ passes through it
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Watching the e~
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a) we see a flash at slit 1 or 2 when e~ passes through it
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when we watch e~ it behaves like a particle.

h1
/25‘

Andreas Frin A generalised version of Heisenberg's uncertainty relation
g 8 g Ly



Watching the e~

x x
A 3
A P
AL LgHT
SOURCE __5]
— =
e ‘E SRR EEg -
[ e T B4
ELECTRON 2 Py
GUN
Pla= P+ P
(a) (b) (c)

a) we see a flash at slit 1 or 2 when e~ passes through it
b) block slit 2 = P; or (block slit 1 = P})
c)openslitland 2 = P}, = P| + P}

when we watch e~ it behaves like a particle.

h1
/25‘

Andreas Frin A generalised version of Heisenberg's uncertainty relation
g 8 g Ly



Can we modify the experiment?
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dim the light
same flash at slit 1 or 2 and click in detector — Pj or P}
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Can we modify the experiment?

lower intensity
dim the light
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Can we modify the experiment?

lower intensity

dim the light
same flash at slit 1 or 2 and click in detector — Pj or P}
no flash at slit 1,2 and click in detector — P12 # P + P}

increased wavelength
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same flash at slit 1 or 2 and click in detector — Pj or P}
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momentum is p = h/\
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Can we modify the experiment?

lower intensity

dim the light

same flash at slit 1 or 2 and click in detector — Pj or P}

no flash at slit 1,2 and click in detector — P12 # P + P}
increased wavelength

momentum is p = h/\

one can only resolve two distinct points up to the wavelength
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Can we modify the experiment?
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same flash at slit 1 or 2 and click in detector — Pj or P}

no flash at slit 1,2 and click in detector — P12 # P + P}
increased wavelength

momentum is p = h/\

one can only resolve two distinct points up to the wavelength

wavelength larger than distance from slit 1 to slit 2
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Can we modify the experiment?

lower intensity

dim the light

same flash at slit 1 or 2 and click in detector — Pj or P}

no flash at slit 1,2 and click in detector — P12 # P + P}
increased wavelength

momentum is p = h/\

one can only resolve two distinct points up to the wavelength

wavelength larger than distance from slit 1 to slit 2

Heisenberg's uncertainty relation:
It is not possible to design an experiment so that we know the
position of the object without disturbing it.
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Modern variations of Heisenberg's uncertainty relation:
We change now the right hand side of the inequality:

h
AxAp > o(1+ (Ap)°)
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Modern variations of Heisenberg's uncertainty relation:
We change now the right hand side of the inequality:

h
AxAp > o(1+ (Ap)°)

Now we obtain a minimal length

We can never achieve Ax = 0, even when Ap — oc.
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Modern variations of Heisenberg's uncertainty relation:
We change now the right hand side of the inequality:

h
AxAp > o(1+ (Ap)°)

Now we obtain a minimal length

We can never achieve Ax = 0, even when Ap — oc.
Below Ax,,;, = 0 we can not know anything.
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If we knew what we were doing, it would not be called research,
would it?
Albert Einstein

It is a capital mistake to theorize before one has data.
Sherlock Holmes

It is a good thing for a research scientist to discard a pet
hypothesis every day before breakfast.
Konrad Lorenz

Nothing has such power to broaden the mind as the ability to
investigate systematically and truly all that comes under thy
observation in life.

Marcus Aurelius
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