
Programming Excel/VBA Part II (A.Fring)

75

Arrays/Array functions
Arrays are VBA variables which can store more than one item.

· by default the indexing starts at 0

syntax: declaration: Dim Name(number)
usage: Name(x) where 0 § x § number

- Expl.: an array with three items named A

usage: A(0) = 5
A(1) = 3
A(2) = 6

note: A(3) is not defined

· the items held in an array are all of the same variable type
· one refers to an item by the array name and a number

declaration: Dim A(2)

76

• You may change the index set from its default value

usage: A(8) = 5
A(9) = 3
A(10) = 6

note: A(6), A(7), A(11), A(12), ... are not defined

declaration: Dim A(8 to 10)

syntax: declaration: Dim Name(x to y)
usage: Name(z) where x § z § y

- Expl.: an array with three items named A

• Alternatively you can also use the array function

syntax: declaration: Dim Name as variant
usage: Name = array(x,y, ...,z)

· the indexing starts at zero, i.e. Name(0) = x

Programming Excel/VBA Part II (A.Fring)

77

• Example 1:
Sub Example1()

Dim A(8 To 10)
A(8) = 2
A(9) = 3
A(10) = A(8) + A(9)
Range("A10").Value = A(10)

End Sub
- writes 5 into the cell A10 of the active worksheet

• Example 2:
Sub Example2()

Dim B As Variant
B = Array(2, 3, 4, 5)
Range("A13").Value = (B(0) + B(1)) /B(3)

End Sub
- writes 1 into the cell A13 of the active worksheet

78

syntax: declaration: Dim Name(num1,num2,num3,...)
usage: Name(x,y,z,...) 0 § x § num1

0 § y § num2
0 § z § num3
.......................

Multidimensional arrays are VBA variables which can hold
more than one item related to several index sets (up to 60)
· e.g. a two dimensional array is a matrix

· the change of the index set is analogue to the one dimensional
case

usage: A(1,1) = a A(1,2) = b
A(2,1) = c A(2,2) = d

declaration: Dim A(1 to 2,1 to 2)

- Expl.: a 2 by 2 matrix

Programming Excel/VBA Part II (A.Fring)

79

· the first statement creates a one dimensional resizable array

Resizable arrays are arrays whose size is not fixed
syntax: declaration: Redim Name(x to y)

........
Redim Name(w to z)

· the second statement overwrites the first statement

· now the values in the array Name(x to y) will be saved

syntax: declaration: Redim Name(x to y)
........

Redim preserve Name(w to z) w§x , z¥y

Upper and lower bound function
· Lbound(RA) gives the lower bound of the array called RA
· Ubound(RA) gives the upper bound of the array called RA

80

Data exchange: Arrays can be used as an efficient way to ex-
change data between the Excel spreadsheet and the VBA program
• VBA program Ø spreadsheet

Range("A1:B2").Value = A
(puts the values of the array A into cells A1:B2)

• spreadsheet Ø VBA program
Dim B As Variant
B = Range("A1:B2").Value
(assigns the values of cells A1:B2 to the array B)

- Expl.: Redim RA(1 to 10)
x = Lbound(RA)
y = Ubound(RA)
Redim RA(12 to 19)
x = Lbound(RA)
y = Ubound(RA)

(x = 1)
(y = 10)

(now x = 12)
(now y = 19)

Programming Excel/VBA Part II (A.Fring)

- Expl.: The content of two 2 by 2 matrices in the cells A1:B2 and D1:E2 are
read to two arrays A and B. The matrices are multiplied and the result
is returned to the cells G1:H2.

Sub Matrix()

Dim A, B As Variant

Dim C(1 To 2, 1 To 2)

End Sub 81

arrays have to be variants

the indexing starts at 1For i = 1 To 2

For j = 1 To 2

C(i, j) = A(i, 1) * B(1, j) + A(i, 2) * B(2, j)

Next j

Next i

A = Range("A1:B2").Value

B = Range("D1:E2").Value

Range("G1:H2").Value = C

82

MMULT is an Excel array function which returns the product
of two arrays

syntax: MMULT(array name1 , array name2)

- Expl.: MMULT(“A1:B2“ , “D1:E2“)

⇒ returns the same product as the previous VBA program

- notice that MMULT is an array function, such that you have
to prepare for an output bigger than one cell: (recall LINEST)

· select a range for the output, e.g. 2ä2 cells
· type the function, e.g. = MMULT(.....)
· complete with + + Ctrl Shift Enter

- notice also: MMULT is an Excel function not VBA function

Programming Excel/VBA Part II (A.Fring)

83

The Split Function returns an array consisting of substrings from
a string expression in which each substring is separated by a
delimiter which can be specified

syntax: Split(expression [, delimiter] [, limit])

expression ª a string expression

limit ª the maximum number of substrings to be returned
(the default value is –1, that is all substrings)

delimiter ª the character which separates the substrings
(the default value is space)

- Expl.: Dim x as variant
x = Split(“Today is Tuesday“)
⇒ x(1) = “Today“ x(2) = “is“ x(3) = “Tuesday“

or: x = Split(“a,b,c,d,e,f,g“ , “,“ , 3)
⇒ x(1) = “a“ x(2) = “b“ x(3) = “c,d,e,f,g“

84

The Join Function returns a string consisting of the values in a
string array separated by a specified delimiter

syntax: Join(sourcearray [, delimiter])

sourcearray ª an array containing strings
delimiter ª the character which separates the substrings

(the default value is space)
- Expl.: Dim x(1 to 3)

y = Join(x)

x(1) = “Today“
x(2) = “is“
x(3) = “Tuesday“

⇒ y = “Today is Tuesday“

Programming Excel/VBA Part II (A.Fring)

85

- similarly:
y = “Today “ & “is “ & “Tuesday“

⇒ y = “Today is Tuesday“
· in addition:

y = “Today “ & “is “ & “Tuesday the “ & x & “-th of March“

· here the individual components do not have to be of string type
(8 is an integer)

⇒ y = “Today is Tuesday the 8-th of March“

Dim x as integer
x = 8

