PT7-Symmetry and Pseudo-Hermiticity:
Mysteries, Facts, and Fiction

Ali Mostafazadeh

Koc University

Outline:

- Pseudo-Hermitian QM & its classical limit

- Geometry of State space in Pseudo-Hermitian
QM and Faster than Hermitian QM

- Pseudo-Hermiticity in classical electrodynamics

- Summary and Conclusions



PHQM & Its Classical Limit:

‘H: A separable Hilbert Space with defining
inner product (-|-).

H :'H— H: A linear (densely defined) operator

QxNn 1: Can H serve as the Hamiltonian
operator for a unitary quantum system??

Qxn 2: What are the physical observables?

QxNn 3: How does this quantum theory
correspond to Classical Mechanics?



Ansr 1: H can serve as the Hamiltonian op-
erator for a unitary quantum system if and
only iIf there i1s a positive-definite inner prod-

uct (-,-), on H that renders H self-adjoint,
(b, Hp), = (H1p,¢)

Fact: Every positive-definite inner product is
given by (¥, ¢), = (P|n, ¢)

n,+ Metric Operator (positive automorphism
= everywhere-defined, bounded, invertible,
positive linear operator)

Fact: (¢, Hp), = (Hy,¢), & H = n, H -'rjll



Some Terminology

Def:. Let 1 be a given Hermitian automorphism
(a pseudo-metric operator). Then an operator
H is called n-Hermitian if HT = nHn 1.

[W. Pauli, RMP 15, 175 (1943)]

Pauli: Do not consider positive n's, because
they lead to a theory that is “equivalent to the
usual theory --- We get, however, something
essentially new Iif we take Into consideration
indefinite bilinear forms” (indefinite 7.)

Indefinite-Metric QM



H i1s called pseudo-Hermitian if there is a pseudo-
metric operator 7 satisfying H = nHn 1
[A. M., 2002].

Pseudo-Hermitian #= n-Hermitian, because to
determine if H i1s n-Hermitian, we need 7.

H i1s called quasi-Hermitian if there is a positive
automorphism (a metric operator) n, satisfy-

Ing HT = ’I]_I_HT]_Il [Scholtz, Geyer, Hahne, 1992.]

S0 H can serve as the Hamiltonian for a unitary
quantum system Iff 1t 1s quasi-Hermitian.



Use of the methods of indefinite-metric QM In
describing P7-symmetric systems [Japaridze,
2002]: H = p? 4+ iz3 is P-Hermitian.

PT-symmetry = P-Hermiticity, for example H =
p?+i{x, p} is PT-symmetric but not P-Hermitian.

If = TH'T = H, then PT-symmetry of H is
the same as its P-Hermiticity. In this case, iIf
H 1s diagonalizable and its spectrum is real and
discrete, we may apply a construction due to
Nevanlinna (1952) to obtain a positive-definite
Inner product. This is what was rediscovered
by Bender, Brody, & Jones in 2002 and called
the CP7-inner product.

[CJP 56, 919 (2006); quant-ph/0606173]



Why Pseudo-Hermiticity?

Every diagonalizable P7-symmetric Hamiltonian
with a discrete spectrum is pseudo-Hermitian.

Pseudo-Hermiticity = Antilinear Symmetry

Metric Operator for a quasi-Hermitian H:
N+ = Z |&n) (Pn]
Tl

"I1 m— J ; ,"Iq I *I — | 4I
H Wn — En- Un, H Pn — En. Pn
<'U¥’m.‘ ffi’ﬂ) = Ommn, Z '?.:";’-r?..> <f,+'{3'-r1.‘ =1

T




Pseudo-Hermitian QM:

1. Given a quasi-Hermitian Hamiltonian H
acting on a reference Hilbert space 'H choose
a metric operator 7, .

2. Define the Physical Hilbert space 'H using

() = g

phys

3. Define the physical observables as self-adjoint

operators acting in H . (answering Qxn 2).



* p = /mx satisfies (V,¢)1 = (pYP|pp). This
means that p: Hyhys — H 1S unitary.

*x h:= pH p~—1is Hermitian and unitary-equivalent
to H.

* Every self-adjoint operator O : Hpnhys — Hphys
has the form O = p~1lop for some Hermitian

o. H— H.



* Every pseudo-Hermitian quantum system
admits an equivalent Hermitian description us-
ing H as the physical Hilbert space, h as the
Hamiltonian, and self-adjoint operators acting
iIn 'H as the observables.

% Pseudo-Hermitian QM is an alternative rep-
resentation of the conventional QM.

% The Hermitian Hamiltonian h associated
with a local quasi-Hermitian operator H is gen-
erally nonlocal.



Quantum-Classical Correspondence

Let ™ be a contour in C, H = L2(I"), and

P2 d
Hr — T I FU(Z')ﬁ j € I_a p = _?hd—j

Map T onto R and use the induced unitary
transformation of L2(I") onto L2(R) to describe
the system in terms of a (quasi-Hermitian)
Hamiltonian H = H(x, p) acting in L2(R).

JPA 38 (2005) 3213 [quant-ph/0410012]



Choose a metric operator n, and determine
the corresponding Hermitian Hamiltonian ~ and

the pseudo-Hermitian position X and momen-

tum P operators using p = /1, :
—1 —1 —1
h=pHp =, X=p “xzp, P=p "pp

Hermitian Rep.: H. h.xz.p
Pseudo-Hermitian Rep.: Hppys, H, X, P

h, X, P are generally nonlocal operators.



Classical States: (z¢,pe) € R?
Classical Phase Space: IREQ

Classical Hamiltonian:
He = 1lim s—0o h(xz,p) = lim h—o H(X,P)

r — In
P — Pe P—p

Pseudo-Hermitian Canonical Quantization:
Lo — )(a Pec — Pa HC B H! {'! }PB — _Eh_l[* ]

Hermitian Canonical Quantization:
Le — I, Pc — P, He— h, { '}F’B — _'i'h"_l['a ]

See JPA 37 (2004) 11645, quant-ph/0408132.



P7-Sym. Cubic Anharmonic Oscillator

[JPA 38 (2005) 6557, quant-ph/0411137]
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Imaginary Cubic Potential
[JPA. 39, 13495 (2006), quant-ph/0508195]
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o-Function Potential with Complex Coupling

2

H= ;n Fco(z), CeC, R >0

H i1s not P7-symmetric.

2

2— + R(C) 5(x) + 3(¢)? ho + O(S(¢))

hoW () := A, e 1El/L 4 B §(x)
~ mW(0) | m
T 8k Be = g
Length Scale: L .=

/k dx E_‘:FVL\U(I)
K2

m R(¢)
JPA 39 (2006) 13495, quant-ph/0606198




Analytic continuation of CM into C

Consider the following complex extension of

- - - 2
the classical Hamiltonian H, = élf;;?_ + v(xze):

]32
e — 3, Pc — P, He— $9H=—+4v(3)
2m

where 3;.p € C and v is analytic, and suppose
that Hamilton’s equations generate the dy-
namics:

99 p _ 0N

— :——:—'};,.
: ap m s 3 v ()

[Bender et al, JMP 40, 2201 (1999)]



Such complex dynamical systems have been
iIdentified as the classical limit of the quantum
systems defined by complex potentials such as
v(z) = ix3.

This identification provides a prescription for
determining the underlying classical systems
for P7-symmetric quantum systems which is
fundamentally different from the one used In
pseudo-Hermitian QM.



T here are two basic difficulties with this prescription.

e T he quantum Hamiltonian H = % + v(x) de-
fines a system with a one-dimensional config-
uration space R and a two-dimensional phase
space R?, whereas the classical Hamiltonian §
defines a system with a four-dimensional phase
space C?2 = R4.

e [ he naive canonical quantization,

j—=x, p—p, H—H, {,}pg— __3—_/3_—1[,? 1,
cannot be consistently performed, because the
usual Poisson bracket is incompatible with the
dynamical equations.

[Curtright & Mezincescu, quant-ph/0507015]



Most general dynamically compatible
symplectic structure:

wy = R(), wp 1= %(p) w3 = 3(3), wa 1= I(p)

{AB}}—ZT JA OB

{}} - Y. - 1.:‘
= Ow; d’u,-j
[ 0 l14+c¢ —a —d
]_E —(14+¢) O —d —b
T 9 a d 0O —-1+4c¢
\ d b 1l —c O )

a,b,c,d € R, ?+d?—ab#1

PLA 357 (2006) 177, quant-ph/0603091



e Simplest allowed choice: a =b =¢c = d = 0,

O 1 0 0 )
1} -1 0 0 O
J=Jg =3 0 00 -1
O 01 0 )
e For all allowed a,b, ¢, d,
/ 0 1 0 O0)
» |1 -1 0 O O
7t =1 g 0 0 1
\ O 0 -1 0/



Uniqueness Thm: Up to isomorphisms all sym-
plectic structures on R?" are equivalent.

T here are Darboux coordinates in which .J takes

the form of J:. For J = Jy these are
r] = \/5 5]{*(3) Pl = \/E SH"(]J)
ro = V2 I(p) p2 = V2 ()

[Xavier & de Aguiar, Ann. Phys. 252, 458 (1996)
Kaushal & Singh, Ann. Phys. 288, 253 (2001)]



e In terms of these new coordinates, the dy-
namics is determined by A = {A, K.}, where
the classical Hamiltonian is K. .= 2 R(H)!

e S, .= () generates a symmetry:

- T he system is integrable;

- Setting 3(H) = 0 means to confine the
dynamics to one of the orbits of the
corresponding symmetry transformations
In the

Fv(3)



Example: $ = p2 + ;2

Ko =1} + 23— (0} +43)

Se = x1p2 + xop1

T he plots given by Bender et al [JMP 40, 2201
(1999)] for the orbits in the ;-plane correspond
to setting S, = 0 and plotting the projection of
the corresponding orbits in the phase space R%
onto the z1-p> plane.

This is also true for $§ = p? + iz and other
examples considered in the literature.



Example $ = p2 4 i3°>:

3 2
p2 . P> 311,.11)2 2
1T /B /2 ’
2 3
3x1p5 | X3

S. = xop .

K

QxNn: How is this dynamical system in the
phase space R* related to the unitary quan-
tum system defined by which
has phase space R2?



* One obtains a reduced 2-dimensional phase
space If one fixes a gauge on the orbit S. = 0.

x For v(z) = ¢, the quantum Hamiltonian is
not quasi-Hermitian. It does not define a uni-
tary quantum system and there is no equiva-
lent Hermitian Hamiltonian &~ and the classical
Hamiltonian H.. Yet one can define a classical
dynamics using 5.

* There iIs an equivalent real description of
the continuation on CM to complex plane.
One does not get any thing fundamentally
new. T he situation is very similar to that
of pseudo-Hermitian QM.



Time-dependent Quasi-Hermitian Hamiltonians

Suppose Hphys be defined by a time-dependent
metric operator 74 (t) and 1(t) and ¥,(t) be
arbitrary solutions of the Schrodinger Eqn.

d .

-z'ﬁ£ Y(t) = Hy(t)
Then the unitarity of time-evolution, namely
D p1 (1), 10 (1)) = 0, is equivalent to

1
[ o R e T

117 e T4 7 Ny

This means that H i1s not »n,-Hermitian, 1.e.,

as an operator acting In Hy,ys It Is not self-
adjoint. So H is not an observable!



T he above argument shows that the metric
operator defining H,pys must be time-independent.
This restricts the choice of H if it I1s time-
dependent, because 1y =3, |én)(¢n].

Let H(¢) be a time-dependent quasi-Hermitian
operator (with a discrete spectrum) and A(t)
be the matrix with entries

Amn(t) — 3<Um(t)‘ ‘1 n(ﬂ)

Then 7 is tlme—lndependent iff A(t)" = A(t).
T his makes all the adiabatic geometric phase
angles real [PLB 650, 208 (2007)].



State Space In Pseudo-Hermitian QM

States are rays in the physical Hilbert spaces
Hphys- T hey are points of the projective Hilbert
space PHyhys. Each state may be represented
by a nonzero vector ¢ € Hppys but this Is not
a unique representation. A unique representa-
tion i1s provided by the orthogonal projection
operator A onto the ray. This is an observable
satisfying A2 = A. It is give by

A \1) <'z_ 7.4 _ \"u‘i’} <ﬁ}‘n. n

(¥| stands for the functional f, : Hypys — C
defined by f,(¢) := (¥|9).



The projection operators N\, (= ?3<i>j_+
satisfy the condition that orthogonai State vec-

tors define orthogonal states, 1.e.,

also

<'.I.~';'?:~ {'.}>‘|— — O At /\Il,-"'*/\r,l — /r\r_"}/\i!,-"" — O

This is a requirement of the projection (mea-
surement) axiom of QM. It induces a particular
geometric structure on PHpypys.

For H = C?2, we have q

N
=1\ ¢ )

1
0
“ | 0 0 0
we[0) c nm( 20
a,c € RT, BeC, ac > \_,:"3\2 c



To determine the geometry of PHynys we first
define an inner product on the space of trace-

class operators acting In Hppys:
(A, B) :=tr(A*B),  Ab:=ntATn .
This ensures: (v, 0),L =0 < (A, N,) =0.

(-,-) i1s the unique inner product such that given

an orthonormal basis {vn} of Hy,s the corre-
sponding states are orthonormal:

<.’L,-'i,'-‘.ﬂr1_, 1"ﬁ> _I_ — fj-]rn_-n_ s (AT%'{}?H’ AT,—"':’H) — (j-]rn_n_.

) (¥ |y

AN 0 e



The geometry of PHphys IS diven by

ds? = (dAy,dNy) = tr(dALdA,)

2(v. ) 4 (dv, dip) 4 — | (&, dep) 4 |°]
(1, 1) 4|2

If H = C& with Euclidean inner product,
.- Nt _
= (21, , 2N, nt = (1), and
2 q g g
ds — gij*d"i’ -,-:aj "
N o,
2 Zp?qzl (?F}“j‘??’ji _ 'T?p-.r'-?;"jq) ZpZq

N ¢ \2
(Z m.n=1 TmnzZm= ']"!-)

For N4+ = 1, 1.e., the ordinary QM this gives
the Fubini-Study metric on P'H cphN-1,




To compare the geometry of PHpnys With PH
we use the unitary map p: Hppys — ‘H to define
I PHpnhys — PH according to

FN) = pAp~ L.

This function turns out to be an isometry.
This means that PHynys and PH have identical
geometries. In particular the geodesic distance
between A; and Ay In € PHppys Will be identical
with the geodesic distance between f(A{) and
f(As) In PH.

For H = C? both PHpnys and PH are (round)
unit two-dimensional spheres.



To setup the variational problem of finding
a quasi-Hermitian Hamiltonian that generates
fastest possible unitary time-evolution from an
Initial state vector '; to a final state vector Vg
iInvolves fixing the boundary conditions:

ANt=0)=Ay,, ANt=71)=

But Ay, and A, know about the choice of the
metric operator. More importantly the dis-

tance between A, and A, depends on 7.

Different 4 will require different n, and lead
to different distances between A,



T he Hermitian mirror image of dynamics.:

Yy — Yp < pYr — pYER

-

in tane T in tlﬁe T
/\ ——’l" /\? 'r <~ f(/\t I) f(/\t F)
in time in time ~

T he speed of the evolution is the distance be-
tween the initial and final states divides by .
distance(Ay,, Ay )=distance(f(Ay,), f(Ay.)) =
the optimal speed that is achieved by H iIs also
achieved by h; The upper bound on the speed
of unitary evolutions is the same for both Her-
mitian and non-Hermitian Hamiltonians. You
cannot go faster than Hermitian QM unless
you violate unitarity.




T he impossibility of faster than Hermitian QM
cannot be avoided by arguments that involve
use of Hermitian and non-Hermitian Hamilto-
nians, i.e., “switching Hilbert spaces,” because
this requires time-dependent metric operators
that are forbidden by unitarity. You can only
achieve faster evolutions in the cost of sacri-
ficing unitarity.
h1 H ho
t1 > to — (e — tg

h1, ho: Hermitian
H: Non-Hemritian

[arXiv:0706.3844]



Pseudo-Hermiticity in Electrodynamics

Source-Free Maxwell’s EQs.:

ﬁD‘ 0, V- -B=

E
oL -
4
l‘:“)
S
|
)
]



E(3.t) = cos(Qt)Eq(Z) + Q1 sin(Qt) Eq(Z)

o0 (_ 1)-?1

cos(Qt) 1= t2Q2)",
(€2t) HZ::D o) ( )
1o — " 5 5
Q7 sin(Qt) =t (t= 2"
5 (2n+1)!
— {—3-—]_ ) =



e ©:'H—"H is Hermitian, where

—

H ={F R3 — C3| < F,F » <oo}
G == [p3 F(@)* - G(T) da®

“'«’11

e If ¢ and ' are Hermitian and < is invert-
ible, Q2 :'H — H is pseudo-Hermitian:

——1
(@) =20

—F

e If = and u are positive (lossless mate-
rial), Q2 is quasi-Hermitian. = It is unitary-
equivalent to the positive (Hermitian) op-
erator:

hJ| =
b=

— Y —
2

1 1
— =" {_}_IF — Ty
h:=£°Q%c “=¢ “DudDe °



We can compute any (even analytic) function
F of 2 using the spectral resolution of hA:

M| =

ﬁ—l 1~:—:~l H—l 1l <«
F(Q) =F(e *h2e?)= ¢ 2F(h2)e

This allows for expressing cos(2t) and 21 sin(Qt)
as certain integral operators and computing
their kernels (propagators). Recall that

E(Z,t) = cos(Qt) Ey(Z) + Q Lsin($2t) Eo ()



Planar waves propadating along the z-axis:

o = E(2)e™%07 5, By = B(2)e 0% ]

Isotropic media with:
E@=ce(x)1, p@=pnk""11
h 1S a position-dependent-mass Hamiltonian:
ho=e(2)"2p (=) "tp ()2

Suppose =, u — const. as |z| — .



WKB Approximation: hy = w? (0

elwu(z)
U ( z) N — . w e R

\f 21 v(2)

(7 3 N T T_l
u(z) = /M Gy )= E@uE)

>

cos(h3t) :/ dw cos(wt) [thw) (],

00 sin(wt)

1 1
h,_isin(hit):/ du

— 00 w

[w) (Pw] .




|I"'

]31< [E(w(z,t))
p(w—(z,t))

1
E(“’+(z,t))rf T
[ﬁ(w+(z,t)) Eo(wy (z,t)) +

1u+(z,f) 1 3
/ f dw p(w)ie(w)idEq(w) ¢ .

1
] Eo(w-(z1) +

w (z,t) = u t(u(z) £ 1)

N z {]3 o) 3 5 _1
w@) = [ ) = Eu()

A. M. & F. Loran: physics/0703080



We have used this formalism to study the scat-
tering of planar EM waves off a localized in-
homogeneity given by

a

0(z) e~ kor(2)

Escatt = E

a=0

r(z) (full curve)
p(z) (dotted curve)

0.1 J
a= 0.2 y ) — — __

10 5 0 5 10
2z




Summary & cConclusions

e Pseudo-Hermitian QM (in particular P7-
symmetric QM) is an alternative represen-
tation of QM. It allows for treating a cer-
tain class of nonlocal Hermitian Hamilto-
nians in terms of non-Hermitian but local
Hamiltonians.

e T he essential property for a non-Hermitian
Hamiltonian to generate a unitary evolution
IS Its quasi-Hermiticity. P7-symmetry is
neither necessary nor sufficient. A good ex-
ample is the delta-function potential with a
complex coupling which is manifestly non-
PT-symmetric.



e [ he naive extension of CM to complex do-
main yields integrable systems in a 4-dim.
phase space. These may be reduced to
a system with a 2-dim. phase space but
there seems to be no consistent quantiza-
tion scheme that would map such a system
to the analogous quantum systems.

e T he study of the classical trajectories in
the complex z-plane for H = p? 4+ v(z) with
v a complex-valued potential corresponds
to looking at the projection of the phase
space orbits of an integrable real Hamilto-
nian with phase space R* = {(z1,25,p1,p2)}
onto the z;-p, plane. There seems to be no
point in doing this, as there is a well-known
theory of integrable systems.



e [he equivalence of Hermitian and pseudo-
Hermitian representations of QM manifests
itself In terms of the existence of an isome-
try between the corresponding state spaces.
This is to be expected because the geome-
try of the state space is linked with various
physical quantities.

e The upper bound on the speed of unitary
evolutions Is a universal quantity indepen-
dent of whether one uses Hermitian or pseudo-
Hermitian representation. Because these
two representations are equivalent (both
mathematically and physically) one cannot
differentiate between them using physical
quantities.



e Pseudo-Hermiticity arise in a variety of sub-
jects including classical electrodynamics. The
methods of pseudo-Hermitian QM dgive rise
to a closed form expression for the semi-
classical solution of the initial-value prob-
lem for source-free Maxwell’'s equations In
arbitrary stationary linear dielectric media.






“Important scientific discoveries go through
three phases: first they are completely ignored,
then they are violently attacked, and finally
they are brushed aside as well-known.”

Konrad Lorenz
(Animal Behaviorist)
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