
Quasi-hermitian Liouville Theory

6th PT Workshop, The City University, London, 16 July 2007

Thomas Curtright, University of Miami
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Introduction

Super�cially non-hermitian Hamiltonian quantum systems are of considerable current interest, es-
pecially in the context of PT symmetric models [4, 20], although many of the main ideas appeared
earlier [24, 29]. For such systems the Hilbert space structure is at �rst sight very di¤erent than that
for hermitian Hamiltonian systems inasmuch as the dual wave functions are not just the complex
conjugates of the wave functions, or equivalently, the Hilbert space metric is not the usual one.
While it is possible to keep most of the compact Dirac notation in analyzing such systems, in this
talk I will mostly work with explicit functions and avoid abstract notation, in the hope to fully
expose all the structure, rather than to hide it.

My discussion is focussed on a system �imaginary Liouville QM �with the simple potential

V (x) = exp(2 i x)

This model, as well as its �eld theory extension, is of interest for applications to table-top physical
systems [2, 5] and to deeper problems in string theory [25, 27]. I will not pursue those applications
here, but rather I will discuss the elementary quantum mechanics of the point particle model, and
then make a fairly straightforward extension of the point-particle results to the �eld theory. I
believe this will be helpful in understanding the applications cited, as well as others.
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Personal motivation and history ...

I became interested in quasi-hermitian models about two and one half years ago, upon hearing
a talk on PT-symmetric theories by the P T Barnum of the subject (a.k.a. Carl Bender), at the
�rst in the new series of Miami winter conferences.

Along with Luca Mezincescu, I considered (in perhaps excessive detail) the potential V (x) =
exp(2 i x) to understand what all the fuss was about [10]. Our philosophy was exactly solvable
cases are best, if you can �nd some, to illustrate interesting structure.

With two graduate students �David Schuster and Andre Veitia �we pursued related projects,
including supersymmetric models [11], models analyzed by methods of deformation quantization
[12], and extensions to �eld theories [all to appear in J Math Phys ... eventually].

With Evgeny Ivanov and Paul Townsend , we also explored Landau models on various super-
manifolds using the biorthogonal techniques that we learned from the other studies [9].
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A more compelling motivation ...

A �eld theory extension of the quasi-hermitian V = exp(2ix) potential model is Liouville �eld
theory for imaginary coupling b.

L =
1

4�
(@�)2 � � exp (2b�)

The Liouville model has been of interest since Polyakov�s work in the early 1980s, and its quantum
properties have been studied in depth by many people during the last 25 years. The theory has
a central charge c = 1 + 6Q2, where the background charge is given by Q = (b + b�1). The
conformal dimension of e2a� is a (Q� a). So, both e2b� and e2�=b have conformal dimension 1, a
point exploited by O�Raifeartaigh et al. [21]

Taking all this at face value, b = i is a Q = 0, c = 1 conformal �eld theory. Other imaginary b
give c < 1, perhaps negative.
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Exact results have been obtained for the model using CFT techniques, especially the three-point
function hexp (a1� (x1)) exp (a2� (x2)) exp (a3� (x3))i, as skillfully exploited by Dorn and Otto, and
the brothers Zamolodchikov in the early 1990s. However ...

�Due to the nonexistence of a SL(2,C) invariant vacuum one has to be careful with
respect to the usual conformal structure of N-point functions.�

�Altogether we �nd a drastic change in the analytic structure � � � in going from Re b2 > 0
to Re b2 < 0.�

�Dorn and Otto.

The complex model is of interest in string theory for the �rolling tachyon�problem. In fact,
Andy Strominger et al., and also Volker Schomerus, have already discussed the exact solution for the
three-point functions for b! i�, c � 1 Liouville theory on the sphere, again using CFT techniques.
In particular, Schomerus found that,

�In the regime c � 1, Liouville theory does not depend smoothly on the central charge.
Such a behavior is in sharp contrast to the properties of Liouville theory for c > 1.�

Perhaps a quasi-hermitian Hamiltonian approach will shed light on these issues.
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General theory

Many theories are �quasi-hermitian�as given by the entwining relation

GH = HyG

where �the metric�G is an hermitian, invertible, and positive-de�nite operator. All adjoints here
are speci�ed in a pre-de�ned Hilbert space, with a given scalar product and norm.

Existence of such a G is a necessary and su¢ cient condition for a completely diagonalizable H
to have real eigenvalues. In such situations, it is not necessary that H = Hy to yield real energy
eigenvalues.

Although �not to make it sound too simple �in in�nite dimensional cases there are subtle issues
about boundedness of the operators, and their domains [24]. Also, an interesting situation arises
if G is positive but not positive-de�nite on the full Hilbert space.
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Given H there are two widely-used methods to �nd all such G:

(I) Solve the entwining relation directly (e.g. as a PDE),

or

(II) Solve for the eigenfunctions of H, �nd their biorthonormal dual functions,

then construct G �(dual)y�(dual), or G�1 �(state)�(state)y.

In principle, these methods are equivalent. In practice, one or the other may be easier to imple-
ment.
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Once you have a G, an equivalent hermitian Hamiltonian is

H =
p
G H

p
G�1 = Hy

So why consider apparently non-hermitian structures at all?

A priori you may not know that G exists, let alone what it actually is. But even when you do
have G, and �nally H, the manifestly hermitian form of an interesting model may be non-local and
more di¢ cult to analyze than an equivalent, local, quasi-hermitian form of the model.

In particular, non-locality readily appears for imaginary Liouville theory, as I will explain.
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Alternatively, we may de�ne a new scalar product, h�; �iG, di¤ering from the original one h�; �i,
under which the original Hamiltonian is now seen to be hermitian.

h�; �iG � h�;G�i

h�;H�iG � h�;GH�i =


�;HyG�

�
� hH�; �iG = h�;H�i

�
G

Note that h�; �iG is positive de�nite, so it can be used to construct a new norm for the vector space.

k�kG =
q
h�; �iG =

p
h�;G�i

Exercise: Check completeness of the space using this new norm, to make sure that we indeed
have a Hilbert space using h�; �iG. If so, then all the standard arguments for hermitian operators
now go through using this new scalar product. It follows that the eigenvalues of H are real, its
non-degenerate eigenvectors are orthogonal, etc.

In this way of thinking about the problem, H originally appeared to be non-hermitian only
because our initial choice of the h�; �i scalar product was somewhat misguided. Non-hermiticity of
H was illusory, not actual.

9



If there are any non-experts in the audience (which is highly doubtful at this conference!) I
invite you to consider simple matrix examples to �esh out these ideas. For instance, the 2 � 2
Hamiltonian

H =

�
1 i sin �

i sin � �1

�

nicely illustrates the general theory. (See p 64, T Kato, Perturbation Theory for Linear Operators,
Springer-Verlag, 1966.)

I now consider these abstract results in explicit detail for imaginary Liouville QM. (Classical
dynamics for this system is discussed in Appendix 1 of my supplementary on-line notes.) It turns
out to be convenient, in my opinion, to use a phase-space approach to the problem. (If QM in
phase space is not familiar to you, please see my book with David Fairlie and Cosmas Zachos [30],
or the quick tutorial in Appendix 2 of my on-line notes.)

Other notable applications of QMPS methods to PT symmetric models have been made by
Scholtz and Geyer [22, 23], and by de Morisson Faria and Fring [14].
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Entwining the metric in phase space

The previous entwining relation GH = HyG or alternatively HG�1 = G�1Hy can be written as a
PDE through the use of deformation quantization techniques in phase space. If the Weyl kernel of
G�1 is denoted by �the dual metric� eG (x; p)

G�1 (x; p) =
1

(2�)2

Z
d�d�dxdp eG (x; p) exp(i�(p� p) + i�(x� x))

then the entwining equation is

H (x; p) ? eG (x; p) = eG (x; p) ? H (x; p)
where the associative Groenewold star product operation is (~ � 1)

? � exp

 
i
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For the imaginary Liouville example

H (x; p) = p2 + exp (2ix) ; H (x; p) = p2 + exp (�2ix)

and H ? eG = eG ? H boils down to the linear di¤erential-di¤erence equation

p
@

@x
eG (x; p) = sin (2x) eG (x; p� 1)

Hermitian G�1 is represented here by a real Weyl kernel eG.
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Basic solutions of the metric equation

Basic solutions to the H ? eG entwining relation are obtained by separation of variables. We �nd
two classes of solutions, labeled by a parameter s. The �rst class of solutions is non-singular for
all real p, although there are zeroes for negative integer p.

eG (x; p; s) =
1

sp� (1 + p)
exp

�
�1
2
s cos 2x

�

For real s this is real and positive de�nite on the positive momentum half-line.

Solutions in the other class have poles and corresponding changes in sign for positive p..

eGother (x; p; s) =
� (�p)
sp

exp

�
1

2
s cos 2x

�

Linear combinations of these are also solutions of the linear entwining equation.
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This linearity permits us to build a composite metric from members of the �rst class by using a
contour integral representation. Namely

eG (x; p) � 1

2�i

Z (0+)

�1
eG (x; p; s) es=2

s
ds

The contour begins at �1, with arg s = ��, proceeds below the real s axis towards the origin,
loops in the positive, counterclockwise sense around the origin (hence the (0+) notation), and then
continues above the real s axis back to �1, with arg s = +�.
Evaluation of the contour integral gives

eG (x; p) =

�
sin2 x

�p
(� (p+ 1))2

where we have made use of Sonine�s contour representation of the � function.

1

� (1 + p)
=

1

2�i

Z (0+)

�1
��p�1e�d�
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The F root of the metriceS as a direct solution of an entwining equation
We look for an equivalence between the Liouville H = p2 + e2ix and the free particle H = p2 as
given by solutions of the entwining equation

H (x; p) ? eS (x; p) = eS (x; p) ? p2

For the Liouville  ! free-particle case, this amounts to a �rst order PDE similar to that for eG,
but inherently complex.

2ip
@

@x
eS (x; p) = e2ix eS (x; p� 1)

Once again solutions are easily found through the use of a product ansatz. For any value of a
parameter s, we immediately �nd two classes of solutions:

eS (x; p; s) =
1

sp� (1 + p)
exp

�
�1
4
s exp (2ix)

�

eSother (x; p; s) =
1

sp
� (�p) exp

�
1

4
s exp (2ix)

�

The �rst of these is a �good�solution for p 2 (�1;1), say, while the second is good for p 2 (�1; 0),
thereby providing a pair of solutions that cover the entire real p axis, but not so easily joined
together.
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The dual metric as an absolute F square

Each such solution for eS leads to a candidate real metric, given by
eG = eS ? eS

To verify this, we note that the entwining equation for eS, and its conjugate eS,
H ? eS = eS ? p2 ; p2 ? eS = eS ? H

may be combined with the associativity of the star product to obtain

H ? eS ? eS = eS ? p2 ? eS = eS ? eS ? H
For the �rst class of eS solutions, by choosing s = �2, and again using the standard integral
representation for 1=�, we �nd a result that coincides with the previous composite dual metric.

eS (x; p;�2) ? eS (x; p;�2) =

�
sin2 x

�p
(� (p+ 1))2

= eG (x; p)
This proves the corresponding operator is positive (perhaps positive de�nite) and provides a greater
appreciation of the F roots of eG.
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An aside ... the ix3 potential

In this case, it is not quite so easy to �nd a useful class of exact solutions to the entwining equation.

H =
1

2
p2 + ix3

H (x; p) ? eG (x; p) = eG (x; p) ? H (x; p)
�
p@x � 2x3 +

3

2
x@2p

� eG (x; p) = 0
Nevertheless, a general real solution to this parabolic equation is given by the following double-
integral representation [7].

eG (x; p; [F ]) =

ZZ
dtdz F

�
2iz + t2

�
exp

�
ix2t� ipz + 3

4
itz2 +

1

2
t3z � 1

10
it5
�

where F is an arbitrary function (with suitably nice behavior!). This eG is real for real F .

That is to say, the general solution is actually a generalized Airy transform.

However, I have not yet been able to write linear combinations of these solutions as a �star
square�as in the Liouville case. That would be technically sweet, especially insofar as it could a
proof the spectrum is real, di¤erent from the proof given by Dorey et al. [15].
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The solution is straightforward to obtain by Fourier transforms. Including a linear term,
H = 1

2
p2 + ix3 + 1

2
i�x, H ? eG = eG ? H boils down to�

��x+ p@x � 2x3 +
3

2
x@2p

� eG = 0
�
�1
2
�+ p@q � q +

3

4
@2p

� eG = 0 where q � x2�
�1
2
�+ t@z � i@t �

3

4
z2
��

G =

Z Z
exp (�iqt+ ipz) eG� = 0

It is easy to determine the general solution of this �rst-order equation, and then transform back.

G = F
�
2iz + t2

�
exp

�
� 1
10
it5 +

1

2
t3z +

3

4
itz2 +

1

2
i�t

�
eG = ZZ dtdz F

�
2iz + t2

�
exp

�
iqt� ipz + 1

2
it�+

3

4
itz2 +

1

2
t3z � 1

10
it5
�

m (x; p; t; z) � F
�
2iz + t2

�
exp

�
ix2t� ipz + 1

2
it�+

3

4
itz2 +

1

2
t3z � 1

10
it5
�

�
��x+ p

@

@x
� 2x3 + 3

2
x
@2

@p2

�
m (x; p; t; z) = �2x

�
t
@

@z
� i @

@t

�
m (x; p; t; z)

eG (x; p; [F ]) = ZZ dtdz F
�
2iz + t2

�
exp

�
ix2t� ipz + 1

2
it�+

3

4
itz2 +

1

2
t3z � 1

10
it5
�
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Or, after changing variables, including rescalings,

eG (x; p; [F ]) =

Z +1

�1
dt

Z +1

�1
du F (u) exp

�
1

2

�
t2 � u

�
p

�
exp

�
ix2t� 1

4
iu2t+

1

6
iut3 � 1

20
it5
�

I leave it as an exercise to choose speci�c functions to reduce this to a more manageable form.
For example, when F is a Gaussian with parameters a and b, we obtain an ugly result that only a
mother could love.

eG�x; p; �F (u) = 1p
�
exp

�
�a (u� b)2

���
=

e�ab
2

Z +1

�1
dt

1q
a+ 1

4
it
exp

 
1
16
(p� 4ab)2 + ix2at+

�
1
2
ap� 1

4
x2
�
t2 + 1

12
i (p+ 2ab) t3 � 1

20
iat5 + 1

180
t6

a+ 1
4
it

!

Still, for a > 0 this result has the virtue that the �nal t integral is very nicely convergent for all real
x and p, and numerical evaluation of this function is not di¢ cult.

eG�x = 1; p = 1; �F (u) = 1p
�
exp

�
�u2

���
= +7: 816 3

eG�x = 3; p = 1; �F (u) = 1p
�
exp

�
�u2

���
= �2: 233 5

etc.

R +1
�1

1p
a+ 1

4
it
exp

�
1
16
(p�4ab)2+ix2at+( 12ap�

1
4
x2)t2+ 1

12
i(p+2ab)t3� 1

20
iat5+ 1

180
t6

a+ 1
4
it

�
dtja=1;b=0;p=1;x=3

= �2: 233 5� 1: 035 1� 10�28i
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What has the Liouville metric got to do with wave functions?

The eigenvalue problem is well-posed if wave functions are required to be bounded (free particle
bc�s).

�
� @2

@x2
+m2e2ix

�
 E = E E

We �nd all real E � 0 are allowed.
z = meix

gives Bessel�s equation.

J�
p
E

�
meix

�
=

�m
2
eix
��pE 1X

n=0

(�m2=4)
n

n!�
�
1 + n�

p
E
�e2inx

An E = 0 solution exists!
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Representative wave functions.

0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.5

0.5

(Re E (x) ; Im E) and
�
Re 2E; Im 

2
E

�
, for E = 0 (green, orange) and for E = 1=4

(blue, red)
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Integral representations for E = n2 and quantum equivalence to a free particle on a
circle

The 2�-periodic Bessel functions are in fact the canonical integral transforms of free plane waves
on a circle, as constructed in this special situation just by exponentiating the classical generating
function. Explicitly,

Jn
�
meix

�
=

1

2�

Z 2�

0

exp (�in�) exp
�
imeix sin �

�
d� ; n 2 Z

with J�n (z) = (�)n Jn (z). The integral transform is a two-to-one map from the space of all free
particle plane waves to Bessel functions (e�in� ! (�1)n Jn). But acting on the linear combinations
ein�+(�)n e�in� the kernel gives a map which is one-to-one, hence invertible on this subspace. The
situation here is exactly like the real Liouville QM, for all positive energies, except for the fact that
here we have a well-behaved ground state.

While this is a well-known integral representation of the Bessel function, appearing in hundreds
of books, an interpretation as a canonical transformation is universally overlooked as far as I can
tell.
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What are the dual wave functions?

The �PT method�of constructing the dual space by simply changing normalizations and phases of
the wave functions does not provide a biorthonormalizable set of functions in this case, since

1

2�

Z 2�

0

Jk
�
meix

�
Jn
�
meix

�
dx =

�
1 if k = n = 0
0 otherwise

This follows because the Js are series in only positive powers of eix. So all the 2�-periodic energy
eigenfunctions are self-orthogonal except for the ground state.

In retrospect, this di¢ culty was circumvented by Carl in the mid-19th century (that�s Carl
Neumann ... not Carl Bender).

Carl Neumann was Bessel�s nephew ... his sister-in-law�s son, actually.
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A simple 2�-periodic biorthogonal system

Elements of the dual space for the 2�-periodic eigenfunctions are given by Neumann polynomials,
fAng. For all analytic Bessel functions of non-negative integer index

Jn (z) =
�z
2

�n 1X
k=0

(�1)k

k! (k + n)!

�z
2

�2k

there are corresponding associated Neumann polynomials in powers of 1=z that are dual to fJng on
any contour enclosing the origin. These are given by

A0 (z) = 1 ; A1 (z) =
2

z
; An�2 (z) = n

�
2

z

�n bn=2cX
k=0

(n� k � 1)!
k!

�z
2

�2k
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These satisfy an inhomogeneous equation (cf. the 2�2 matrix example from Kato�s book, men-
tioned previously, especially at exceptional spectral points) where the inhomogeneity is orthogonal
to all the Jk (z).

� d2

dx2
An
�
meix

�
+
�
m2e2ix � n2

�
An
�
meix

�
=

�
2nmeix for odd n
2m2e2ix for even n 6= 0

� d2

dx2
Jn
�
meix

�
+
�
m2e2ix � n2

�
Jn
�
meix

�
= 0

The inhomogeneities1 here are actually linear combinations of an in�nite number of Jk (meix).

1Note: The inhomogeneity is m2e2ix for the special case n = 0.
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Re-expressed for the imaginary Liouville problem, the key orthogonality relation is now

1

2�

Z 2�

0

Ak
�
meix

�
Jn
�
meix

�
dx = �kn

Hence the metric on the space of dual wave functions (i.e. G�1) is

J (x; y) � J0
�
me�ix �meiy

�
=

1X
n=0

"nJn
�
me�ix

�
Jn
�
meiy

�
where "0 = 1; "n6=0 = 2.
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This manifestly hermitian, bilocal kernel J (x; y) = J (y; x)� can be used to evaluate the norm
of a general function in the span of the eigenfunctions

 (x) �
1X
n=0

cn
p
"nJn

�
meix

�
through use of the corresponding dual function

 dual (x) �
1X
n=0

c�nAn
�
meix

�
=
p
"n

where once again "0 = 1; "n6=0 = 2. The result is as expected.

k k2 =
1

(2�)2

Z 2�

0

dx

Z 2�

0

dy  dual (x) J (x; y)  dual (y) =
1X
n=0

jcnj2
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Wigner transform of the bilocal metric

A scalar product for a biorthogonal system such as fAk; Jng can always be written as an integral
over a doubled con�guration space involving a �bilocal metric�J (x; y).

(�;  ) =

ZZ
� (x) J (x; y) (y) dxdy

Bilocal $ phase space When a scalar product is so expressed it is easily re-expressed in phase
space (which we suppose to be R2 in this paragraph) through the use of a Wigner transform.

f � (x; p) �
1

2�

Z
eiyp  

�
x� 1

2
y

�
�

�
x+

1

2
y

�
dy

Fourier inverting gives the point-split product

� (x) (y) =

Z 1

�1
ei(y�x)p f �

�
x+ y

2
; p

�
dp

Thus the scalar product can be re-written as

(�;  ) =

ZZ
G (x; p) f � (x; p) dxdp

where the phase-space metric is the Wigner transform of the bilocal metric.

G (x; p) =

Z
eiyp J

�
x� 1

2
y; x+

1

2
y

�
dy

and inversely

J (x; y) =
1

2�

Z 1

�1
ei(x�y)p G

�
x+ y

2
; p

�
dp

In a more abstract notation the form of the scalar product is
�
�;  

�
= Tr (G j i h�j) = Tr

�
j ifh�j�.
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Liouville dual metric

To be more speci�c, for 2�-periodic dual functions of imaginary Liouville quantum mechanics, the
scalar product given previously can be re-expressed in a form which is immediately converted to
phase-space.

J (x; y) = J0

�
�2iei(y�x)=2 sin

�
x+ y

2

��

Up to some normalization (and other) conventions, the corresponding metric in phase space is given
by the Wigner transform of this bilocal. Namely

eG (x; p) =
1

2�

Z 2�

0

J (x+ w; x� w) e2iwpdw = 1

2�

Z 2�

0

J0
�
�2ie�iw sin x

�
e2iwpdw

Hence the simple �nal answer.

eG (x; p) =

�
sin2 x

�p
(p!)2

for integer p � 0, but vanishes for integer p < 0

Thus we re-obtain the previous solution of the entwining equation.

An equivalent operator expression can be obtained by the method of Weyl transforms. Rather
than pursue this, let us move on to the �eld theory extension of the model.
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Liouville �eld theory functionals

Consider the Liouville �eld theory on a spacetime cylinder, with �elds periodic in the spatial variable
�. The conventional energy density in the Schrödinger functional formalism is

H� (�) = � �2

�� (�)2
+ (@�� (�))

2 + e2i�(�) (1)

I�ve written this for the potential exp (2b�) when b = i. I leave it as an exercise to work out the
results that follow for other b = i�. But note [10] there is an instability (phase transformation?)
when �2 > 2�.

Classical Liouville and free �eld con�gurations are related by the local version of the classical
point particle canonical transformation, with generator F = meix sin �, only augmented with a
duality term.

F [�;  ] =

Z
�

� (�) @� (�) +mei�(�) sin (�) (2)

� (�) =
�

�� (�)
F [�;  ] = @� (�) + imei�(�) sin (�)

$ (�) = � �

� (�)
F [�;  ] = @�� (�)�mei�(�) cos (�)
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The single-particle result expressing periodic Liouville QM wave functions as transforms of free
particle wave functions for integer

p
E also has an immediate generalization in terms of Schrödinger

wave functionals. Liouville and free �eld energy eigenfunctionals are related, without any approxi-
mations, by a functional transform (suitably regularized) that involves just the classical generating
functional connecting the two �elds, if we suppose at least the zero mode of the free �eld is periodic.

�E [�] =

Z
d� [ ] eiF [�; ] 	E [ ] (3)

where d� [ ] = ��d (�) = �nd n is the usual functional measure, and where 	E [ ] is a free
massless �eld energy eigenfunctional. We will use the prescription that the zero mode  0 is
integrated over [0; 2�] while the non-zero modes  n6=0 are integrated over (�1;+1), with 	E [ ]
given by plane-waves in the zero mode, and a Gaussian in the non-zero modes.
For example, the vacuum functional is 	0 [ ] = exp

�
�1
2

R
�
 (�) j@�j (�)

�
with j@�j �

p
�@2�.

Translationally invariant, higher energy con�gurations follow from simple boosts that di¤er from
	0 [ ] only through a zero mode plane wave: 	0 [ ]! 	k [ ] = 	0 [ ] exp

�
ik
R
�
 (�)

�
.
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To con�rm this connection between energy functionals, we de�ne

D (�) = �i
�

� (�)
+ @�� (�) ; D� (�) = �i

�

�� (�)
� @� (�) (4)

observe that [D (�1) ; D� (�2)] = 0 =
�
D (�1)�D� (�1) ; e

i�(�2)�i (�2)
�
, even for �1 = �2, and

compute

(D (�)�D� (�)) e
iF = mei�(�)�i (�) eiF

(5)

(D (�1) +D� (�1)) (D (�2)�D� (�2)) e
iF = ei�(�2)+i�(�1)+i (�1)�i (�2) eiF

Taking �1 = �2 does not produce a singularity. So we have the exact result�
D2
 (�)�D2

� (�)
�
eiF = e2i�(�) eiF (6)

On the other hand �
D2
 (�)�D2

� (�)
�
eiF ��

� �2

� (�)2
+ (@� (�))

2 +
�2

�� (�)2
� (@�� (�))2 � 2i@�

�
ei�(�) cos (�)

��
eiF (7)
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So, expressed in terms of the (un-improved) energy density operators for Liouville and free �elds,
in the Schrödinger wave functional formalism,

H (�) = � �2

� (�)2
+ (@� (�))

2 (8)

H� (�) = � �2

�� (�)2
+ (@�� (�))

2 + e2i�(�) (9)

we are led to the exact relation

H (�) e
iF = H� (�) e

iF + 2i@�
�
ei�(�) cos (�)

�
eiF (10)

Clearly the total space derivative on the RHS arises from the conformal improvements for the
Liouville and free �eld energy densities. It will drop out of the total energy, if periodic boundary
conditions are assumed, but not the Virasoro charges.
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Thus the imaginary Liouville energy density, and indeed the entire local conformally improved
energy-momentum density tensor, entwines to that of a free �eld. Hence the functional transform
given above yields exact results for Liouville energy eigenfunctionals.

H� (�) �E [�] =

Z
d� [ ]

�
H (�)� 2i@�

�
ei�(�) cos (�)

��
eiF [�; ] 	E [ ] (11)

H� =

Z
�

H� (�) ; H =

Z
�

H (�) (12)

H��E [�] =

Z
d� [ ] H e

iF [�; ] 	E [ ] =

Z
d� [ ] eiF [�; ] H 	E [ ] = E�E [�] (13)

where in the second step of the last equation, we have functionally integrated by parts and assumed
no end-point contributions2. For instance, if the range of integration is [0; 2�] for the zero mode,
periodicity of each factor in the integrand, including 	E [ ], ensures there are no zero-mode end-
point contributions, while if the range is (�1;1) for each non-zero mode, the Gaussian behavior
of 	E [ ] ensures there are no end-point e¤ects for the non-zero modes.

2All this looks much cleaner in a functional phase-space formalism, albeit somewhat heuristic. We leave this
approach as an exercise for the interested student.
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The story for the dual wave functionals is almost the same, except that the functional integration
now has a lower limit of integration (namely  = 0) which contributes end-point terms under
integrations by parts. Modulo normalizations and an additive constant, we have

�dualE [�] =

Z i1

 =0

d� [ ] eiF [�; ] 	E [ ] (14)

Note that we do not distinguish the dual free �eld eigenfunctional 	�E [ ] from a generic 	E [ ]
(although for clarity, perhaps we should.) The upper limit �i1�is somewhat ambiguous. The
idea is just to choose the upper limit for each mode to be a point in the complex plane such that
there is no end-point contribution upon integration by parts. In general this point is reached by
following a contour that depends discontinuously on the phase of the � modes, i.e. the upper limit
is di¤erent for a discrete number of �phase wedges�of �. For example, if we consider only the zero
modes, with �0 real, the upper limit for the  0 integration is actually i1�� where j�+ �0j < �=2,
thereby ensuring that cos (�+ �0) > 0 and damping the integrand. These discontinuous contour
changes require some careful attention in calculations.
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In any case, we now claim the dual functional satis�es an inhomogeneous equation.

H� (�) �
dual
E [�] =

Z i1

 =0

d� [ ] eiF [�; ]
�
H (�)� 2i@�

�
ei�(�) cos (�)

��
	E [ ]

�i
�
D (�)�mei�(�)

�
	E [ ]

��
 =0

(15)

Hence

H��
dual
E [�] =

Z i1

 =0

d� [ ] eiF [�; ] H 	E [ ]

�i
Z
�

�
D (�)�mei�(�)

�
	E [ ]

��
 =0

(16)

where
R
�

�
D (�)�mei�(�)

�
=
R
�

�
�i �

� (�)
�mei�(�)

�
. This is the �rst inhomogeneous functional

equation that I have considered.
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Some details. First

�D� (�) �
dual
E [�] = �

Z i1

 =0

d� [ ] D� (�) e
iF [�; ] 	E [ ] =

Z i1

 =0

d� [ ]
�
D (�)�mei�(�)�i (�)

�
eiF [�; ] 	E [ ]

= ieiF [�; =0] 	E [ = 0] +

Z i1

 =0

d� [ ] eiF [�; ]
�
D (�)�mei�(�)�i (�)

�
	E [ ]

= i	E [ = 0] +

Z i1

 =0

d� [ ] eiF [�; ]
�
D (�)�mei�(�)�i (�)

�
	E [ ] (17)

Note the sign �ips in the exponentials ei�(�)�i (�). Then there is�
H� (�) + 2i@�

�
ei�(�) cos (�)

��
�dualE [�]

=

Z i1

 =0

d� [ ]
�
H� (�) + 2i@�

�
ei�(�) cos (�)

��
eiF [�; ] 	E [ ] =

Z i1

 =0

d� [ ] H (�) e
iF [�; ] 	E [ ]

=

Z i1

 =0

d� [ ]

�
� �2

� (�)2
+ (@� (�))

2

�
eiF [�; ] 	E [ ]

=
�

� (�)
eiF [�; ]

����
 =0

	E [ = 0] +

Z i1

 =0

d� [ ]
�

� (�)
eiF [�; ]

�

� (�)
	E [ ] +

Z i1

 =0

d� [ ] eiF [�; ] (@� (�))
2	E [ ]

=
�

� (�)
eiF [�; ]

����
 =0

	E [ = 0]� eiF [�; =0]
�

� (�)
	E [ ]

����
 =0

+

Z i1

 =0

d� [ ] eiF [�; ] H (�)	E [ ]

= �i
��
D (�)�mei�(�)

�
	E [ ]

��
 =0

+

Z i1

 =0

d� [ ] eiF [�; ] H (�)	E [ ]

since eiF [�; =0] = 1 and �
� (�)

eiF [�; ]
���
 =0

= imei�(�) � i@�� (�). This is the result advertised earlier.
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For non-periodic zero modes, there is also a functional generalization of the Schlä�i and Sonine
representation.

J�
p
E

�
meix

�
=

�m
2
eix
��pE 1

2�i

Z (0+)

�1

dw

w
w�

p
E exp

�
w � m2e2ix

4w

�
=

1

2�i

Z (0+)

�1� 2
m
e�ix

du

u
u�

p
E exp

�
1

2
meix

�
u� 1

u

��
(18)

Up to normalizations, and other things, it looks just like the previous (3).

�E [�] =

Z
C
d� [ ] eiF [�; ] 	E [ ] (19)

with F as given previously. But the contour C requires some discussion. For the zero mode  0 (or
rather, an appropriate logarithm of  0) it is just the contour in Sonine�s integral representation for
the � function. For the non-zero modes, something similar is required. But since we will expand
eiF [�; ] in the non-zero modes, and since 	E [ ] is a Gaussian in them, it su¢ ces just to integrate
the non-zero modes along the real axis. That is to say, for each term in the perturbation series as
we will de�ne it, the non-zero mode contour can always be deformed to the real axis.
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The message to be taken from all this is imaginary Liouville �eld theory is an interesting example
of a Q-hermitian theory, with a real energy spectrum, and it is indeed a consistent quantum �eld
theory. Still, it remains to compute expectations of various Liouville �elds using these integral
representations. This is in progress.

Things to do:

� Show that imaginary Liouville perturbation theory agrees with Schomerus�3-point function.
This would place the latter on a �rmer foundation, in my opinion.3

� Better yet, show that the representation of the Liouville energy eigenstates as functional
integral transforms of free �eld states leads exactly to the cited 3-point function.

� Connect the exact functional expressions to exact path integral results for the imaginary
Liouville Q-hermitian Hamiltonian.

� Etc. for �elds on supermanifolds.

3The matrix element of a product of n�2 exponentials on the cylinder is related to the correlator of n exponentials
on a sphere by associating the states with two points on the sphere represented on the complex plane by, say x1 = 0
and xn =1. Putting �1 = Q=2+iP and �n = Q=2+iP 0, with P; P 0 real, the energies of the two states participating
in the matrix element are given by E = 2P 2 and E0 = 2P 02. Then, in perturbation theory, we would need to compute
the matrix elements of the operator e2i��� between states with P = �k and P 0 = �k0, and compare them with the
asymptotic series of Schomerus�3-point function, in the limit � ! 0. For real Liouville theory, Charles Thorn showed
these perturbative results were consistent with the exact 3-point function of Dorn and Otto, and the Zamolodchikovs.
It would be good to do the analogous demonstration for imaginary Liouville theory.
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Conclusions:

Is there a quasi-hermitian Hamiltonian in your future ?

You can be pseudo-certain of it !
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1 Appendix: Classical Liouville dynamics

For the imaginary Liouville theory

H (x; p) = p2 + exp (2ix)

the classical story goes as follows, if we follow Xavier and de Aguiar [29], and Bender [4] et al. Even
for complex x and p we solve

dx (t)

dt
=
@H

@p
= 2p (t) ;

dp (t)

dt
= �@H

@x
= �2im2e2ix(t)

i.e. we postulate Poisson brackets such that fx; pg = 1, even on C2. Complex energy conservation
allows reduction to a single �rst order equation

dx (t)

dt
= 2p (t) = �2

p
E �m2e2ix(t)

For E 6= 0,

x (t) =
1

2i
ln

0BB@ E=m2

cosh2
�
�2i
p
Et+ arctanh

q
1� m2

E
exp (2ix (0))

�
1CCA

which is exact, but not very transparent.
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On the other hand,

p (t) = �
p
E

0@a (E; x0)� exp
�
�4i
p
Et
�

a (E; x0) + exp
�
�4i
p
Et
�
1A

is somewhat easier to understand. For real E this is a circle in the complex plane, of radius
2jaj
jaj2�1

p
E, whose center is on the real axis at � jaj2+1

jaj2�1

p
E.

Trajectories look like this.

1 1 2 3 4

0.5

0.5

x

y

(Re x; Im x) in blue and (Re p; Im p) in red, plotted parametrically for E = 1=4
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The E = 0 motion is simpler, but still has interesting structure, as follows.

xE=0 (t) = i ln
�
e�ix(0) � 2mt

�
;

dxE=0 (t)

dt
=

�2im
e�ix(0) � 2mt

For various initial x and p, we plot the trajectories parametrically.

1 2 3

2

1

0

1

2

3

(Re x; Im x) for E = 0.

3 2 1

2

1

0

1

x

y

(Re p; Im p) for E = 0.

The vertical red line is Rex = �.
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For artistic purposes, here is a momentum trajectory for complex E = ei and for x (0) = 1. The
�ow is between symmetrical complex �xed points at p� = �ei=2 = �0:877 58� 0:479 43 i.

x

y

This raises the question: What did Stradivarius know and when did he know it?
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Canonical transformations

Many of the classical properties are more easily understood upon taking note of the following
fact. There exist generating functions for canonical transformations from Liouville to free particle
dynamics, with free variables � and p�. However, in the present context, both free particle and
Liouville dynamics must be complexi�ed, in general. One such transformation is given by

F = meix sin � ; p � @

@x
F = imeix sin � ; p� � �

@

@�
F = �meix cos �

The free particle�s momentum is conserved, p� = �
p
E, since under the transformation

H = p2 +m2e2ix = p2� = Hfree

Turning points are encountered for real E > 0 if and only if Im � = 0 on the corresponding free
particle trajectories.
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2 Appendix: QM in Phase Space �a tutorial

There are three mathematically equivalent but autonomous formulations of quantum mechanics
based on:

1. states and operators (Hilbert space),

2. path integrals,

& 3. phase-space.

A lot of �old�money was made based on the �rst two formulations ...

but the third formulation has only received attention relatively recently under the heading of �de-
formation quantization�even though it has been around longer than path integrals.
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Wigner functions (WFs)

WFs are the principal players in the last of these three arenas, and while they are ordinary functions
of their c-number arguments, nevertheless, non-commutativity is still an unavoidable rule of the
game.

On the Quantum Correction For Thermodynamic Equilibrium
E. Wigner

Department of Physics, Princeton University
Phys. Rev. 40, 749�759 (1932)
Received 14 March 1932

The probability of a con�guration is given in classical theory by the Boltzmann formula exp[-
V/hT] where V is the potential energy of this con�guration. For high temperatures this of course
also holds in quantum theory. For lower temperatures, however, a correction term has to be
introduced, which can be developed into a power series of h. The formula is developed for this
correction by means of a probability function and the result discussed.

c1932 The American Physical Society URL: http://link.aps.org/abstract/PR/v40/p749

�If a wave function  (x1 � � �xn) is given one may build the following expressionx

P (x1; � � � ; xn; p1; � � � ; pn) =
�
1

h�

�n Z 1

�1
� � �
Z
dy1 � � � dyn (x1 + y1 � � �xn + yn)

�

 (x1 � y1 � � �xn � yn) e2i(p1y1+���+pnyn)=h (5)

and call it the probability-function of the simultaneous values of x1 � � �xn for the coordinates and
p1 � � � pn for the momenta. In (5), as throughout this paper, h is the Planck constant divided by
2� and the integration with respect to the y has to be carried out from �1 to 1. Expression (5)
is real, but not everywhere positive. : : :

x This expression was found by L. Szilard and the present author some years ago for another
purpose.�
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Wigner functions = Weyl-correspondents of density operators

b� (bx;bp) = 1

(2�~)n
Z
dnXdnP

Z
dnxdnp f (x; p) exp (iX � (bp� p) =~+ iP � (bx� x) =~)

So WFs reside in phase-space: In one x and one p dimension

f (x; p) =
1

�~

Z
dy hx+ yj b� jx� yi e�2ipy=~

hx+ yj b� jx� yi = Z dp f (x; p) e2ipy=~

b� = 2Z dxdy

Z
dp jx+ yi f (x; p) e2ipy=~ hx� yj

For a pure-state

f (x; p) =
1

�~

Z
dy  (x+ y)  � (x� y) e�2ipy=~

 (x+ y)  � (x� y) =
Z
dp f (x; p) e2ipy=~

b�= j i h j
where as usual  (x+ y) = hx+ y j i ; h j x� yi =  � (x� y) :
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More generally, to represent all operators on phase-space in a selected basis we need the Weyl-
correspondents of arbitrary j 2i h 1j. We will call these non-diagonal WFs

f12 (x; p) =
1

�~

Z
dy  1 (x+ y)  �2 (x� y) e�2ipy=~ = f �21 (x; p)
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Star products

What about non-commutativity? QM requires it!

The star product is the Weyl correspondent of the Hilbert space operator product.
H Weyl (1927), J von Neumann (1931), E Wigner (1932), H Groenewold (1946), J Moyal (1949)

f?g =

Z
dx1dp1
2� (~=2)

Z
dx2dp2
2� (~=2)

f (x+ x1; p+ p1) g (x+ x2; p+ p2) exp

�
i

~=2
(x1p2 � x2p1)

�
JvN/HW/EW/HG

x1p2 � x2p1 = Area (1,2 phase-space parallelogram)
~=2 = Planck Area = min (�x�p)
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f ? g = f (x; p) exp

�
 �
@x
i~
2

�!
@p �

 �
@p
i~
2

�!
@x

�
g (x; p) EW/HG/JM

f ? g = f

�
x+

1

2
i~
�!
@p ; p�

1

2
i~
�!
@x

�
g (x; p)

= f (x; p) g

�
x� 1

2
i~
 �
@p ; p+

1

2
i~
 �
@x

�
= f

�
x+

1

2
i~
�!
@p ; p

�
g

�
x� 1

2
i~
 �
@p ; p

�
= f

�
x; p� 1

2
i~
�!
@x

�
g

�
x; p+

1

2
i~
 �
@x

�
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Exercise 1 WFs as star products (Braunss)

f12 (x; p) =  1 (x) ? � (p) ?  
�
2 (x)

Exercise 2 Non-commutativity

eax+bp ? eAx+Bp = e(a+A)x+(b+B)p e(aB�bA)i~=2

6=
eAx+Bp ? eax+bp = e(a+A)x+(b+B)p e(Ab�Ba)i~=2

Exercise 3 Associativity �
eax+bp ? eAx+Bp

�
? e�x+�p

= e(a+A+�)x+(b+B+�)p e(aB�bA+a��b�+A��B�)i~=2

= eax+bp ?
�
eAx+Bp ? e�x+�p

�
Exercise 4 Trace properties (a.k.a. Lone Star Lemma)Z

dxdp f ? g =

Z
dxdp f g =

Z
dxdp g f =

Z
dxdp g ? f

Establish this by using the RHS in the �rst exercise for purely imaginary a; b; A; and B to obtain
Dirac deltas which eliminate the non-commutative phase. Or equivalently, just use the integral
form of f ? g.

Exercise 5 Gaussians. The integral form of ? is particularly useful to show, for a; b � 0,

exp
�
�a
~
�
x2 + p2

��
? exp

�
� b
~
�
x2 + p2

��
=

1

1 + ab
exp

�
� a+ b

(1 + ab) ~
�
x2 + p2

��
:

Hence such Gaussians are exceptional and ? commute with one another.
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Fundamental pure-state conditions

Pure-state Wigner functions must obey a projection condition. If the normalization is set to
the standard value ZZ +1

�1
dxdp f (x; p) = 1

then the function corresponds to a pure state if and only if

f = (2�~) f ? f

These statements correspond to the pure-state density operator conditions: Tr (b�) = 1 and b� = b� b�,
respectively.

If both of the above are true, then f describes an allowable pure state for a quantized system.
Otherwise not.4 You can easily satisfy only one out of these two conditions, but not the other,
with f not a pure state.

Without drawing on the Hilbert space formulation, it may at �rst seem to be rather remarkable
that explicit WFs actually satisfy the projection condition (cf. the above Gaussian example, for
the only situation where it works, a2 = b2 = 1, i.e. exp (� (x2 + p2) =~)). However, if the WFs are
known to be ? eigenfunctions with non-vanishing eigenvalue of some phase-space function with a
non-degenerate spectrum of eigenvalues, they have no choice but to obey f ?f _ f as a consequence
of associativity.

4You may of course select a di¤erent standard norm for pure states, say
RR +1
�1 dxdp f (x; p) = N , and if you

do, the projection condition is likewise changed to Nf = (2�~) f ? f . (Actually, this seemingly trivial change is
important for systems with a continuum of energies.) In any case, f ? f _ f is necessary for a pure state.
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We emphasize that there is no need to deal with wave functions or Hilbert space states. The
WFs may be constructed directly on the phase-space. For real Hamiltonians, energy eigenstates
are obtained as (real) solutions of the ?-genvalue equations (Fairlie 1964, Bayen et al. 1978, or more
recently hep-th/9711183 ):

H ? f = E f = f ? H

Also see David�s recent book on QM in Phase Space ... ahem!
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The simple harmonic oscillator (SHO) To illustrate all this, consider the SHO (m = 1, ! = 1)
with

H =
1

2

�
p2 + x2

�
The above equations are partial di¤erential equations

H ? f =
1

2

 �
p� 1

2
i~ @x

�2
+

�
x+

1

2
i~ @p

�2!
f = Ef

f ? H =
1

2

 �
p+

1

2
i~ @x

�2
+

�
x� 1

2
i~ @p

�2!
f = Ef

But if we subtract (or take the imaginary part)

(p@x � x@p) f = 0 ) f (x; p) = f
�
x2 + p2

�
So H ? f = Ef = f ? H becomes a single ordinary di¤erential equation.
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That�s Laguerre not Hermite!

There are integrable solutions if and only if E = (n+ 1=2) ~, n = 0; 1; � � � for which

fn (x; p) =
(�1)n

�~
Ln

�
x2 + p2

~=2

�
e�(x

2+p2)=~

Ln (z) =
1

n!
ez
dn

dzn
�
zne�z

�
The normalization is chosen to be the standard one

RR +1
�1 dxdp fn (x; p) = 1. Except for the n = 0

ground state Wiggie (Gaussian) these f�s change sign on the xp-plane. For example:

L0 (z) = 1 ; L1 (z) = 1� z ; L2 (z) = 1� 2z +
1

2
z2 ; etc.
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Exercise 6 Using the integral form of the ? product, it is now easy to check these pure states are
? orthogonal

(2�~) fn ? fk = �nk fn

Exercise 7 This is even more transparent using ? raising/lowering operations to write5

fn =
1

n!
(a�?)n f0 (?a)

n

=
1

�~n!
(a�?)n e�(x

2+p2)=~ (?a)n

where a is the usual linear combination a � 1p
2~(x+ip); and a

� is just its ordinary complex conjugate
a� � 1p

2~(x� ip), with a ? a
� � a� ? a = 1; and a ? f0 = 0 = f0 ? a

� (cf. coherent states).

Exercise 8 Non-diagonal WFs are equally easy to construct in terms of associated Laguerre poly-
nomials

fnk = ei(n�k) arctan(p=x)
(�1)k

�~
(
x2 + p2

~=2
)(n�k)=2 Ln�kk

�
x2 + p2

~=2

�
e�(x

2+p2)=~

either as direct solutions to

H ? fnk = En fnk

fnk ? H = Ek fnk

or in terms of raising/lowering ? operations

fnk =
1p
n!k!

(a�?)n f0 (?a)
k

Exercise 9 These are also ? orthogonal

�lmfnk = (2�~) fnm ? flk

as well as complete (fnm = f �mn)

(2�~)
X
m;n

fmn (x1; p1) fnm (x2; p2) = � (x1 � x2) � (p1 � p2)

5Note that the earlier exercise giving the star composition law of Gaussians immediately yields the projection
property of the SHO ground state Wiggie f0 = (2�~) f0 ? f0.
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SHO n = 0 Wigner function
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Measurement of the Wigner distribution and the density matrix of a light mode
using optical homodyne tomography: Application to squeezed states and the vacuum

D. T. Smithey, M. Beck, and M. G. Raymer
Department of Physics and Chemical Physics Institute, University of Oregon, Eugene, Oregon

97403
A. Faridani

Department of Mathematics, Oregon State University,Corvallis, Oregon 97331
Phys. Rev. Lett. 70, 1244�1247 (1993)

(Received 16 November 1992)

We have measured probability distributions of quadrature-�eld amplitude for both vacuum and
quadrature-squeezed states of a mode of the electromagnetic �eld. From these measurements we
demonstrate the technique of optical homodyne tomography to determine the Wigner distribution
and the density matrix of the mode. This provides a complete quantum mechanical characterization
of the measured mode.

c1993 The American Physical Society URL: http://link.aps.org/abstract/PRL/v70/p1244
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Experimental Determination of the Motional Quantum State of a Trapped Atom
D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland

Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado
Phys. Rev. Lett. 77, 4281�4285 (1996)

(Received 11 July 1996)

We reconstruct the density matrices and Wigner functions for various quantum states of motion
of a harmonically bound 9Be+ ion. We apply coherent displacements of di¤erent amplitudes and
phases to the input state and measure the number state populations. Using novel reconstruction
schemes we independently determine both the density matrix in the number state basis and the
Wigner function. These reconstructions are sensitive indicators of decoherence in the system.

c1996 The American Physical Society URL: http://link.aps.org/abstract/PRL/v77/p4281

End of tutorial ... back to the matters at hand.
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