Complex trajectories of a simple pendulum

Daniel W. Hook

Blackett Laboratory Imperial College London

6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics City University London 16 July 2007

Work based on:

- Carl M. Bender, Darryl D. Holm, Daniel W. Hook (2007) "Complex Trajectories of a Simple Pendulum", Journal of Physics A40, F81-F89, [math-ph/0609068]
- Carl M. Bender, Darryl D. Holm, Daniel W. Hook (2007) "Complexified Dynamical Systems", to appear: Journal of Physics A, [arXiv:0705.3893]
- Carl M. Bender, Jun-Hua Chen, Daniel W. Darg, Kimball A. Milton "Classical Trajectories for Complex Hamiltonians" (2006) Journal of Physics A39, 4219-4238 [math-ph/0602040]
- Carl M. Bender, Daniel W. Darg (2007) "Spontaneous Breaking of Classical PT Symmetry", [hep-th/0703072]

The Simple Pendulum

Position:

 $X = L\sin\theta$ $Y = -L\cos\theta$

Velocity:

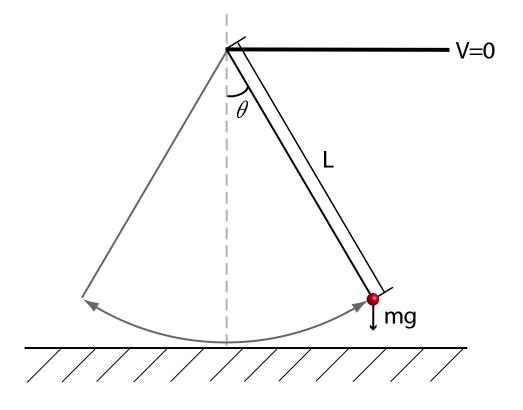
 $\dot{X} = L\dot{\theta}\cos\theta$ $\dot{Y} = L\dot{\theta}\sin\theta$

Energies:

$$V = -mgL\cos\theta$$
$$T = \frac{1}{2}m(\dot{X}^2 + \dot{Y}^2) = \frac{1}{2}mL^2\dot{\theta}^2$$

Hamiltonian:

$$H = \frac{1}{2}mL^2\dot{\theta}^2 - mgL\cos\theta$$



Turning points

We have turning points in the motion when

p = 0

Hence,

For a simple harmonic oscillator with Hamiltonian $H = \frac{1}{2}p^2 + x^2$

$$x_0 = \sqrt{2E}$$

Complexifying the Simple pendulum

Gravity:

 $\mathbf{g} = \mathbf{1}$ Im(x)Turning points: 3 $x_0 = \sqrt{2E}$ 2 1 There is a branch cut Re(x) 2 between turning points --1 $(x = \sqrt{2E})$ -2 -3 Paths have the same period:

 $T = \oint_C dx / \sqrt{2[E - V(x)]}$

A periodic potential

Case 1: $-1 \le E \le 1$ (Swinging pendulum) Hamiltonian:

$$H = \frac{1}{2}p^{2} - \cos x$$

Gravity:
 $g = 1$
Turning points:
$$H = \frac{1}{2}p^{2} - \cos x$$

-10
7.5
5
2.5
2.5
2.5
2.5
-7.5
10
Re(x)

$$x_0 = \pi/2 + n\pi$$

Example: Real Gravitational Field

Case 2: $|E| \ge 1$ (Rotating pendulum)

Hamiltonian:

$$H = \frac{1}{2}p^2 - \cos x$$

Gravity:

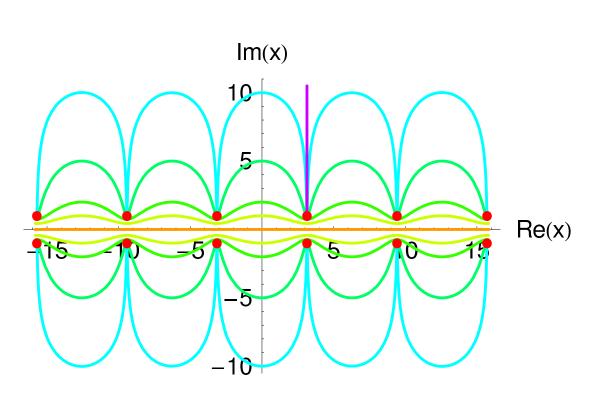
 $\mathbf{g} = \mathbf{1}$

Energy:

 $\mathbf{E}=\cosh\mathbf{1}$

Turning points:

$$x_0 = (2k+1)\pi \pm i$$



Example: Real Gravitational Field

Time to follow the purple path . . .

$$T = \frac{1}{\sqrt{2}} \int_{x=i+\pi}^{i\infty+\pi} \frac{dx}{\sqrt{E+\cos x}}$$

$$T = 1.97536\cdots$$

$$T = 1.97536\cdots$$

Im(x)

Example: Real Gravitational Field

Case 3: $E \leq -1$ (Unphysical pendulum)

Hamiltonian:

$$H = \frac{1}{2}p^2 - \cos x$$

Gravity:

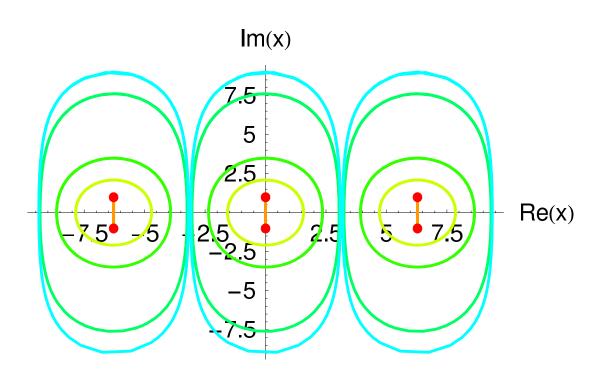
$$\mathbf{g} = \mathbf{1}$$

Energy:

 $\mathbf{E}=-\cosh\mathbf{1}$

Turning points:

$$x_0 = 2\pi k + \pm i$$



Example: Imaginary Gravitational Field

Case 1: $E = \sinh 1$ Hamiltonian:

$$H = \frac{1}{2}p^2 - i\cos x$$

Gravity:

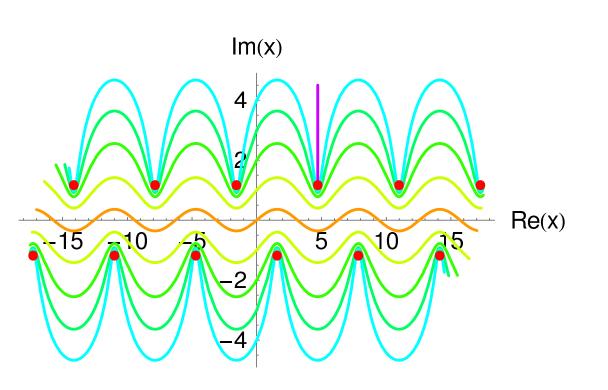
 $\mathbf{g} = \mathbf{i}$

Energy:

 $\mathbf{E}=\sinh\mathbf{1}$

Turning points:

 $x_0 = (n + \frac{1}{2})\pi + (-1)^n i$

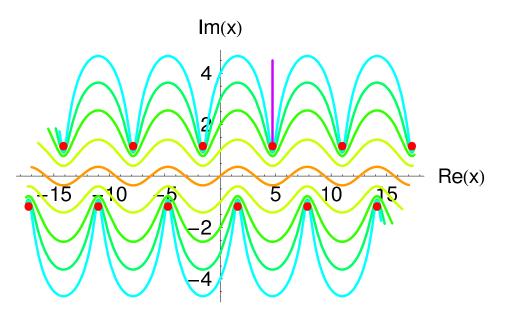


Example: Imaginary Gravitational Field

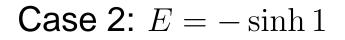
Time to follow the purple path . . .

$$T = \frac{1}{\sqrt{2}} \int_{x=i+3\pi/2}^{i\infty+3\pi/2} \frac{dx}{\sqrt{E+i\cos x}}$$

$$T = \frac{1}{\sqrt{2}} \int_{s=1}^{\infty} \frac{ds}{\sqrt{\sinh s - \sinh 1}}$$
$$= \frac{2}{\sqrt{e}} K(-1/e^2) = 1.84549 \cdots$$



Example: Imaginary Gravitational Field



Hamiltonian:

$$H = \frac{1}{2}p^2 - i\cos x$$

Gravity:

Energy:

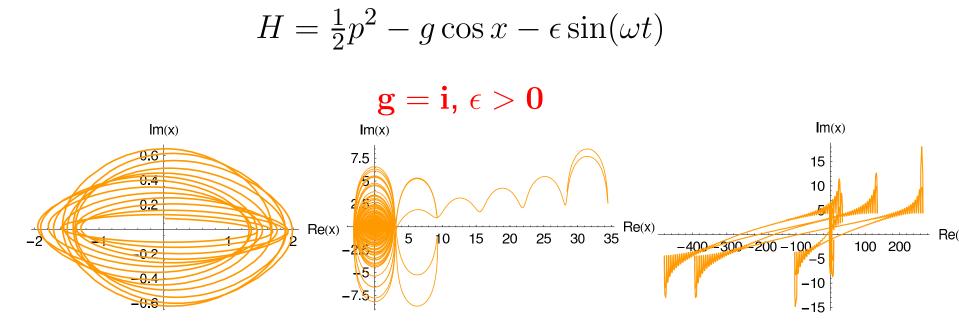
 $\mathbf{E} = -\sinh \mathbf{1}$

Turning points:

$$x_0 = (n + \frac{1}{2})\pi + (-1)^{n+1}i$$

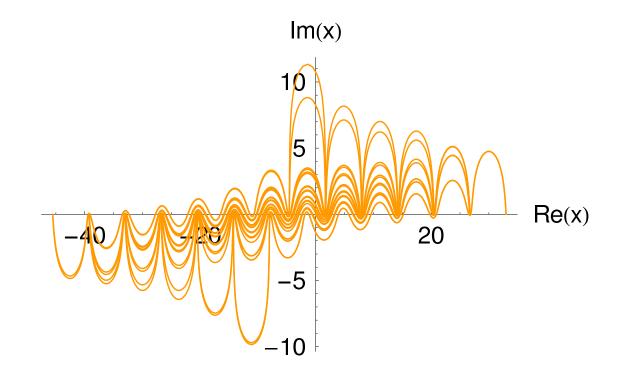
What about chaotic systems?

Introduce a driving term of the form $\epsilon \sin(\omega t)$:



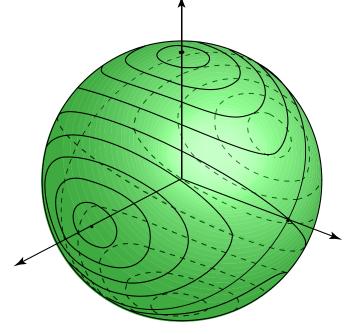
Imaginary energy?

 $\mathbf{g} = \mathbf{i} \text{ and } \mathbf{E} = \mathbf{i}$



The Euler equations governing the rotation of a rigid body about a fixed axis also are \mathcal{PT} .

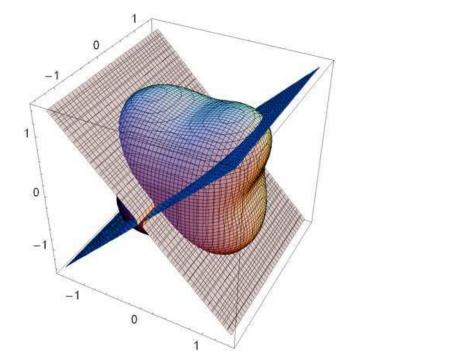
$$\dot{L}_1 = L_2 L_3 \dot{L}_2 = -2L_1 L_3 \dot{L}_3 = L_1 L_2$$

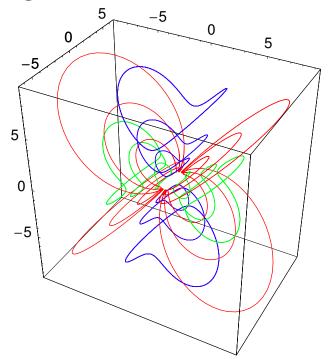


We extend the Euler Equations into the complex plane. There are two constants of motion (which gives us 4 constraints):

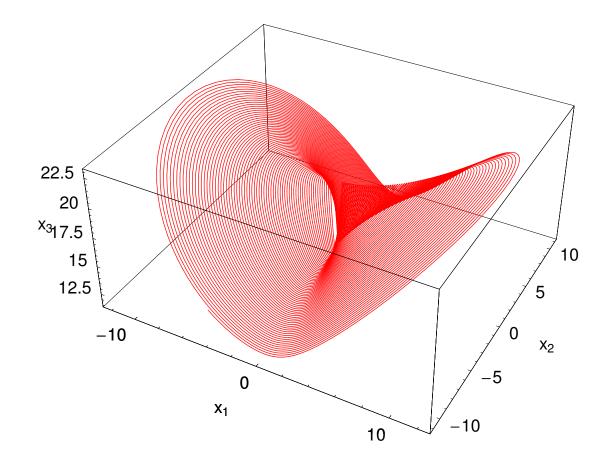
> $C = \frac{1}{2} \left(x_1^2 + x_2^2 + x_3^2 \right)$ and $H = \frac{1}{2} x_3^2 - \frac{1}{2} x_1^2$. 0.5 0 -0.5

Intersections of the level surfaces give us the orbits:





If we allow energy to be imaginary:



Lotka-Volterra equations

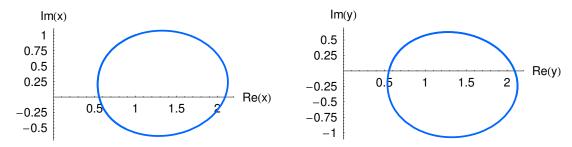
Another PT-Symmetric system - this time under:

$$\dot{x} = x - xy, \quad \dot{y} = -y + xy \tag{1}$$

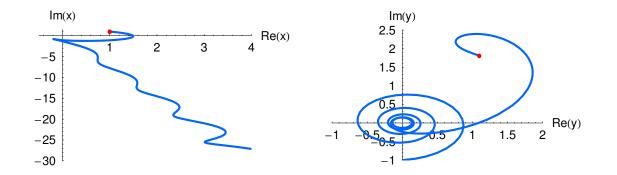
constant of motion

$$x + y - \log(xy) = C.$$
 (2)

Fox/ rabbit interchange, and time reversal.



Lotka-Volterra equations



Conclusions

- Classical Mechanics seems to naturally extend into the complex plane to give some familiar and not so familiar results
- Complex extensions of classical mechanics help us understand well known systems

Where next?

- spherical pendulum, the spinning top
- other discrete dynamical systems SIR models etc.
- Is classification of chaotic systems using \mathcal{PT} Symmetry (see for example, the Kicked Rotor).