Interfacing the Hermitian and Pseudo-Hermitian Worlds
H. F. Jones
Imperial College London



Outline

1. Introduction

2. The Quantum Brachistochrone

3. Coupling Hermitian and non-Hermitian Hamiltonians

4. Conceptual Problems in Scattering

5. Summary




1. Introduction

Development of subject:

Initial discovery of real eigenvalues. EXxploration of soluble
models

Need for +ve. definite metric. CPT , n

- Construction of equivalent Hermitian Hamiltonian h

- Ghost busting: Lee model, Pais-Uhlenbeck model



All above concerns non-Hermitian systems in isolation

But most of physics is

. have to consider interface between two.

First attempts:
- Quantum Brachistochrone (cmB et al.)
- Coupling Hermitian and non-Hermitian Hamiltonians ( ¢MB

HFJ

- Scattering off localized complex potentials (HFJ)



2. Quantum Brachistochrone

For Hermitian Hamiltonians 3 lower bound on “passage time”

— time for (unitary) evolution by e *Ht between orthogonal
states

For 2 x 2 matrices, and fixed dispersion £y — E_ =w , bound

o () 2)]

t>7m/w

Can we do better using a non-Hermitian H?



Yes!

Take

Real eigenvalues when rsinf < s . So write rsinf = ssin «
Then w=2sCcosa , and passage time is

t = (m+ 2a)/w

Can be made arbitrarily small as o« — —n/2 !



How do we avoid theorem?

- In framework of conventional QM, states are orthogonal, but
H is not Hermitian, and time evolution is not unitary.

- Alternatively, to describe transition can introduce pseudo-
Hermitian metric n . Then evolution is unitary w.r. to n ,
but states are not orthogonal.

Note interface between Hermitian world (initial and final states)
and intervening non-Hermitian Hamiltonian.



3. Coupling Hermitian and non-Hermitian Hamiltonians

Here we consider

H = Hq{ + H> + coupling,

where Hy is Hermitian, and Ho is quasi-Hermitian

3.1 Matrix model:

(1 1 | e 0 )
11 1 O 3
H = € 0 ret? S
\ 0 € s re W )

Unperturbed eigenvalues are O , 2 , rcosf 4+ scos «
( rsinf = ssina )

Numerically, eigenvalues are up to e~ 0.704. Then complex.
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3.2 SHO+shifted SHO:

H = p2 —I—ac%—l-g2 + y? + 21y + 2exy
Hq Ho» coupling

Construct O to satisfy

H = e_QHeQ

Solution is Q=2 (6p _ q)

Note possible problems when |¢| — 1



Now construct equivalent Hermitian Hamiltonian:

h = e_%QHe%Q

1
= p"+2°+ ¢ +y°+ 2emy + ——
1l —¢
Two coupled SHOs. Diagonalize by
1 1
- _—_(X+4+Y = —(P
T \/5( +Y) p \/5( + Q)
1 1
= —(X-Y = —(P —
Y \/5( ) q \/5( Q)



Net result is

h=P2—|—(1—|—s)X2—|—Q2—I—(1—5)Y2—|—1 L -

— &

with eigenvalues
Emn=02m4+1)V1i4+ec+2n+1)V1 -+ 1_162

So eigenvalues complex for | |g| > 1




3.3 SHO+4Swanson Hamiltonian:

H =+ 2%) + (¢° +v° +ic{q, y} 1) + 2exy
Can take Q = —cy? , which shifts ¢ — q — icy
Then

h=p?+a?+ ¢+ (1 - c?)y? + 2exy

Can be diagonalized, to give
h= P2+ QX%+ Q%4+ Q3Y?

where
1
1 1 )
O —1——2i<2 _4)
1,2 = 20 € —|—4c
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Eigenvalues

Emn = 2m+ 1)1 + (2n+ 1)

again become complex when | €2 > 1 — ¢2

3.4 Generic Real V(z)+shifted SHO:

H =+ V() + (¢% + y? + 2iy) + 2exy

Can show in perturbation theory that E up to O(e?).
Attempting proof that £ becomes complex for some ¢
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4. Conceptual Problems in Scattering

4.1 Scattering off Simple non-Hermitian Potentials
(i) Two delta functions

Consider PT-symmetric potential:

V(z) =iA(6(x —a) —6(xz+ a)) (4.1)
with WF
etk 4 Otk r < —a
Y = AT 4 Cethe —a<z<a (4.2)

Detkz a<x

13



Applying contY cond" [¢y] =0, [¢'] = £i\y at boundaries, get

1

D = :
1 4+ ia2e?ikasin 2kq

C = 2iDa(l — «)sin 2ka,
(= A/(2k))

In particular

1

ID]* = D
1 — 402(1 — a?) sin“ 2ka

> 1 for a<l1

But in conventional QM, |D|2 represents the transmission prob-
ability . So probability not conserved even though V is PT-
symmetric.
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(ii) Same is true for complex square well (PT-symmetric):

0 x| > a
V(z) = ¢ —iX —a<z<O0
A O<z<a
T
z
1.5
1
0.5
K

0.2 0.4 0.6 0.8 1 1.2 1.4
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(iii) and for single complex § function: V = z§(x) ,
with z = 2X(1 + i)

WF is just
eth® | Ce—th x <0
Y = |
Detka 0 <z,
with
D=<1+5> . Cc=-2D.
2k 2k
Now
2eq -1
C|°+|DI? = [1-
CP+IDP = (1- 1350 )
z 1 for e=20

(k= A\q)
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So in each case unitarity (as conventionally calculated) is vio-
lated.

Two approaches:

1. Treat V as an effective poté, and don't worry (Cannata et al.)

2. Treat V as fundamental, and use appropriate n metric

Will go through this exercise, but note from beginning that it
must involve a fundamental redefinition of QM even at infinity.
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4.2 Quasi-Hermitian Approach (V = z6(z)) (am)

Recall that metric n = e~ @ is defined by
HY = nHn™1

Then calculate matrix elements by including 7
e.g.

(A)y = (YInAl)

A is an observable, with real eigenvalues, if it is quasi-Hermitian:

AT = nAn_l
Mostafazadeh has calculated perturb" series for n :

n=> e
r=0

up to O(e3).
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Matrix elements of n(9) and n(1) are
nO(z,y) = 8-y

1Oe,y) = Zia0Gy)e =V 4 6(—ay)e =] san(y? — o)

If we use n metric, = is no longer an observable. Instead position
observable is X, defined by

X = p tap,

N

:e_Q

N+

where p =17

Big problem is that n and p are non-local .
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According to AM, relevant WF is not ¢(xz) = (z|y) , but

W (z) = (2|W) = (z|ple)
Then
(YN X])

(Wlp~tn (p~tzp)p W)
— <\IJ|5:|\U>=/:U|\U($)|2d:c

(X)y

Take new probability density as o = |W(z)|? .
T hen total probability is conserved in time:

d(/g dz)/dt = 0

[But 7 local conservation equation of form 9o/t + dj/dx = 0 ]
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So, have to calculate
W(2) = [ dyp(e, ) (),
where p = n(0) 4 %877(1) + 0(e2?)
Recall that
ekt 4 Ce™™ £ <0

Detka 0<uz,
with

D=Oﬁlq  c=-2p
Ok 2k

Result of this calculation for x > 0 , and to O(e) , is
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eNk
2(A\2 4 k2)

\U>(ZU) — Deikx _I_ (e—ikx . (C_I_ D)ezkx) _|_

N.B. W~ (z) no longer represents a pure outgoing wave o e?*®
Contains term o« e~ %% as well. .- physical picture of the scat-

tering is completely changed.

But can neglect it to calculate probabilities to O(e)
Then get

>(x) =e q+1 +2(q-l-i)

(k= q\)

22



Similarly, for x < 0 , get

- —1kx
 ikx £q e € .
Velz) =e (1 @@ 1)) g+ (1 HPTCET) w)

so that

£q 1 £q :
W 2 — (14— J4+—— (1 interference term
W<(z) ( +q2+1>+q’2+1< +q2+1>+

4

-~

incoming flux outgoing flux

So just multiply Hermitian fluxes for real § function 2A\§(x) by
same common factor.

Hence newly-defined probability is indeed conserved to this order
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5. Summary

1. Quantum brachistochrone works because of mixture of Her-
mitian and non-Hermitian Hamiltonians.

2. Can couple Hermitian and non-Hermitian systems
while retaining real energies.

3. Scattering presents quasi-Hermitian QM with a quandary. If
Hamiltonian is to be treated as fundamental it necessitates
a change in the framework of QM even at infinity.

N.B. Problem is generic, and not confined to )-functions and
square wells.
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