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Transformation Properties

At the first International Workshop on
Pseudo-Hermitian Hamiltonians in Quantum
Physics (Prague, 2003) I proposed a
PT -symmetric version of quantum
electrodynamics. A non-Hermitian but
PT -symmetric electrodynamics is based on the
assumption of novel transformation properties of
the electromagnetic fields under parity
transformations, that is,

P : E → E, B → −B, A → A, A0 → −A0,
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Time Reversal

just the statement that the four-vector potential is
assumed to transform as an axial vector. Under
time reversal, the transformations are assumed
to be conventional,

T : E → E, B → −B, A → −A, A0 → A0.

Fermion fields are assumed to transform conven-

tionally.
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Lagrangian and Hamiltonian

The Lagrangian of the theory then possesses an
imaginary coupling constant in order that it be
invariant under the product of these two
symmetries: L =

−1

4
F µνFµν+ψ†γ0γµ1

i
∂µψ+mψ†γ0ψ+ieψ†γ0γµψAµ.

The corresponding Hamiltonian density is

H =
1

2
(E2+B2)+ψ†

[

γ0γk

(

1

i
∇k + ieAk

)

+mγ0

]

ψ.
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Current Density

The electric current appearing in both the
Lagrangian and Hamiltonian densities,
jµ = ψ†γ0γµψ, transforms conventionally under
both P and T :

Pjµ(x, t)P =

(

j0

−j

)

(−x, t),

T jµ(x, t)T =

(

j0

−j

)

(x,−t).
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ETCR

We are working in the Coulomb gauge,
∇ · A = 0, so the nonzero canonical equal-time
commutation relations are

{ψa(x, t), ψ
†
b(y, t)} = δabδ(x − y),

[AT
i (x), ET

j (y)] = −i
[

δij −
∇i∇j

∇2

]

δ(x − y),

where T denotes the transverse part,

∇ · AT = ∇ · ET = 0.
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The C operator

As for quantum mechanical systems, and for
scalar quantum field theory, we seek a C
operator in the form

C = eQP,

where P is the parity operator. C must satisfy the
properties

C2 = 1,

[C,PT ] = 0,

[C, H] = 0.
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Conditions onQ

From the first two equations we infer

Q = −PQP,

and because PT = T P,

Q = −T QT .
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Perturbative determination of Q1

The third equation allows us to determine Q
perturbatively. If we separate the interaction part
of the Hamiltonian from the free part,

H = H0 + eH1,

and assume a perturbative expansion of Q:

Q = eQ1 + e2Q2 + . . . ,

the first contribution to the Q operator is
determined by

[Q1, H0] = 2H1.
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Expansion ofQ

The second correction commutes with the
Hamiltonian,

[Q2, H0] = 0.

Thus we may take

Q = eQ1 + e3Q3 + . . . ,

which illustrates a virtue of the exponential form.

The O(e) term was explicitly computed in 2005

[Bender, Cavero-Peláez, Milton, and Shajesh,

Phys. Lett. B613 97-104 (2005)].
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2D PT QED

However, the above perturbative construction of
C fails for 2-dimensional PT -symmetric QED. In
two dimensions, the only nonzero component of
the field strength tensor is F 01 = E, and the
Hamiltonian of the system is H =

∫

(dx)H, where
the Hamiltonian density is

H =
1

2
E2 − iJ1A1 −

i

2
ψγ0γ1∂1ψ +

m

2
ψγ0ψ,

where Jµ = 1
2ψγ

0γµeqψ. Now we’re using real

fields, and correspondingly an antisymmetric 2×2
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Radiation Gauge

As before, we choose the radiation gauge
because it is most physical:

∇ · A = ∂1A1 = 0,

and then the Maxwell equation

∂1E1 = −∂2
1A

0 = iJ0,

which implies the following construction for the
scalar potential

A0(x) = − i

2

∫ ∞

−∞
dy|x− y|J0(y).
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Construction of E

Without loss of generality, we can disregard A1,
and then the electric field is

E(x) =
i

2

∫ ∞

−∞
dy ǫ(x− y)J0(y).
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Elimination of E

Thus the electric field part of the Hamiltonian is
∫

dx
1

2
E2 = −1

8

∫

dx dy dzǫ(x− y)ǫ(x− z)J0(y)J0(z)

= −1

8
LQ2 +

1

4

∫

dy dzJ0(y)|y − z|J0(z),

where L is the “length of space” and the total
charge is

Q =

∫

dyJ0(y).

As this is a constant, we may disregard it.
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Form of Hamiltonian

Thus we obtain the form found (for the
conventional theory) years ago by Lowell Brown:

H =
1

4

∫

dy dzJ0(y)|y − z|J0(z)

−
∫

dx

{

i

2
ψγ0γ1∂1ψ − m

2
ψγ0ψ.

}

This resembles φ4 theory, and for the same rea-

son, we cannot calculate the C operator perturba-

tively. Henceforth, we will set the m = 0.
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ETCR of Currents

It is easy to check that

[J0(x, t), J0(y, t)] = 0.

However, it requires a point-splitting calculation
to verify that

[J0(x, t), J1(y, t)] = −ie
2

π

∂

∂x
δ(x− y).
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Free Green’s Function

The key element in the latter is that the singular
part of the 2-point fermion correlation function is
given by the free Green’s function:

〈ψα(x)(ψ(y)γ0)β〉 =
1

i
Gαβ(x− y),

G(z) = − 1

2π

γµz
µ

z2 + iǫ
.
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Conservation of Electric Charge

Current Conservation:

∂0J
0 =

1

i
[J0, H] = −∂1J

1,

as expected from electric current conservation,

∂µJ
µ = 0.
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Axial-Vector Anomaly

In 2-dimensions, the dual current is

∗Jµ = ǫµνJν,
∗J0 = J1,

∗J1 = J0.

Now, using the above commutator between J0

and J1, we find

∂0
∗J0 = ∂0J1 =

1

i
[J1, H]

= −∂1J
0 +

1

i

[

J1(x),
1

4

∫

dy dzJ0(y)|y − z|J0(z)

]
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Axial-Anomaly (cont.)

∂µ
∗Jµ(x) = − e2

2π

∫

dy dz∂xδ(x− y)|y − z|J0(z)

= −ie
2

π
∂xA

0 =
ie2

π
E.

This is the two-dimensional version of the famous

Schwinger-Adler-Bell-Jackiw anomaly.
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Schwinger mass generation

Combine the current conservation and
axial-current non-conservation:

∂1[∂0J
0 + ∂1J

1 = 0]

∂0

[

∂0J
1 + ∂1J

0 =
ie2

π
E
]

,

together with the Maxwell equation

∂0E = −iJ1,
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Spacelike singularity

to obtain (∂2 = −∂2
0 + ∂2

1)
(

∂2 +
e2

π

)

J1 = 0.

This corresponds to a spacelike singularity, a
pole at

p2 = −∂2 =
e2

π
,

implying complex energies!
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Perturbation Theory

This result is consistent with perturbation theory,
where in general we expect all we have to do is
replace

e→ ie.

In fact, the Schwinger mass comes from one-loop

vacuum polarization. In particular, the C operator

appears to have no effect on the weak-coupling

expansion: C. M. Bender, J.-H. Chen, K. A. Mil-

ton “PT -Symmetric Versus Hermitian Formula-

tions of Quantum Mechanics,” J. Phys. A 39 1657
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Zero-Dimensions

We constrast the zero-dimensional partition
functions for a conventional and a PT -symmetric
x2+N theory.

Zc
N(K) =

∫ ∞

−∞
dx e−x2−gx2+N−Kx,

ZN(K) =

∫

dx e−x2−gx2(ix)N−Kx.

The integral in the latter is taken in the lower half

plane, so that the integrand decays exponentially

fast.
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Perturbation Theory

Note that the PT -symmetric theory has a
perturbation theory which doesn’t appear to
know about the path of integration:

ZN(K) =
√
π exp

[

g

(

−i d
dK

)N+2
]

eK2/4

=
√
πeK2/8

∞
∑

n=0

(

(−1)Ng

21+N/2

)n
1

n!
Dn(N+2)

(

iK√
2

)

.
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N = 2, K = 0

For the −x4 theory, we have the closed form for
the vacuum amplitude

Z2(0) =
π

4
√
g
e−1/8g

[

I1/4

(

1

8g

)

+ I−1/4

(

1

8g

)]

.

Directly, or from the previous expansion, we find
the weak-coupling expansion (g → 0)

Z2(0) ∼
√
π

(

1 +
3

4
g +

105

32
g2 + . . .

)

;

the expansion of Zc
2 differs only in the sign of g.
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Strong-coupling contrasted

Conventional theory:

Zc
2(0) =

1

2
√
g
e1/8gK1/4

(

1

8g

)

.

Even the leading terms are different: (g → ∞)

Zc
2(0) ∼

√
2π

2g1/4Γ(3/4)

[

1 − 1

4
√
g

Γ(3/4)

Γ(5/4)
+ . . .

]

,

Z2(0) ∼
π

2g1/4Γ(3/4)

[

1 +
1

4
√
g

Γ(3/4)

Γ(5/4)
+ . . .

]

.
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Conclusions

Perturbation theory evidently fails to give a
positive spectrum to the massless
PT -symmetric electrodynamics in 2
dimensions.

Non-perturbative effects (strong field effects)
presumably resolve this issue.

Clearly there are issues unsolved relating to
fermions and gauge theories in the
PT -context.
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