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| Transformation Properties

At the first International Workshop on
Pseudo-Hermitian Hamiltonians in Quantum
Physics (Prague, 2003) | proposed a

P71 -symmetric version of guantum
electrodynamics. A non-Hermitian but
PT-symmetric electrodynamics is based on the
assumption of novel transformation properties of
the electromagnetic fields under parity
transformations, that is,

P: E—-E B—--B A—-A A"— -4



| Time Reversal

just the statement that the four-vector potential is
assumed to transform as an axial vector. Under
time reversal, the transformations are assumed
to be conventional,

7: E-E B—--B A—--A A" A"

Fermion fields are assumed to transform conven-

tionally.
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| Lagrangian and Hamiltonian

The Lagrangian of the theory then possesses an
Imaginary coupling constant in order that it be
Invariant under the product of these two
symmetries: L =

1 1
— P Fu 0y =0, mi ) Ligg Iy A,

The corresponding Hamiltonian density Is

H = %(EQJrBQ)anJf {vovk (%V;@ +@Ak> + mvo} Y.
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| Current. Density

The electric current appearing in both the
Lagrangian and Hamiltonian densities,

j# = Ty0~#p, transforms conventionally under

both P and 7:
jO
Pt (x,1)P = s (—x, ),
jO
Tirx, )T = 7. | (x, )
—J

ooooooooooooooooo



I ETCR

We are working in the Coulomb gauge,
V - A =0, so the nonzero canonical equal-time
commutation relations are

{a(x, 1), (¥, 1)} = dud(x — ),

AT, EL )] = =i |85 = S| ox - 3),

where 7' denotes the transverse pairt,

V- A=V .E!'=0.

ooooooooooooooooo



| The C operator

As for guantum mechanical systems, and for

scalar quantum field theory, we seek a C
operator in the form

C = e¥P,
where P Is the parity operator. C must satisfy the
properties
C? =1,
C,PT] =0,

C, H] = 0. |



| Conditions on )

From the first two equations we infer

Q — _PQP,
and because P7 =7T7P,

0=-TQT.

ooooooooooooooooo



| Perturbative determination of (),

The third equation allows us to determine ()
perturbatively. If we separate the interaction part
of the Hamiltonian from the free part,

H:H0+6H1,

and assume a perturbative expansion of ():

Q=eQr+eQa+...,

the first contribution to the () operator Is

determined by
[Ql?HO] :2H1 4



| Expansion of ¢

The second correction commutes with the
Hamiltonian,

@2, Hy) = 0.
Thus we may take

Q=eQ+e° Qs+ ...,

which illustrates a virtue of the exponential form.
The O(e) term was explicitly computed in 2005
[Bender, Cavero-Pelaez, Milton, and Shajesh,
Phys. Lett. B613 97-104 (2005)].

ooooooooooooooooo



| 2D PTQED

However, the above perturbative construction of
C fails for 2-dimensional P7-symmetric QED. In
two dimensions, the only nonzero component of

the field strength tensor is %! = E, and the
Hamiltonian of the system is H = [(dx)H, where
the Hamiltonian density Is

1 , ) m
H = §E2 — 1 J1 Ay — §@WOV131¢ + EIWOM

where J* = 1y y*eqyp. Now we're using real

fields, and correspondingly an antisymmetric 2 x 2 |

charge matrixq. T o



| Radiation Gauge

As before, we choose the radiation gauge
because It Is most physical:

V- -A=0A4 =0,
and then the Maxwell equation
OB, = —07A" =4iJ°,

which implies the following construction for the
scalar potential

ooooooooooooooooo



| Construction of £

Without loss of generality, we can disregard A;,
and then the electric field Is

O

E@) = [ dyela—5)°)

O

ooooooooooooooooo



| Elimination of £

Thus the electric field part of the Hamiltonian is

/d:c%Ez = —é/dm dy dze(x — y)e(x — 2)J°(y)J°(2)
1

1
= Lo+ Z/d?/ dzJ"(y)ly — 211°(2),

where L Is the “length of space” and the total
charge is

Q= [ dyrw)

As this Is a constant, we may disregard It. |

ooooooooooooooooo



| Form of Hamiltonian

Thus we obtain the form found (for the
conventional theory) years ago by Lowell Brown:

1
= / dy dzJ(y)ly — =|7°(2)

- / da {%m%lalw = %wv%.}

This resembles ¢* theory, and for the same rea-
son, we cannot calculate the C operator perturba-

tively. Henceforth, we will set the m = 0. |

ooooooooooooooooo



| ETCR of Currents

It Is easy to check that
(T2 (x,t), ] (y, t)] = 0.

However, It requires a point-splitting calculation
to verify that

ie? O

T Ox

[ (z,), T (y, 1)) = 0(z —y).

ooooooooooooooooo



| Free Green’s Function

The key element In the latter is that the singular
part of the 2-point fermion correlation function is
given by the free Green’s function:

() (6 )3) = = Gaslz — ).
G(z) = 217'(' zzfie

ooooooooooooooooo



| Conservation of Electric Charge

Current Conservation:

1
&uW:;UQHL:—@J%

as expected from electric current conservation,

0,.J" = 0.

ooooooooooooooooo



I Axilal-Vector Anomaly

In 2-dimensions, the dual current Is
=g, 2] =g, *Jl=JY

Now, using the above commutator between J*
and J!, we find

L H)

(

=0+ 3 |00, [ dyd=r )l - o)

O JY = 9y, =

[/

ooooooooooooooooo



| Axial-Anomaly (cont.)

0,0 7a) = —5— [ dydzd,6(0 — ly — 217°(2

- 2 - 2

1€ €
= ——0,A" = —F.
-

T

This Is the two-dimensional version of the famous
Schwinger-Adler-Bell-Jackiw anomaly.

ooooooooooooooooo



| Schwinger mass generation

Combine the current conservation and
axial-current non-conservation:

O1[0pJ° + 01J" = (]
e’
O [80J1 + (91]0 — —E},

T

together with the Maxwell equation

WE = —iJt

ooooooooooooooooo



| Spacelike singularity

to obtain (0% = —0? + 0?)

2
<82+6—> J'=0.
T

This corresponds to a spacelike singularity, a

pole at
p2 — _82 —

Implying complex energies!

ooooooooooooooooo



| Perturbation Theory

This result is consistent with perturbation theory,
where in general we expect all we have to do Is
replace

e — 1e.

In fact, the Schwinger mass comes from one-loop
vacuum polarization. In particular, the C operator
appears to have no effect on the weak-coupling
expansion: C. M. Bender, J.-H. Chen, K. A. Mil-
ton “P7-Symmetric Versus Hermitian Formula-

tions of Quantum Mechanics,” J. Phys. A 39 1657 |

(20068 e 0y 07



| Zero-Dimensions

We constrast the zero-dimensional partition
functions for a conventional and a P7-symmetric

2T theory.

Zﬁ,(K):/ daze—xz_ngN_Kx,

O

ZN(K) = /dx g —guili)" Kz,

The integral in the latter is taken in the lower half

plane, so that the integrand decays exponentially |
fast.

ooooooooooooooooo



| Perturbation Theory

Note that the P7-symmetric theory has a
perturbation theory which doesn’t appear to
know about the path of integration:

p N+2] ;
Zn(K) = /mexp g( idK) el /4

"1 i K
—D — .

)N

- K?2/8 . (—1 g
- vrlt Y (G
n=0

ooooooooooooooooo



For the —z* theory, we have the closed form for
the vacuum amplitude

1= () (3))

Directly, or from the previous expansion, we find
the weak-coupling expansion (¢ — 0)

3 105
Z5(0) ~ 1+ =g )
20~ VA (14 0+ 00+ )

the expansion of Z3 differs only in the sign of ¢. |

ooooooooooooooooo



| Strong-coupling contrasted

Conventional theory:

V21

Z5(0)

71

Z5(0)

~ 1
2¢'4T°(3/4) |

" 2414T(3/4) |

I

I

4,/g1

1

4,/g1

ooooooooooooooooo



| Conclusions

» Perturbation theory evidently fails to give a
positive spectrum to the massless
PT-symmetric electrodynamics in 2
dimensions.

» Non-perturbative effects (strong field effects)
presumably resolve this issue.

» Clearly there are issues unsolved relating to

fermions and gauge theories in the

PT -context.
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