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This conclusion was recently
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Motivation

In this respect I asked myself

How to describe a non-Hermitian evolution of a Hermitian observable?

For instance, how to find the time necessary for spin flip?

To be able to answer this question we have to accept

coexistence of both Hermitian (spin)

and non-Hermitian (Hamiltonian) observables

in the same Hilbert space

But how to choose a proper Hilbert space?

Does the result depend on the choice of the Hilbert space?

Is it possible to keep working in the usual Hilbert space?
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∑
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∑
i

giei (1)

ei ∈ H 〈ei|ej〉 = δij

Consider a non-Hermitian H 6= H+ acting in H

Hψi = Eiψi ψi ∈ H Ei ∈ R (2)

In particular H may be PT -symmetric
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Let us collect all eigenvectors ψi (column-vectors) of H in a single matrix Ψ

E = diag{Ei}

HΨ = ΨE Ψ+H+ = EΨ+ (3)
Denote

M = ΨΨ+ M = M+ M > 0 (4)

M is not uniquely defined since
the normalization coefficients of the eigenvectors are not fixed

From (3) it follows
HM = MH+ (5)

This is a condition that Ei ∈ R



6

Equivalence transformation

If H is diagonalizable and has a purely real spectrum



6

Equivalence transformation

If H is diagonalizable and has a purely real spectrum

there exists a similarity transformation



6

Equivalence transformation

If H is diagonalizable and has a purely real spectrum

there exists a similarity transformation

keeping the spectrum unchanged



6

Equivalence transformation

If H is diagonalizable and has a purely real spectrum

there exists a similarity transformation

keeping the spectrum unchanged

but reducing H to an equivalent Hermitian matrix
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If H is diagonalizable and has a purely real spectrum

there exists a similarity transformation

keeping the spectrum unchanged

but reducing H to an equivalent Hermitian matrix

H ∼ Ĥ = Ĥ+ = AHA−1

Both H and Ĥ “live” in the same Hilbert space H

Hermiticity of Hamiltonian H is encrypted (Ivanov-Smilga, hep-th/0703038)

Matrix A may be expressed in terms of M

Since M > 0 ⇒ ∃ M±1/2

and

A = M−1/2 M = ΨΨ+ (6)
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Usually for a quantum system being in a pure state ψ

several physical observables can be measured such as spin S, position Q,
momentum P , energy E etc

If we are interested in all these observables
we have to assume they are living in the same Hilbert space H

If S = S+, Q = Q+, P = P+, . . . conventional QM is applied
where different representations (Q-, P -, E-, etc) may be used
All these representations are unitary equivalent R̂ = URU−1, U−1 = U+,
R = Q,P,H, . . .

Physical properties do not depend on the representation used

Sets {H,P,Q . . .} and {Ĥ, P̂ , Q̂ . . .} are unitary equivalent

Two quantum mechanics are unitary equivalent
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The first GENERALIZATION
(“Relativity principle”)

Two sets of observables {H,P,Q . . .} and {Ĥ, P̂ , Q̂ . . .}
related by a non-singular similarity transformation
R̂ = ARA−1, R = H,P,Q . . .
are physically indistinguishable

They have exactly the same physical properties
—————————————————————————————————

If R = R+, R = P,Q,H . . ., in general (A−1 6= A+) R̂ 6= R̂+

Hermiticity of P̂ , Q̂, Ĥ, . . . is encrypted and
such a non-Hermitian QM is completely equivalent to the conventional QM

Non-Hermitian character of obtained QM is only due to

a “bad reference frame” (i.e. equivalence class) used
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The second GENERALIZATION
(non-Hermitian QM)

Some physical observables in a set {P,Q,H . . .}

may be represented by non-Hermitian diagonalizable operators

provided they have a purely real spectrum

so that a set may contain both Hermitian and non-Hermitian observables

If we are interested in properties of only one particular observable Q
or in properties of a subset of observables
which become Hermitian under the same similarity transformation
we will not see in such a QM any new property
compared to the conventional QM

An equivalence class (“reference frame”)

where they all are Hermitian

being used leads just to the conventional QM description
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One may expect appearing something new

if one Hermitian observable and one non-Hermitian observable

are involved into the same physical process

For instance

something new may appear
in a non-Hermitian evolution of a Hermitian observable
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Ĥϕi = Eiϕi 〈ϕi|ϕj〉 = δij
∑
i

|ϕi〉〈ϕi| = I (7)

Hψi = Eiψi ψi = M1/2ϕi 〈ψi|M−1|ψj〉 = δij (8)

∑
i

|ψi〉〈ψi|M−1 = M−1
∑
i

|ψi〉〈ψi| = M−1/2
∑
i

|ψi〉〈ψi|M−1/2 = I

(9)
From spectral representation of Ĥ
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Ĥ =
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i

Ei|ϕi〉〈ϕi| = M−1/2
∑
i

Ei|ψi〉〈ψi|M−1/2 =: M−1/2HM1/2

(10)
one derives the spectral representation of H

H =
∑
i

Ei|ψi〉〈ψi|M−1 (11)
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Observable quantities

The spectral set of H( 6= H+) coincides with the spectral set of Ĥ(= Ĥ+)

Therefore according to “relativity principle”

only spectral points of H may be observed

while measuring the observable H (energy in particular)
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Let a system be in a pure state ψ in a “reference frame” where H 6= H+

In “reference frame” where Ĥ = Ĥ+ the same state is described by the
vector ϕ = M−1/2ψ

When measuring H we are interested in the probability pi
to find a particular value Ei

Hψi = Eiψi (12)

Relativity principle gives:

pi =
|〈ϕi|ϕ〉|2

〈ϕi|ϕi〉〈ϕ|ϕ〉
=

|〈ψi|M−1|ψ〉|2

〈ψi|M−1|ψi〉〈ψ|M−1|ψ〉
(13)

ϕ = M−1/2ψ ϕi = M−1/2ψi Ĥϕi = Eiϕi (14)∑
i

pi = 1 (15)
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Variance of H:
〈(∆H)2〉ψ = 〈H2〉ψ − 〈H〉2

ψ (17)

Observable H+

〈H+〉ψ =
〈ψ|MH+|ψ〉

〈ψ|M|ψ〉
=

〈ψ|HM|ψ〉
〈ψ|M|ψ〉

6= 〈H〉ψ (18)

Difference between observables H and H+ is detectable

There exists a link between these averages

〈H〉ψ = 〈H+〉M−1ψ (19)

The closer H is to an exceptional point where M is singular
the more this difference becomes visible
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The Hamiltonian H plays a very special role in quantum mechanics
since it is responsible for the dynamical evolution of a system

We assume H( 6= H+) time independent
and choose a “reference frame” where Ĥ = Ĥ+ and evolution is unitary
(“unitary evolution reference frame”)

iϕ̇(t) = Ĥϕ(t) ϕ(0) = ϕ0 ϕ(t) = e−iĤtϕ0 (20)

With the help of M we can go to the “reference frame” where H 6= H+ and
evolution is non-unitary ϕ = M1/2ψ M is time independent

iψ̇(t) = Hψ(t) ψ(0) = ψ0 = M−1/2ϕ0 (21)
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U(t) = M1/2e−iM−1/2HM1/2tM−1/2 = e−iHt 6= U+(t) (23)

U(t) =
∑
i

|ψi(t)〉〈ψi(0)|M−1 =
∑
i

e−iEit|ψi(0)〉〈ψi(0)|M−1 (24)

ψ(t) = U(t)ψ(0) iψ̇ = Hψ (25)

According to the “relativity principle”
the choice of either unitary or non-unitary “reference frame”
is only the question of calculational advantages

The choice of a particular element from all equivalent Hamiltonians is similar
to placing an observer in either one or another reference frame
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〈ψ(t)|ai〉〈ai|ψ(t)〉

〈ψ(t)|ψ(t)〉
(27)

Condition ∑
i

pi(t) = 1 (28)

follows from the completeness of the set of eigenvectors of A

〈A〉ψ(t) =
〈ψ(t)|A|ψ(t)〉
〈ψ(t)|ψ(t)〉

=
∑
i

aipi(t) (29)

∂t〈A〉ψ =
1

i

〈ψ|AH −H+A|ψ〉
〈ψ|ψ〉

−
1

i

〈ψ|H −H+|ψ〉
〈ψ|ψ〉2

(30)
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Consider Hamiltonian

H =

 reiθ s

s re−iθ

 (31)
Bender C M, Brody D C Jones

H F and Meister B K 2007

Phys. Rev. Lett. 98 040403
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s re−iθ

 (31)
Bender C M, Brody D C Jones

H F and Meister B K 2007

Phys. Rev. Lett. 98 040403

Time interval necessary for evolution from |ψI〉 = (1, 0)T

to |ψF 〉 ∼ (0, 1)T
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Non-Hermitian evolution of spin

Consider Hamiltonian

H =

 reiθ s

s re−iθ

 (31)
Bender C M, Brody D C Jones

H F and Meister B K 2007

Phys. Rev. Lett. 98 040403

Time interval necessary for evolution from |ψI〉 = (1, 0)T

to |ψF 〉 ∼ (0, 1)T

may become infinitesimal (C. Bender et al.)
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e−iα

 |E−〉 =
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−eiα

 sin(α) =
r

s
sin(θ) (32)

E± = r cos(θ) ±
√
s2 − r2 sin2(θ) = r cos θ ± s cosα (33)
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sin(θ) (32)

E± = r cos(θ) ±
√
s2 − r2 sin2(θ) = r cos θ ± s cosα (33)

Evolution operator

U(t) =
e−irt cos θ

cosα

 cos(ωt2 − α) −i sin(ωt2 )

−i sin(ωt2 ) cos(ωt2 + α)

 6= U+(t) (34)

ω = 2
√
s2 − r2 sin2 θ = 2s| cosα| = E+ − E− ≡ ∆E

For α = ±π/2 both eigenvalues and eigenvectors coalesce

Hence

These are exceptional points
i.e. the points where Hamiltonian H becomes non-diagonalizable and
M singular
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(“spin observer reference frame”)

We study evolution of spin flip σz = σ+
z =

 1 0

0 −1


σz| ↑〉 = | ↑〉 σz| ↓〉 = −| ↓〉 (35)

|ψ(t)〉 = U(t)|ψ(0)〉 |ψ(0)〉 = | ↑〉 U+(t) 6= U−1(t) (36)
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−i sin ωt
2

 (37)

ω = 2
√
s2 − r2 sin2 θ = 2s| cosα| = E+ − E− ≡ ∆E (38)
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but s, r → ∞

At s = const and α → −π/2 one has ∆t1 → ∆t1min = 1
s

Variance of energy at state ψ(t), σE = 1
2∆E = s cosα → 0

The closer the Hamiltonian is to a non-diagonalizable matrix
(i.e. α → −π/2, ∆E fixed)
the more the time interval ∆t1 reduces
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Hermitian limit

α = 0 ⇒ θ = 0 H =

 r s

s r

 = H+ (44)

p↓(t) = sin2(st) p↑ (t) = cos2(st)



24

Hermitian limit

α = 0 ⇒ θ = 0 H =

 r s

s r

 = H+ (44)

p↓(t) = sin2(st) p↑ (t) = cos2(st)
time interval necessary for | ↑〉 → | ↓〉 =



24

Hermitian limit

α = 0 ⇒ θ = 0 H =

 r s

s r

 = H+ (44)

p↓(t) = sin2(st) p↑ (t) = cos2(st)
time interval necessary for | ↑〉 → | ↓〉 =

time interval necessary for | ↓〉 → | ↑〉 =



24

Hermitian limit

α = 0 ⇒ θ = 0 H =

 r s

s r

 = H+ (44)

p↓(t) = sin2(st) p↑ (t) = cos2(st)
time interval necessary for | ↑〉 → | ↓〉 =

time interval necessary for | ↓〉 → | ↑〉 =

∆t̃ =
π

∆E
=
π

2s
=
π

2
∆t1min (45)

It minimizes the Aharonov-Anandan time-energy uncertainty relation



24

Hermitian limit

α = 0 ⇒ θ = 0 H =

 r s

s r

 = H+ (44)

p↓(t) = sin2(st) p↑ (t) = cos2(st)
time interval necessary for | ↑〉 → | ↓〉 =

time interval necessary for | ↓〉 → | ↑〉 =

∆t̃ =
π

∆E
=
π

2s
=
π

2
∆t1min (45)

It minimizes the Aharonov-Anandan time-energy uncertainty relation

This means that Hamiltonian (44) realizes an optimal Hermitian evolution
between given states.



24

Hermitian limit

α = 0 ⇒ θ = 0 H =

 r s

s r

 = H+ (44)

p↓(t) = sin2(st) p↑ (t) = cos2(st)
time interval necessary for | ↑〉 → | ↓〉 =

time interval necessary for | ↓〉 → | ↑〉 =

∆t̃ =
π

∆E
=
π

2s
=
π

2
∆t1min (45)

It minimizes the Aharonov-Anandan time-energy uncertainty relation

This means that Hamiltonian (44) realizes an optimal Hermitian evolution
between given states.

For a given eigen-energies difference ∆E
the ratio of non-Hermitian time evolution and the sharpest Hermitian time
evolution is

∆t1
∆t̃

=
π + 2α

∆E
:
π
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For a given eigen-energies difference ∆E
the ratio of non-Hermitian time evolution and the sharpest Hermitian time
evolution is

∆t1
∆t̃

=
π + 2α

∆E
:
π

∆E
= 1 +

2α

π
(46)

We conclude that for any Hermitian Hamiltonian of type (44) its non-Hermitian
deformation towards one EP accelerates the flip of spin from up to down while
the deformation towards the other EP decelerates it
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Conjecture

For any physical process described with the help of a Hermitian operator

and any Hermitian Hamiltonian

there exists a non-Hermitian deformation of the Hamiltonian

leading to an acceleration of the process
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Non-Hermitian brachistochrone problem
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Non-Hermitian brachistochrone problem

Hamiltonian

H =

 reiθ s

s re−iθ

 (47)

solves non-Hermitian brachistochrone problem for the states ψI = (1, 0)T

and ψF = (0, 1)T
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The End


