Jussi Behrndt TU Berlin

jointly with Mark Malamud (Donetsk) and Hagen Neidhardt (Berlin)

Contents

PART I

Scattering systems and scattering matrix

PART II: "Simple Model"

Open quantum system consisting of single dissipative operator A_D

PART III: "Real World"

Open quantum system consisting of family of dissipative operators $\{A(\mu)\}$

A_1, A_0 selfadjoint in Hilbert space \mathcal{H} , $(A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1$

 A_1, A_0 selfadjoint in Hilbert space \mathcal{H} , $(A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1$ Describe $e^{-itA_1}\psi$ with $e^{-itA_0}\phi_{\pm}$ for $t \to \pm \infty$, i.e.

$$\|e^{-itA_1}\psi - e^{-itA_0}\phi_{\pm}\| \to 0, \qquad t \to \pm\infty.$$

 $\begin{aligned} A_1, A_0 \text{ selfadjoint in Hilbert space } \mathcal{H}, & (A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1 \\ \text{Describe } e^{-itA_1}\psi \text{ with } e^{-itA_0}\phi_{\pm} \text{ for } t \to \pm\infty, \text{ i.e.} \\ & \|e^{-itA_1}\psi - e^{-itA_0}\phi_{\pm}\| \to 0, \qquad t \to \pm\infty. \end{aligned}$

The scattering operator is

$$S: \mathcal{H}^{ac}(A_0) \to \mathcal{H}^{ac}(A_0), \qquad \phi_- \mapsto \phi_+$$

 $\begin{aligned} A_1, A_0 \text{ selfadjoint in Hilbert space } \mathcal{H}, & (A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1 \\ \text{Describe } e^{-itA_1}\psi \text{ with } e^{-itA_0}\phi_{\pm} \text{ for } t \to \pm\infty, \text{ i.e.} \\ & \|e^{-itA_1}\psi - e^{-itA_0}\phi_{\pm}\| \to 0, \qquad t \to \pm\infty. \end{aligned}$

The scattering operator is

$$S: \mathcal{H}^{ac}(A_0) \to \mathcal{H}^{ac}(A_0), \qquad \phi_- \mapsto \phi_+ \ (= W_+^* W_- \phi_-).$$

 $\begin{aligned} A_1, A_0 \text{ selfadjoint in Hilbert space } \mathcal{H}, & (A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1 \\ \text{Describe } e^{-itA_1}\psi \text{ with } e^{-itA_0}\phi_{\pm} \text{ for } t \to \pm\infty, \text{ i.e.} \\ & \|e^{-itA_1}\psi - e^{-itA_0}\phi_{\pm}\| \to 0, \qquad t \to \pm\infty. \end{aligned}$

The scattering operator is

$$S: \mathcal{H}^{ac}(A_0) \to \mathcal{H}^{ac}(A_0), \qquad \phi_- \mapsto \phi_+ \ (= W_+^* W_- \phi_-).$$

In direct integral representation

$$A_0|\mathcal{H}^{ac}(A_0) \cong \lambda \qquad \mathcal{H}^{ac}(A_0) \cong L^2(\sigma_{ac}(A_0), d\lambda, \mathcal{H}_{\lambda}),$$

 $\begin{array}{l} A_1, A_0 \text{ selfadjoint in Hilbert space } \mathcal{H}, \ (A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1\\ \text{Describe } e^{-itA_1}\psi \text{ with } e^{-itA_0}\phi_{\pm} \text{ for } t \to \pm\infty, \text{ i.e.}\\ \|e^{-itA_1}\psi - e^{-itA_0}\phi_{\pm}\| \to 0, \qquad t \to \pm\infty. \end{array}$

The scattering operator is

$$S: \mathcal{H}^{ac}(A_0) \to \mathcal{H}^{ac}(A_0), \qquad \phi_- \mapsto \phi_+ \ (= W_+^* W_- \phi_-).$$

In direct integral representation

$$A_0|\mathcal{H}^{ac}(A_0) \cong \lambda \qquad \mathcal{H}^{ac}(A_0) \cong L^2(\sigma_{ac}(A_0), d\lambda, \mathcal{H}_{\lambda}),$$

scattering operator S turns into multiplication with $\{S(\lambda)\}_{\lambda \in \sigma_{ac}(A_0)}$.

 $\begin{array}{l} A_1, A_0 \text{ selfadjoint in Hilbert space } \mathcal{H}, \ (A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1\\ \text{Describe } e^{-itA_1}\psi \text{ with } e^{-itA_0}\phi_{\pm} \text{ for } t \to \pm\infty, \text{ i.e.}\\ \|e^{-itA_1}\psi - e^{-itA_0}\phi_{\pm}\| \to 0, \qquad t \to \pm\infty. \end{array}$

The scattering operator is

$$S: \mathcal{H}^{ac}(A_0) \to \mathcal{H}^{ac}(A_0), \qquad \phi_- \mapsto \phi_+ \ (= W_+^* W_- \phi_-).$$

In direct integral representation

$$A_0|\mathcal{H}^{ac}(A_0) \cong \lambda \qquad \mathcal{H}^{ac}(A_0) \cong L^2(\sigma_{ac}(A_0), d\lambda, \mathcal{H}_{\lambda}),$$

scattering operator S turns into multiplication with $\{S(\lambda)\}_{\lambda \in \sigma_{ac}(A_0)}$.

Scattering matrix $\{S(\lambda)\}$: \mathcal{H}_{λ} -valued function with unitary values

 $\begin{array}{l} A_1, A_0 \text{ selfadjoint in Hilbert space } \mathcal{H}, \ (A_1 - \lambda)^{-1} - (A_0 - \lambda)^{-1} \in \mathfrak{S}_1 \\ \\ \text{Describe } e^{-itA_1}\psi \text{ with } e^{-itA_0}\phi_{\pm} \text{ for } t \to \pm \infty, \text{ i.e.} \\ \\ \|e^{-itA_1}\psi - e^{-itA_0}\phi_{\pm}\| \to 0, \qquad t \to \pm \infty. \end{array}$

The scattering operator is

$$S: \mathcal{H}^{ac}(A_0) \to \mathcal{H}^{ac}(A_0), \qquad \phi_- \mapsto \phi_+ \ (= W_+^* W_- \phi_-).$$

In direct integral representation

$$A_0|\mathcal{H}^{ac}(A_0) \cong \lambda \qquad \mathcal{H}^{ac}(A_0) \cong L^2(\sigma_{ac}(A_0), d\lambda, \mathcal{H}_{\lambda}),$$

scattering operator S turns into multiplication with $\{S(\lambda)\}_{\lambda \in \sigma_{ac}(A_0)}$.

Scattering matrix $\{S(\lambda)\}$: \mathcal{H}_{λ} -valued function with unitary values

Conversely: Each operator function $S(\cdot)$ with unitary values $S(\lambda)$ is the scattering matrix of some scattering system $\{A_1, A_0\}$.

What if $\lambda \mapsto S(\lambda)$ is not unitary but contraction-valued?

What if $\lambda \mapsto S(\lambda)$ is not unitary but contraction-valued?

<u>Theorem</u> [N89] Each operator function $S(\cdot)$ with contractive values $S(\lambda)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$.

What if $\lambda \mapsto S(\lambda)$ is not unitary but contraction-valued?

<u>Theorem</u> [N89] Each operator function $S(\cdot)$ with contractive values $S(\lambda)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$.

 A_0 selfadjoint, A_D maximal dissipative operator in \mathcal{H} :

 $\operatorname{Im}\left(A_{D}x,x\right)\leq0,\qquad x\in\operatorname{dom}A_{D}.$

What if $\lambda \mapsto S(\lambda)$ is not unitary but contraction-valued?

<u>Theorem</u> [N89] Each operator function $S(\cdot)$ with contractive values $S(\lambda)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$.

 A_0 selfadjoint, A_D maximal dissipative operator in \mathcal{H} :

 $\operatorname{Im}\left(A_{D}x,x\right) \leq 0, \qquad x \in \operatorname{dom} A_{D}.$

 e^{-itA_D} : dynamics of open quantum system $\{A_D, \mathcal{H}\}$.

What if $\lambda \mapsto S(\lambda)$ is not unitary but contraction-valued?

<u>Theorem</u> [N89] Each operator function $S(\cdot)$ with contractive values $S(\lambda)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$.

 A_0 selfadjoint, A_D maximal dissipative operator in \mathcal{H} :

 $\operatorname{Im}\left(A_{D}x,x\right) \leq 0, \qquad x \in \operatorname{dom} A_{D}.$

 e^{-itA_D} : dynamics of open quantum system $\{A_D, \mathcal{H}\}$. Note: e^{-itA_D} not unitary and possibly $||e^{-itA_D}\varphi|| \to 0$.

What if $\lambda \mapsto S(\lambda)$ is not unitary but contraction-valued?

<u>Theorem</u> [N89] Each operator function $S(\cdot)$ with contractive values $S(\lambda)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$.

 A_0 selfadjoint, A_D maximal dissipative operator in \mathcal{H} :

 $\operatorname{Im}\left(A_{D}x,x\right) \leq 0, \qquad x \in \operatorname{dom} A_{D}.$

 e^{-itA_D} : dynamics of open quantum system $\{A_D, \mathcal{H}\}$. Note: e^{-itA_D} not unitary and possibly $||e^{-itA_D}\varphi|| \to 0$.

Corollary Every contractive matrix function $S(\cdot)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$,

What if $\lambda \mapsto S(\lambda)$ is not unitary but contraction-valued?

<u>Theorem</u> [N89] Each operator function $S(\cdot)$ with contractive values $S(\lambda)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$.

 A_0 selfadjoint, A_D maximal dissipative operator in \mathcal{H} :

 $\operatorname{Im}\left(A_{D}x,x\right) \leq 0, \qquad x \in \operatorname{dom} A_{D}.$

 e^{-itA_D} : dynamics of open quantum system $\{A_D, \mathcal{H}\}$. Note: e^{-itA_D} not unitary and possibly $||e^{-itA_D}\varphi|| \to 0$.

Corollary Every contractive matrix function $S(\cdot)$ is the scattering matrix of a dissipative scattering system $\{A_D, A_0\}$, where A_D and A_0 are extensions of a symmetric operator A with finite defect.

PART II: "Simple Model"

Open quantum system consisting of single dissipative operator A_D

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

Open quantum system $\{A_D, \mathcal{H}\}$ can be embedded into closed system:

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

Open quantum system $\{A_D, \mathcal{H}\}$ can be embedded into closed system:

Proposition Exists selfadjoint dilation \widetilde{K} of A_D in $\mathcal{H} \oplus L^2(\mathbb{R}, \mathbb{C}^n)$:

$$P_{\mathcal{H}}(\widetilde{K}-\lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_D - \lambda)^{-1}, \qquad \lambda \in \mathbb{C}^+.$$

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

Open quantum system $\{A_D, \mathcal{H}\}$ can be embedded into closed system: <u>Proposition</u> Exists selfadjoint dilation \widetilde{K} of A_D in $\mathcal{H} \oplus L^2(\mathbb{R}, \mathbb{C}^n)$:

$$P_{\mathcal{H}}(\widetilde{K}-\lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_D - \lambda)^{-1}, \qquad \lambda \in \mathbb{C}^+.$$

 \widetilde{K} singular perturbation of $K_0 := A_0 \oplus -i\frac{d}{dx}$,

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

$$\widetilde{K}$$
 singular perturbation of $K_0 := A_0 \oplus -i\frac{d}{dx}$,
 $(\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1}$ finite rank $(\leq 2n)$.

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

$$\widetilde{K}$$
 singular perturbation of $K_0 := A_0 \oplus -i\frac{d}{dx}$,
 $(\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1}$ finite rank $(\leq 2n)$.
Note $\mathbb{R} = \sigma(-i\frac{d}{dx})$

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

$$\widetilde{K}$$
 singular perturbation of $K_0 := A_0 \oplus -i\frac{d}{dx}$,
 $(\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1}$ finite rank $(\leq 2n)$.
Note $\mathbb{R} = \sigma(-i\frac{d}{dx}) = \sigma(K_0)$

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

$$\widetilde{K}$$
 singular perturbation of $K_0 := A_0 \oplus -i\frac{d}{dx}$,
 $(\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1}$ finite rank $(\leq 2n)$.
Note $\mathbb{R} = \sigma(-i\frac{d}{dx}) = \sigma(K_0) = \sigma(\widetilde{K})$,

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

Open quantum system $\{A_D, \mathcal{H}\}$ can be embedded into closed system: <u>Proposition</u> Exists selfadjoint dilation \widetilde{K} of A_D in $\mathcal{H} \oplus L^2(\mathbb{R}, \mathbb{C}^n)$: $P_{\mathcal{H}}(\widetilde{K} - \lambda)^{-1} \upharpoonright_{\mathcal{H}} = (A_D - \lambda)^{-1}, \qquad \lambda \in \mathbb{C}^+.$

$$\widetilde{K}$$
 singular perturbation of $K_0 := A_0 \oplus -i\frac{d}{dx}$,
 $(\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1}$ finite rank $(\leq 2n)$.

Note $\mathbb{R} = \sigma(-i\frac{d}{dx}) = \sigma(K_0) = \sigma(\widetilde{K})$, physical interpretation ???

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

$$\widetilde{K} \text{ singular perturbation of } K_0 := A_0 \oplus -i\frac{d}{dx},$$

$$(\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1} \quad \text{finite rank } (\leq 2n).$$
Note $\mathbb{R} = \sigma(-i\frac{d}{dx}) = \sigma(K_0) = \sigma(\widetilde{K}),$ physical interpretation ???
$$\underline{\mathsf{Example}} \ A_D = -\frac{d^2}{dx^2} + V \text{ in } \mathcal{H} = L^2(\mathbb{R}_+) \text{ with b.c. } f'(0) = -if(0)$$

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

$$\begin{split} \widetilde{K} \text{ singular perturbation of } K_0 &:= A_0 \oplus -i\frac{d}{dx}, \\ (\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1} \quad \text{finite rank } (\leq 2n). \end{split}$$

$$\text{Note } \mathbb{R} = \sigma(-i\frac{d}{dx}) = \sigma(K_0) = \sigma(\widetilde{K}), \text{ physical interpretation } ???$$

$$\begin{split} & \underbrace{\text{Example }}_{K} A_D = -\frac{d^2}{dx^2} + V \text{ in } \mathcal{H} = L^2(\mathbb{R}_+) \text{ with b.c. } f'(0) = -if(0) \\ & \text{Then } \widetilde{K} = -f'' + Vf \oplus -ig' \text{ in } L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}), \end{split}$$

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

Assume $A \subset A^*$ of defect n and A_0 selfadjoint extension, A_D maximal dissipative extension (pseudo-Hamiltonian).

$$\begin{split} \widetilde{K} \text{ singular perturbation of } K_0 &:= A_0 \oplus -i\frac{d}{dx}, \\ (\widetilde{K} - \lambda)^{-1} - (K_0 - \lambda)^{-1} \quad \text{finite rank } (\leq 2n). \end{split}$$

$$\begin{aligned} \text{Note } \mathbb{R} &= \sigma(-i\frac{d}{dx}) = \sigma(K_0) = \sigma(\widetilde{K}), \text{ physical interpretation } ??? \end{aligned}$$

$$\begin{aligned} \underset{\widetilde{K}}{\text{Example }} A_D &= -\frac{d^2}{dx^2} + V \text{ in } \mathcal{H} = L^2(\mathbb{R}_+) \text{ with b.c. } f'(0) = -if(0) \\ \text{Then } \widetilde{K} &= -f'' + Vf \oplus -ig' \text{ in } L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}), \text{ where} \\ f \oplus g \in \text{dom } \widetilde{K} \iff f'(0) \pm if(0) = -i\sqrt{2}g(\mp 0) \quad \text{(interaction)} \end{aligned}$$

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

<u>Theorem</u> Scattering matrix of $\{\widetilde{K}, K_0\}$ is

$$\widetilde{S}(\lambda) = \begin{pmatrix} S(\lambda) & S_{12}(\lambda) \\ S_{21}(\lambda) & S^{LP}(\lambda) \end{pmatrix} \text{ for a.e. } \lambda \in \mathbb{R},$$

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

<u>Theorem</u> Scattering matrix of $\{\widetilde{K}, K_0\}$ is

$$\widetilde{S}(\lambda) = \begin{pmatrix} S(\lambda) & S_{12}(\lambda) \\ S_{21}(\lambda) & S^{LP}(\lambda) \end{pmatrix} \quad \text{for a.e. } \lambda \in \mathbb{R},$$

 $\{S(\lambda)\}$ scattering matrix of dissipative scattering system $\{A_D, A_0\}$,

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

<u>Theorem</u> Scattering matrix of $\{\widetilde{K}, K_0\}$ is

$$\widetilde{S}(\lambda) = \begin{pmatrix} S(\lambda) & S_{12}(\lambda) \\ S_{21}(\lambda) & S^{LP}(\lambda) \end{pmatrix} \quad \text{for a.e. } \lambda \in \mathbb{R},$$

 $\{S(\lambda)\} \text{ scattering matrix of dissipative scattering system } \{A_D, A_0\},\$ $S(\lambda) = I + 2i\sqrt{\operatorname{Im} M(\lambda)} (D - M(\lambda))^{-1} \sqrt{\operatorname{Im} M(\lambda)};$

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

<u>Theorem</u> Scattering matrix of $\{\widetilde{K}, K_0\}$ is

$$\widetilde{S}(\lambda) = \begin{pmatrix} S(\lambda) & S_{12}(\lambda) \\ S_{21}(\lambda) & S^{LP}(\lambda) \end{pmatrix} \quad \text{for a.e. } \lambda \in \mathbb{R},$$

 $\{S(\lambda)\} \text{ scattering matrix of dissipative scattering system } \{A_D, A_0\},\$ $S(\lambda) = I + 2i\sqrt{\operatorname{Im} M(\lambda)} (D - M(\lambda))^{-1} \sqrt{\operatorname{Im} M(\lambda)};$

 $M(\cdot)$ "abstract" Titchmarsh-Weyl function of A, A_0 ,

Scattering in open quantum systems

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

<u>Theorem</u> Scattering matrix of $\{\widetilde{K}, K_0\}$ is

$$\widetilde{S}(\lambda) = \begin{pmatrix} S(\lambda) & S_{12}(\lambda) \\ S_{21}(\lambda) & S^{LP}(\lambda) \end{pmatrix} \quad \text{for a.e. } \lambda \in \mathbb{R},$$

 $\{S(\lambda)\}\$ scattering matrix of dissipative scattering system $\{A_D, A_0\}$, $S(\lambda) = I + 2i\sqrt{\operatorname{Im} M(\lambda)} (D - M(\lambda))^{-1} \sqrt{\operatorname{Im} M(\lambda)};$

 $M(\cdot)$ "abstract" Titchmarsh-Weyl function of A, A_0 , $A_D \leftrightarrow D : n \times n$ -matrix, "abstract" boundary condition

Scattering in open quantum systems

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

<u>Theorem</u> Scattering matrix of $\{\widetilde{K}, K_0\}$ is

$$\widetilde{S}(\lambda) = \begin{pmatrix} S(\lambda) & S_{12}(\lambda) \\ S_{21}(\lambda) & S^{LP}(\lambda) \end{pmatrix} \quad \text{for a.e. } \lambda \in \mathbb{R},$$

 $\{S(\lambda)\} \text{ scattering matrix of dissipative scattering system } \{A_D, A_0\},\$ $S(\lambda) = I + 2i\sqrt{\operatorname{Im} M(\lambda)} (D - M(\lambda))^{-1} \sqrt{\operatorname{Im} M(\lambda)};$

 $M(\cdot)$ "abstract" Titchmarsh-Weyl function of A, A_0 , $A_D \leftrightarrow D : n \times n$ -matrix, "abstract" boundary condition

Summary Simple model for open quantum system, scattering theory works,

Scattering in open quantum systems

Connection between scattering processes of $\{\widetilde{K}, K_0\}$ in the closed system and scattering processes of $\{A_D, A_0\}$ in the open quantum system ?

<u>Theorem</u> Scattering matrix of $\{\widetilde{K}, K_0\}$ is

$$\widetilde{S}(\lambda) = \begin{pmatrix} S(\lambda) & S_{12}(\lambda) \\ S_{21}(\lambda) & S^{LP}(\lambda) \end{pmatrix} \quad \text{for a.e. } \lambda \in \mathbb{R},$$

 $\{S(\lambda)\} \text{ scattering matrix of dissipative scattering system } \{A_D, A_0\},\$ $S(\lambda) = I + 2i\sqrt{\operatorname{Im} M(\lambda)} (D - M(\lambda))^{-1} \sqrt{\operatorname{Im} M(\lambda)};$

 $M(\cdot)$ "abstract" Titchmarsh-Weyl function of A, A_0 , $A_D \leftrightarrow D : n \times n$ -matrix, "abstract" boundary condition

Summary Simple model for open quantum system, scattering theory works, but Hamiltonians \widetilde{K}, K_0 in the closed system are NOT semibounded.

PART III: "Real World"

Open quantum system consisting of family of dissipative operators $\{A(\mu)\}$

Open quantum system described by a family $\{A(\lambda)\}$, $\lambda \in \mathbb{C}_+$, of maximal dissipative operators in \mathcal{H} .

Open quantum system described by a family $\{A(\lambda)\}$, $\lambda \in \mathbb{C}_+$, of maximal dissipative operators in \mathcal{H} .

Assume $\{A(\lambda)\}$ extensions of symmetric operator A with finite defect.

Open quantum system described by a family $\{A(\lambda)\}$, $\lambda \in \mathbb{C}_+$, of maximal dissipative operators in \mathcal{H} .

Assume $\{A(\lambda)\}$ extensions of symmetric operator A with finite defect.

<u>Theorem</u> There exists symmetric operator T in Hilbert space \mathcal{K} and a selfadjoint extension \widetilde{L} of $A \oplus T$ in $\mathcal{H} \oplus \mathcal{K}$ such that

$$P_{\mathcal{H}}(\widetilde{L}-\lambda)^{-1}|_{\mathcal{H}} = (A(\lambda)-\lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.$$

Open quantum system described by a family $\{A(\lambda)\}$, $\lambda \in \mathbb{C}_+$, of maximal dissipative operators in \mathcal{H} .

Assume $\{A(\lambda)\}$ extensions of symmetric operator A with finite defect.

<u>Theorem</u> There exists symmetric operator T in Hilbert space \mathcal{K} and a selfadjoint extension \widetilde{L} of $A \oplus T$ in $\mathcal{H} \oplus \mathcal{K}$ such that

$$P_{\mathcal{H}}(\widetilde{L}-\lambda)^{-1}|_{\mathcal{H}} = (A(\lambda)-\lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.$$

 $\begin{array}{l} \underline{\mathsf{Example}} \ A(\lambda) = -\frac{d^2}{dx^2} + V \ \text{regular Sturm-Liouville operators in } L^2(a,b) \\ \\ \mathrm{dom} \ A(\lambda) = \left\{ f \in H^2(a,b) : \begin{array}{l} f'(a) = -i\sqrt{\lambda - V(a)}f(a) \\ f'(b) = i\sqrt{\lambda - V(b)}f(b) \end{array} \right\}. \end{array}$

Open quantum system described by a family $\{A(\lambda)\}$, $\lambda \in \mathbb{C}_+$, of maximal dissipative operators in \mathcal{H} .

Assume $\{A(\lambda)\}$ extensions of symmetric operator A with finite defect.

<u>Theorem</u> There exists symmetric operator T in Hilbert space \mathcal{K} and a selfadjoint extension \widetilde{L} of $A \oplus T$ in $\mathcal{H} \oplus \mathcal{K}$ such that

$$P_{\mathcal{H}}(\widetilde{L}-\lambda)^{-1}|_{\mathcal{H}} = (A(\lambda)-\lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.$$

 $\begin{array}{l} \underline{\mathsf{Example}} \ A(\lambda) = -\frac{d^2}{dx^2} + V \ \text{regular Sturm-Liouville operators in } L^2(a,b) \\ & \operatorname{\mathsf{dom}} A(\lambda) = \left\{ f \in H^2(a,b) : \begin{array}{l} f'(a) = -i\sqrt{\lambda - V(a)}f(a) \\ f'(b) = i\sqrt{\lambda - V(b)}f(b) \end{array} \right\}. \end{array}$

Then $\widetilde{L} = -\frac{d^2}{dx^2} + \widetilde{V}$ in $L^2(\mathbb{R})$,

Open quantum system described by a family $\{A(\lambda)\}$, $\lambda \in \mathbb{C}_+$, of maximal dissipative operators in \mathcal{H} .

Assume $\{A(\lambda)\}$ extensions of symmetric operator A with finite defect.

<u>Theorem</u> There exists symmetric operator T in Hilbert space \mathcal{K} and a selfadjoint extension \widetilde{L} of $A \oplus T$ in $\mathcal{H} \oplus \mathcal{K}$ such that

$$P_{\mathcal{H}}(\widetilde{L}-\lambda)^{-1}|_{\mathcal{H}} = (A(\lambda)-\lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.$$

$$\begin{split} \underline{\mathsf{Example}} \ A(\lambda) &= -\frac{d^2}{dx^2} + V \text{ regular Sturm-Liouville operators in } L^2(a,b) \\ &\operatorname{dom} A(\lambda) = \left\{ f \in H^2(a,b) : \begin{array}{c} f'(a) = -i\sqrt{\lambda - V(a)}f(a) \\ f'(b) = i\sqrt{\lambda - V(b)}f(b) \end{array} \right\}. \end{split}$$

$$\end{split}$$

$$\mathsf{Then} \ \widetilde{L} &= -\frac{d^2}{dx^2} + \widetilde{V} \text{ in } L^2(\mathbb{R}), \text{ where } \widetilde{V}(x) = \left\{ \begin{array}{c} V(a) \ x \in (-\infty,a] \\ V(x) \quad x \in (a,b) \\ V(b) \quad x \in [b,\infty) \end{array} \right\}. \end{split}$$

Open quantum system described by a family $\{A(\lambda)\}$, $\lambda \in \mathbb{C}_+$, of maximal dissipative operators in \mathcal{H} .

Assume $\{A(\lambda)\}$ extensions of symmetric operator A with finite defect.

<u>Theorem</u> There exists symmetric operator T in Hilbert space \mathcal{K} and a selfadjoint extension \widetilde{L} of $A \oplus T$ in $\mathcal{H} \oplus \mathcal{K}$ such that

$$P_{\mathcal{H}}(\widetilde{L}-\lambda)^{-1}|_{\mathcal{H}} = (A(\lambda)-\lambda)^{-1}, \quad \lambda \in \mathbb{C}_+.$$

$$\begin{split} \underline{\mathsf{Example}} \ A(\lambda) &= -\frac{d^2}{dx^2} + V \text{ regular Sturm-Liouville operators in } L^2(a,b) \\ & \mathsf{dom} \ A(\lambda) = \left\{ f \in H^2(a,b) : \begin{array}{l} f'(a) = -i\sqrt{\lambda - V(a)}f(a) \\ f'(b) = i\sqrt{\lambda - V(b)}f(b) \end{array} \right\}. \\ & \mathsf{Then} \ \widetilde{L} = -\frac{d^2}{dx^2} + \widetilde{V} \text{ in } L^2(\mathbb{R}), \text{ where } \widetilde{V}(x) = \left\{ \begin{array}{l} V(a) \ x \in (-\infty,a] \\ V(x) \ x \in (a,b) \\ V(b) \ x \in [b,\infty) \end{array} \right\}. \end{split}$$

Quantum-transmitting Schrödinger Poisson system: Model for carrier transport in semiconductors

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$.

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$. Let $L_0 := A_0 \oplus T_0$, where A_0 , T_0 selfadjoint extensions of A and T.

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$. Let $L_0 := A_0 \oplus T_0$, where A_0 , T_0 selfadjoint extensions of A and T.

<u>Observations</u> (i) \widetilde{L}, L_0 semibounded $\iff A, T$ semibounded

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$. Let $L_0 := A_0 \oplus T_0$, where A_0 , T_0 selfadjoint extensions of A and T.

<u>Observations</u> (i) \widetilde{L}, L_0 semibounded $\iff A, T$ semibounded (ii) Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ is 2×2 block matrix fct.

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$. Let $L_0 := A_0 \oplus T_0$, where A_0 , T_0 selfadjoint extensions of A and T.

<u>Observations</u> (i) \widetilde{L}, L_0 semibounded $\iff A, T$ semibounded (ii) Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ is 2×2 block matrix fct.

<u>Theorem</u> For fixed $\mu \in \mathbb{R} \{A(\mu + i0), A_0\}$ is a "simple" scattering system as in Part II

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$. Let $L_0 := A_0 \oplus T_0$, where A_0 , T_0 selfadjoint extensions of A and T.

<u>Observations</u> (i) \widetilde{L}, L_0 semibounded $\iff A, T$ semibounded (ii) Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ is 2×2 block matrix fct.

<u>Theorem</u> For fixed $\mu \in \mathbb{R} \{A(\mu+i0), A_0\}$ is a "simple" scattering system as in Part II and for a.e. $\mu \in \mathbb{R}$

$$\widetilde{S}(\mu) = \widetilde{S}_{\mu}(\mu)$$

where $\{\widetilde{S}_{\mu}(\lambda)\}$ scattering matrix of simple system $\{\widetilde{K}_{\mu}, A_0 \oplus -i\frac{d}{dx}\}$; \widetilde{K}_{μ} dilation of $A(\mu + i0)$ in $\mathcal{H} \oplus L^2(\mathbb{R}, \mathbb{C}^n)$.

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$. Let $L_0 := A_0 \oplus T_0$, where A_0 , T_0 selfadjoint extensions of A and T.

<u>Observations</u> (i) \widetilde{L}, L_0 semibounded $\iff A, T$ semibounded (ii) Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ is 2×2 block matrix fct.

<u>Theorem</u> For fixed $\mu \in \mathbb{R} \{A(\mu+i0), A_0\}$ is a "simple" scattering system as in Part II and for a.e. $\mu \in \mathbb{R}$

$$\widetilde{S}(\mu) = \widetilde{S}_{\mu}(\mu)$$

where $\{\widetilde{S}_{\mu}(\lambda)\}$ scattering matrix of simple system $\{\widetilde{K}_{\mu}, A_0 \oplus -i\frac{d}{dx}\}$; \widetilde{K}_{μ} dilation of $A(\mu + i0)$ in $\mathcal{H} \oplus L^2(\mathbb{R}, \mathbb{C}^n)$.

$$\Rightarrow \text{ If } \widetilde{S}(\lambda) \approx \widetilde{S}_{\mu}(\lambda) \quad \text{for } \lambda \in (\mu - \delta, \mu + \delta),$$

 \widetilde{L} selfadjoint extension of $A \oplus T$ with $P_{\mathcal{H}}(\widetilde{L} - \lambda)^{-1}|_{\mathcal{H}} = (A(\lambda) - \lambda)^{-1}$. Let $L_0 := A_0 \oplus T_0$, where A_0 , T_0 selfadjoint extensions of A and T.

<u>Observations</u> (i) \widetilde{L}, L_0 semibounded $\iff A, T$ semibounded (ii) Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ is 2×2 block matrix fct.

<u>Theorem</u> For fixed $\mu \in \mathbb{R} \{A(\mu+i0), A_0\}$ is a "simple" scattering system as in Part II and for a.e. $\mu \in \mathbb{R}$

$$\widetilde{S}(\mu) = \widetilde{S}_{\mu}(\mu)$$

where $\{\widetilde{S}_{\mu}(\lambda)\}\$ scattering matrix of simple system $\{\widetilde{K}_{\mu}, A_0 \oplus -i\frac{d}{dx}\}$; \widetilde{K}_{μ} dilation of $A(\mu + i0)$ in $\mathcal{H} \oplus L^2(\mathbb{R}, \mathbb{C}^n)$.

 $\Rightarrow \text{If } \widetilde{S}(\lambda) \approx \widetilde{S}_{\mu}(\lambda) \quad \text{for } \lambda \in (\mu - \delta, \mu + \delta), \text{then } \{\widetilde{S}_{\mu}(\lambda)\} \text{ locally good approximation of "real" scattering matrix}$

• Open quantum system described by dissipative operators $\{A(\lambda)\}$ can be embedded into a closed system, but the outer system is complicated

- Open quantum system described by dissipative operators $\{A(\lambda)\}$ can be embedded into a closed system, but the outer system is complicated
- Hamiltonians \widetilde{L} , L_0 in the closed quantum system can be semibounded (depends on family $A(\lambda)$), good for physical interpretation

- Open quantum system described by dissipative operators $\{A(\lambda)\}$ can be embedded into a closed system, but the outer system is complicated
- Hamiltonians \widetilde{L} , L_0 in the closed quantum system can be semibounded (depends on family $A(\lambda)$), good for physical interpretation
- \widetilde{L} describes interaction of inner and outer system, L_0 no interaction

- Open quantum system described by dissipative operators $\{A(\lambda)\}$ can be embedded into a closed system, but the outer system is complicated
- Hamiltonians \widetilde{L} , L_0 in the closed quantum system can be semibounded (depends on family $A(\lambda)$), good for physical interpretation
- \widetilde{L} describes interaction of inner and outer system, L_0 no interaction
- Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ coincides pointwise with scattering matrices of "simple" scattering systems $\{\widetilde{K}_{\mu}, A_0 \oplus -i\frac{d}{dx}\}$

- Open quantum system described by dissipative operators $\{A(\lambda)\}$ can be embedded into a closed system, but the outer system is complicated
- Hamiltonians \widetilde{L} , L_0 in the closed quantum system can be semibounded (depends on family $A(\lambda)$), good for physical interpretation
- \widetilde{L} describes interaction of inner and outer system, L_0 no interaction
- Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ coincides pointwise with scattering matrices of "simple" scattering systems $\{\widetilde{K}_{\mu}, A_0 \oplus -i\frac{d}{dx}\}$
- The "simple" model locally is a good approximation of the "real world"

- Open quantum system described by dissipative operators $\{A(\lambda)\}$ can be embedded into a closed system, but the outer system is complicated
- Hamiltonians \widetilde{L} , L_0 in the closed quantum system can be semibounded (depends on family $A(\lambda)$), good for physical interpretation
- \widetilde{L} describes interaction of inner and outer system, L_0 no interaction
- Scattering matrix $\{\widetilde{S}(\lambda)\}$ of $\{\widetilde{L}, L_0\}$ coincides pointwise with scattering matrices of "simple" scattering systems $\{\widetilde{K}_{\mu}, A_0 \oplus -i\frac{d}{dx}\}$
- The "simple" model locally is a good approximation of the " real world"
- Inverse problems: $\{\widetilde{S}(\lambda)\}$ can be recovered from "simple" scattering matrices $\{\widetilde{S}_{\mu}(\lambda)\}$