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S : Hac(A0) → Hac(A0), φ− 7→ φ+ (= W ∗
+W−φ−).

In direct integral representation

A0|Hac(A0)
∼= λ Hac(A0)

∼= L2(σac(A0), dλ,Hλ),

scattering operator S turns into multiplication with {S(λ)}λ∈σac(A0)
.

Scattering matrix {S(λ)}: Hλ-valued function with unitary values

Conversely: Each operator function S(·) with unitary values S(λ) is the

scattering matrix of some scattering system {A1, A0}.
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Dissipative scattering systems

What if λ 7→ S(λ) is not unitary but contraction-valued?

Theorem [N89] Each operator function S(·) with contractive values S(λ)

is the scattering matrix of a dissipative scattering system {AD, A0}.

A0 selfadjoint, AD maximal dissipative operator in H:

Im (ADx, x) ≤ 0, x ∈ domAD.

e−itAD: dynamics of open quantum system {AD,H}.
Note: e−itAD not unitary and possibly ‖e−itADϕ‖ → 0.

Corollary Every contractive matrix function S(·) is the scattering matrix

of a dissipative scattering system {AD, A0}, where AD and A0 are ex-

tensions of a symmetric operator A with finite defect.



PART II: “Simple Model”

Open quantum system consisting of single dissipative operator AD



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).

Note R = σ(−i ddx)



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).

Note R = σ(−i ddx) = σ(K0)



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).

Note R = σ(−i ddx) = σ(K0) = σ(K̃),



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).

Note R = σ(−i ddx) = σ(K0) = σ(K̃), physical interpretation ???



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).

Note R = σ(−i ddx) = σ(K0) = σ(K̃), physical interpretation ???

Example AD = − d2

dx2 + V in H = L2(R+) with b.c. f ′(0) = −if (0)



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).

Note R = σ(−i ddx) = σ(K0) = σ(K̃), physical interpretation ???

Example AD = − d2

dx2 + V in H = L2(R+) with b.c. f ′(0) = −if (0)

Then K̃ = −f ′′ + V f ⊕−ig′ in L2(R+)⊕ L2(R),



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,

(K̃ − λ)−1 − (K0 − λ)−1 finite rank (≤ 2n).

Note R = σ(−i ddx) = σ(K0) = σ(K̃), physical interpretation ???

Example AD = − d2

dx2 + V in H = L2(R+) with b.c. f ′(0) = −if (0)

Then K̃ = −f ′′ + V f ⊕−ig′ in L2(R+)⊕ L2(R), where

f ⊕ g ∈ dom K̃ ⇔ f ′(0)± if (0) = −i
√

2g(∓0)



Open quantum systems

Assume A ⊂ A∗ of defect n and A0 selfadjoint extension, AD maximal

dissipative extension (pseudo-Hamiltonian).

Open quantum system {AD,H} can be embedded into closed system:

Proposition Exists selfadjoint dilation K̃ of AD in H⊕ L2(R,Cn):

PH(K̃ − λ)−1 �H= (AD − λ)−1, λ ∈ C+.

K̃ singular perturbation of K0 := A0 ⊕−i ddx,
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Then K̃ = −f ′′ + V f ⊕−ig′ in L2(R+)⊕ L2(R), where

f ⊕ g ∈ dom K̃ ⇔ f ′(0)± if (0) = −i
√

2g(∓0) (interaction)
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Connection between scattering processes of {K̃,K0} in the closed system

and scattering processes of {AD, A0} in the open quantum system ?

Theorem Scattering matrix of {K̃,K0} is

S̃(λ) =

(
S(λ) S12(λ)

S21(λ) SLP (λ)

)
for a.e. λ ∈ R,

{S(λ)} scattering matrix of dissipative scattering system {AD, A0},

S(λ) = I + 2i
√

ImM(λ)
(
D −M(λ)

)−1√
ImM(λ);

M(·) ”abstract” Titchmarsh-Weyl function of A,A0,

AD ↔ D : n× n-matrix, ”abstract” boundary condition

Summary Simple model for open quantum system, scattering theory works,

but Hamiltonians K̃,K0 in the closed system are NOT semibounded.
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{
V (a) x∈(−∞,a]
V (x) x∈(a,b)
V (b) x∈[b,∞)

.



Open quantum systems and dissipative operatorfamilies

Open quantum system described by a family {A(λ)}, λ ∈ C+, of

maximal dissipative operators in H.

Assume {A(λ)} extensions of symmetric operator A with finite defect.

Theorem There exists symmetric operator T in Hilbert space K and a

selfadjoint extension L̃ of A⊕ T in H⊕K such that

PH
(
L̃− λ

)−1|H =
(
A(λ)− λ

)−1
, λ ∈ C+.

Example A(λ) = − d2

dx2 + V regular Sturm-Liouville operators in L2(a, b)

domA(λ) =

{
f ∈ H2(a, b) :

f ′(a)=−i
√
λ−V (a)f (a)

f ′(b)=i
√
λ−V (b)f (b)

}
.

Then L̃ = − d2
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Quantum-transmitting Schrödinger Poisson system: Model for carrier transport in semiconductors
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• Open quantum system described by dissipative operators {A(λ)} can

be embedded into a closed system, but the outer system is complicated

• Hamiltonians L̃, L0 in the closed quantum system can be semibounded

(depends on family A(λ)), good for physical interpretation

• L̃ describes interaction of inner and outer system, L0 no interaction

• Scattering matrix {S̃(λ)} of {L̃, L0} coincides pointwise with scatter-

ing matrices of “simple” scattering systems {K̃µ, A0 ⊕−i ddx}

• The “simple” model locally is a good approximation of the ”real world”

• Inverse problems: {S̃(λ)} can be recovered from “simple” scattering

matrices {S̃µ(λ)}


