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The time independent Schrödinger equation in the position

representation is given by (assuming h̄ = 2m = 1)

H̃ψ(x) = Eψ(x) (1)

where the Hamiltonian H̃ is given by [Choi et al, Phys.Rev.A60

(1999) 796]

H̃ψ(x) = −d
2ψ(x)

dx2
+ V (x)ψ(x) +

∫ ∞

−∞
dyv(x, y)ψ(y) = Eψ(x) (2)

V (x) and v(x, y) being complex local and nonlocal potentials

respectively.

We now consider a pair of Hamiltonians H̃± of the form (1) where

H̃+ = AB, H̃− = BA, A and B being linear first order differential

operators. Then H̃− is the isospectral partner of H̃+.
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Correspondingly, the Schrödinger equations for the partner

Hamiltonians H̃+ and H̃− are given by

H̃+ψ+(x) = −d
2ψ+(x)

dx2
+ V+(x)ψ+(x) +

∫ ∞

−∞
dyv+(x, y)ψ+(y)

= E+ψ+(x)

(3)

and

H̃−ψ−(x) = −d
2ψ−(x)

dx2
+ V−(x)ψ−(x) +

∫ ∞

−∞
dyv−(x, y)ψ−(y)

= E−ψ−(x)

(4)
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Writing [Choi et al, Phys.Rev.A60 (1999) 796]

< x|V±(x)|ψ± > = V±(x)ψ±(x)

< x|v±(x, y)|ψ± > =

∫ ∞

−∞
dyv±(x, y)ψ±(y)

(5)

equations (3) and (4) can be cast into the form

d2ψ±(x)

dx2
+ < x|V±(x)|ψ± > + < x|v±(x, y)|ψ± >= E±ψ±(x) (6)

Let us write the potentials in operator form as

V̂± =

∫ ∞

−∞
dx|x > V±(x) < x|

v̂± =

∫ ∞

−∞
dx

∫ ∞

−∞
dy|x > v±(x, y) < y|

(7)
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Then the partner Hamiltonians H̃+ and H̃− can be factorized

respectively as

H̃+ = ÂB̂ = p̂2 + V̂+ + v̂+ (8)

and

H̃− = B̂Â = p̂2 + V̂− + v̂− (9)

where the first order differential operators B̂ and Â are defined by

B̂ = −ip̂+ Ŵ + ŵ

Â = ip̂+ Ŵ + ŵ
(10)
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And

Ŵ =

∫ ∞

−∞
dx|x > W (x) < x|

ŵ =

∫ ∞

−∞
dx

∫ ∞

−∞
dy|x > w(x, y) < y|

(11)

The potentials V± and v± are written in terms of the factorization

potentials W (x) and w(x, y) as

V±(x) = [W (x)]2 ± dW (x)

dx

v±(x, y) =

∫ ∞

−∞
duw(x, u)w(u, y) + [W (x) +W (y)]w(x, y)

±
[

∂w(x, y)

∂x
+
∂w(x, y)

∂y

]

(12)
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It is to be mentioned here that in models with local potentials,

there is a one-to-one relationship between the ground state and the

factorization potential W (x) but it is not so with non local

potentials. In non local models, given the factorization potentials

W (x) and w(x, y), the zero-energy ground state ψ0(x) is obtained

from the integro-differential equation

dψ0(x)

dx
+W (x)ψ0(x) +

∫ ∞

−∞
dyw(x, y)ψ0(y) = 0 (13)
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We shall now construct a class of exactly solvable models with both

complex local and nonlocal potentials starting from any exactly

solvable local model with factorization potential W0(x) and to this

end we choose

W (x) = (1 − c)W0(x)

w(x, y) = C1
∂

∂x
δ(x− y)

(14)

where C1 is a parameter of nonlocality and c is a constant.
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Substituting W (x) and w(x, y) we obtain

V±(x) = (1 − c)2[W0(x)]
2 ± (1 − c)

dW0(x)

dx

∫ ∞

−∞
dyv±(x, y)ψ±(y) = C2

1

d2ψ±(x)

dx2
+ 2C1(1 − c)W0(x)

dψ±(x)

dx

±(1 − c)C1
dW0(x)

dx
ψ±(x)

(15)
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Consequently the eigenvalue equations for the Hamiltonians H̃± are

written as

H̃±ψ± = E±ψ± (16)

where

H̃± = −(1 − C2
1 )

d2

dx2
+ 2C1(1 − c)W0(x)

d

dx

+ (1 − c)(C1 ± 1)dW0(x)
dx

+ (1 − c)2W 2
0 (x) (17)

To solve this eigenvalue problem our strategy would be to find a

similarity transformation mapping the Hamiltonians H̃± into

standard form.

To this end we make the transformation

ψ±(x) = e
− 1

2

∫

f(x)dx
φ±(x) = ηφ±(x) (18)
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where

η = e
− 1

2

∫

f(x)dx

f(x) = −2C1(1 − c)

(1 − C2
1 )

W0(x)
(19)

so that the transformed Hamiltonians H̄± = η−1H̃±η are given by

H̄±φ±(x) = −(1 − C2
1 )
d2φ±(x)

dx2
+

(1 − c)2

(1 − C2
1 )
W 2

0 (x)φ±(x)

±(1 − c)W
′

0(x)φ±(x) = E±φ± + (x)

(20)

It is to be noted that H̄± can be factorised as

H̄+ = CD H̄− = DC (21)
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where

C = (1 + C1)
d

dx
+

(1 − c)

(1 − C1)
W0(x)

D = (1 − C1)
d

dx
+

(1 − c)

(1 + C1)
W0(x)

(22)

For the special case C2
1 = c, the Hamiltonians H̄± can be written in

terms of the local Hamiltonians H̄±,local as

H̄± = (1 − c)H̄±,local (23)

Then it can be shown that

φ± = χ±

E± = (1 − c)E±,local

(24)
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Now to find eigenvalues E± and eigenfunctions ψ± of the

Schroedinger equation (16), we proceed as follows: For local

Hamiltonians we already have

H̄±,local χ±,local = E±,local χ±,local (25)

where χ±, local are the eigenfunctions of the local Hamiltonians.

Therefore

H̄± χ±,local = (1 − c)H̄±,local χ±,local = (1 − c)E±,local χ±,local

(26)

Putting (18) into (16) we have

H̃±ηφ± = E±ηφ±

= ηE±φ±
(27)
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Operating η−1 from the left of the above equation, we get

H̄±φ± = E±φ±

= (1 − c)H̄±,local φ±
(28)

Comparing (28) with (26) we have

φ± = χ±

E± = (1 − c)E±,local

(29)
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Example 1.

Here we shall apply the above formalism to obtain

eigenvalues and eigenfunctions of a nonlocal variant of

the PT symmetric Rosen Morse potential [ Znojil,

J.Phys. A33, (2000) L61]

In this case the factoriozation potential is taken as

W0(x) = i
B

A
+ Atanhx (30)

Then H̃± are given by

H̃± = −(1 − C2

1
)
d2φ±(x)

dx2
+ C1(1 − c)(

iB

A
+ Atanhx)

d

dx

+(1 − c)(C1 ± 1)Asech2x + (1 − c)2A2sech4x

(31)
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With f(x) = −2C1(1 − c)

(1 − C2
1 )

(i
B

A
+Atanhx) the transformed

Hamiltonians are given by

H̄± = −(1 − C2
1 )

d2

dx2
+

(1 − c)2

(1 − C2
1 )2

(
iB

A
+ tanhx)2 ± (1 − c)Asech2x

(32)

These two Hamiltonians admit the factorisations

H̄± =

[

(1 + C1)
d

dx
+

(1 − c)

(1 ∓ C1)
(
iB

A
+Atanhx)

]

(33)

[

∓(1 ∓ C1)
d

dx
+

(1 − c)

(1 ± C1)
(
iB

A
+Atanhx))

]
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With C2
1 = c, the eigenvalue equations for H̄± can be written as

H̄±φ±(x) = (1 − c)

[

−d
2φ±(x)

dx2
+ (

iB

A
+Atanhx)2φ±(x)

±(A sech2x)φ±(x)
]

= E±φ±(x)

(34)

The eigenvalues and eigenfunctions can be written using the results

of corresponding local model [Levai, J.Phys. A22, (1989) 689,

Znojil, J.Phys. A33, (2000) L61] For unbroken PT symmetry

ψ−(x) =
1

(coshx)A(1−
√

c) − n
eiBx(

√
c

A
− 1

A−n
) (35)

P
A−n+ iB

A−n
,A−n− iB

A−n

n (tanhx)

where Pα,β
n is the Jacobi polynomial.



18

E− = (1 − c)[A2 − B2

A2
− (A− n)2 +

B2

(A− n)2
] (36)

where n = 0, 1, 2 · · · < A(1 −√
c)

And

ψ+(x) =
1

(coshx)(A−1)(1−
√

c) − n
eiBx(

√
c

A−1
− 1

A−1−n
) (37)

P
A−1−n+ iB

A−1−n
,A−1−n− iB

A−1−n

n (tanhx)

E+ = (1 − c)[(A2 − B2

A2
− (A− 1 − n)2 +

B2

(A− 1 − n)2
] (38)

where n = 0, 1, 2 · · · < (A− 1)(1 −√
c)
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Example 2. Scarf Potential

In this case the factorisation potential is taken as

W0(x) = λtanhx+ iµsechx (39)

Then H̃± are given by

H̃± = −(1 − C2
1 )

d2

dx2
+ 2C1(1 − c)(λtanhx+ iµsechx)

d

dx

+(1 − c)(C1 ± 1)(λsech2x− iµsechxtanhx)
(40)

+(1 − c)2(λtanhx+ iµsechx)2
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With f(x) = −2C1(1 − c)

(1 − C2
1 )

(λtanhx+ iµsechx) the transformed

Hamiltonians are given by

H̄± = −(1 − C2
1 )

d2

dx2
+

(1 − c)2

(1 − C2
1 )2

(λtanhx+ iµsechx)2 (41)

±(1 − c)(λsech2x− iµsechxtanhx)
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These two Hamiltonians admit the factorisations

H̃± =

[

±(1 ± C1)
d

dx
+

(1 − c)

(1 ∓ C1)
(λ tanh x+ iµ sech x)

]

(42)

[∓(1 ∓ C1)
d

dx
+

(1 − c)

(1 ± C1)
(λ tanh x+ iµ sech x)]
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With C2
1 = c, the eigenvalue equations for H̄± can be written as

H̄±φ±(x) = (1 − c)

[

−d
2φ±(x)

dx2
+ (λtanhx+ iµsechx)2φ±(x)

±(λsech2x− iµsechxtanhx)φ±(x)
]

= E±φ±(x)

(43)

The eigenvalues and eigenfunctions can be written using the results

of the corresponding local model [Z.Ahmed, Phys.Letts. A282

(2001) 343, A287 (2001) 295].

If the potential in the above equation is written as

V (x) = V1sech
2x+ iV2sechxtanhx, then for unbroken PT

symmetry |V2| ≤ V1 + 1
4 , V1,V2 being given in the following

equations. Three cases will arise
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Case 1. Positive square roots taken in both t and s (given in the

following equations). In this case the eigenvalues are given by

E±,n+ = (1 − c)[λ2 − {n+ +
1

2
− 1

2
(t+ s)}2] (44)

where

n+ = 0, 1, 2 · · · < s+t−1
2

V1 = (λ2 + µ2) ∓ λ

V2 = ±µ− 2λµ

t =
√

1
4 + V1 − V2

s =
√

1
4 + V1 + V2

(45)
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and the eigenfunctions corresponding to these real eigenvalues are

ψ±,n+(x) = (sech x)

(1 −√
c)(s+ t) − (1 ±√

c)

2

exp

[

i

2
(1 +

√
c)(t− s)tan−1(sinhx)

]

P (−t,−s)
n (isinhx)

(46)

where P
(−t,−s)
n denotes Jacobi polynomial.
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Case 2. V2 > 0, positive square root in s and negative square root

in t.

In this case

E±,n− = (1 − c)[λ2 − {n− +
1

2
− 1

2
(s− t)}2] (47)

where

n− = 0, 1, 2 · · · < s−t−1
2

V1 = (λ2 + µ2) ∓ λ

V2 = ±µ− 2λµ

t = −
√

1
4 + V1 − V2

s =
√

1
4 + V1 + V2

(48)
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and

ψ±,n−(x) = (sech x)

(1 −√
c)(s− t) − (1 ±√

c)

2

exp

[

− i

2
(1 −

√
c)(t+ s)tan−1(sinhx)

]

P (t,−s)
n (isinhx)

(49)
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Case 3. V2 < 0, positive square root taken in t and negative

square root in s.

In this case

E+,n− = (1 − c)[λ2 − {n− +
1

2
− 1

2
(t− s)}2] (50)

where

n− = 0, 1, 2 · · · < t−s−1
2

V1 = (λ2 + µ2) ∓ λ

V2 = ±µ− 2λµ

t =
√

1
4 + V1 − V2

s = −
√

1
4 + V1 + V2

(51)
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and

ψ±,n−(x) = (sech x)

(1 −√
c)(t− s) − (1 ±√

c)

2

exp

[

i

2
(1 +

√
c)(t+ s)tan−1(sinhx)

]

P (−t,s)
n (isinhx)

(52)
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Conclusion

1.The complex factorization approach is formally extended to

complex nonlocal Hamiltonians. Many theoretical questions for

nonlocal potentials are yet to be resolved e.g. inner product for PT
symmetric nonlocal systems, formulation of nonlocal PT
symmetric supersymmetry and pseudo-supersymmetry

2. However the present framework provides a link, albeit for special

value of the nonlocal parameter, the nonlocal potential to a

corresponding local PT symmetric potential.


