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(1) PT-symmetric quantum mechanics
(2) Nonlinear integrable systems

(3) Quantum field theories
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P T -symmetric quantum mechanics - time-independent H Hermiticity is only a sufficient but not a necessary requirement

Why is Hermiticity a good property to have?

@ Hermiticity ensures the reality of the energies
Schrédinger equation H|y) = E[y) , (¢|HT = E*{(¢)|

(WIH[P) = E (4] ¢)

(W HT [p) = E* ()| ¢>} =0=(E-E) W[y
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Why is Hermiticity a good property to have?

@ Hermiticity ensures the reality of the energies
Schrédinger equation H|wp) = E|y) , (w|HT = E* ()|

(WIH[P) = E (4] ¢)

(| HY [9) = E* (3| ¢>} = 0=(E—-E") (¥ v¥)

@ Hermiticity ensures conservation of probability densities

(1)) = e~ y(0))
(W) (1) = ((0)] eM'te~ M [(0)) = (1(0)] ¥(0))
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P T -symmetric quantum mechanics - time-independent H Hermiticity is only a sufficient but not a necessary requirement

Why is Hermiticity a good property to have?

@ Hermiticity ensures the reality of the energies
Schrédinger equation H|wp) = E|y) , (w|HT = E* ()|

(WIH[P) = E (4] ¢)

(Y| HY [4) = E* (4] 1/)>} = 0=(E - E")(¥| ¥)

@ Hermiticity ensures conservation of probability densities

[0 (t)) = e 14(0))
(w(t)] () = ((0)| €& 1(0)) = (1(0)] ¥(0))

- Thus when H # H' one usually thinks of dissipation.
- However, these systems are in general open and do not possess
a self-consistent description. (As much as QM is self-consistent.)
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P T -symmetric quantum mechanics - time-independent H Hermiticity is only a sufficient but not a necessary requirement

Both properties can be achieved in a non-Hermitian theory

@ Wigner: Operators O which are left invariant under an antilinear
involution Z and whose eigenfunctions ¢ also respect this
symmetry,

[0,7]=0 A Io=0

have a real eigenvalue spectrum.?

2E. Wigner, J. Math. Phys. 1 (1960) 409
b
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@ Wigner: Operators O which are left invariant under an antilinear
involution Z and whose eigenfunctions ¢ also respect this
symmetry,

[0, 7]=0 A Io=0

have a real eigenvalue spectrum.?

@ By defining a new metric also a consistent quantum mechanical
framework has been developed for theories involving such
operators.?
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Both properties can be achieved in a non-Hermitian theory

@ Wigner: Operators O which are left invariant under an antilinear
involution Z and whose eigenfunctions ¢ also respect this
symmetry,

[0,7]=0 A Io=0

have a real eigenvalue spectrum.?

@ By defining a new metric also a consistent quantum mechanical
framework has been developed for theories involving such
operators.?

In particular this also holds for © being non-Hermitian.

2E. Wigner, J. Math. Phys. 1 (1960) 409

bF Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74
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P T -symmetric quantum mechanics - time-independent H Seminal and pre-historic examples in the literature

The seminal classical example

H = %pz +x%(ix)°  foreeR

Energy

@ real eigenvalues fore > 0
@ exceptional points fore < 0
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C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243
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P T -symmetric quantum mechanics - time-independent H Seminal and pre-historic examples in the literature

Further examples

@ Lattice Reggeon field theory (1975)

@ Quantum spin chains (1991)

© Quantum field theories (1992)

© Strings on AdSs x S°-background (2007)
©@ Deformed space-time structures (2010)
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P T -symmetric quantum mechanics - time-independent H Spectral analysis

How to explain the reality of the spectrum?
@ Pseudo/Quasi-Hermiticity
Q PT-symmetry
© Supersymmetry (Darboux transformations)

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 7/56



P T -symmetric quantum mechanics - time-independent H Spectral analysis - Pseudo/Quasi-Hermiticity

Pseudo/Quasi-Hermiticity

h=nHyp ' =h' = ") H < Hp=pH p=nn ()

v
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Pseudo/Quasi-Hermiticity

Pseudo/Quasi-Hermiticity

h=nHyp ' =h' = ") H < Hp=pH p=nn ()

ho=E¢p=nHn '¢=E¢p=Hn '¢=En '¢=Hp=Epy:=n"¢

v
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P T -symmetric quantum mechanics - time-independent H

Pseudo/Quasi-Hermiticity

Spectral analysis - Pseudo/Quasi-Hermiticity

h=nHn ' =h' = ) H'" & Hp=pH p=n'y

ho=E¢p=nHn '¢=E¢p=Hn '¢=En '¢=Hp=Epy:=n"¢

H' = pHp™' | H'p=pH H' = pHp™!
positivity of p v v X
p Hermitian v v v
p invertible v X v
terminology *) quasi-Herm. 2 | pseudo-Herm.?
spectrum of H real could be real real
definite metric | guaranteed guaranteed not conclusive

2. Dieudonné, Proc. Int. Symp. (1961) 115
F. Scholtz, H. Geyer, F. Hahne, Ann. Phys. 213 (1992) 74
bM. Froissart, Nuovo Cim. 14 (1959) 197
A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Unbroken PT-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—>p i——i
(P:x—=—x,p—=—p; T:Xx=X,p——p,i = —I)
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Unbroken PT-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: X——X p—>p i——i
(P:x—=—x,p—=—p; T:X—=X,p——p,i = —I)
@ P7T is an anti-linear operator:

PTOA® + pu¥) = N*PTo + 1*PTV A\ peC
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@ P7T is an anti-linear operator:

PTAP + pV) = NPTO + p*PTV AueC
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[H,PT]=0 A PTd=¢ =c=c" forHd=cd
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Spontaneously broken P7-symmetry gives conjugate eigenvalues
@ Spontaneously broken PT-symmetry:

[H,PT]=0 A PTO#0d
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Spontaneously broken P7-symmetry gives conjugate eigenvalues
@ Spontaneously broken PT-symmetry:

[H,PT]=0 A PTO#0d

@ Instead
[H,PT]=0 A PTd=d,

H¢1 = &1 (D1 Hq)g = 62492
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Spontaneously broken P7-symmetry gives conjugate eigenvalues
@ Spontaneously broken PT-symmetry:

[H,PT]=0 A PTO#0d

@ Instead
[H,PT]=0 A PTd =0,

H¢1 = &1 (D1 Hq)g = 52492
= PTHO1 =PTe1® = HPTP = E?PT¢1 = Hoy = E:q)g
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Spontaneously broken P7-symmetry gives conjugate eigenvalues
@ Spontaneously broken PT-symmetry:

[H,PT]=0 A PTO#0d

@ Instead
[H,PT]=0 A PTo;=0d,

H¢1 = &1 ¢>1 Hq)g = €2¢'2

= PTHO1 =PTe1® = HPTP = E?PT¢1 = Hb, = E;‘CDQ
The eigenvalues of 4 and ¢, form a complex conjugate pair.

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 10/56



P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Spontaneously broken P7-symmetry gives conjugate eigenvalues
@ Spontaneously broken PT-symmetry:

[H,PT]=0 A PTO#0d

@ Instead
[H,PT]=0 A PTby=0d,

H¢1 = &1 (D1 Hq)g = €2¢2

= PTHO1 =PTe1® = HPTP = E?PT¢1 = Hoy = E:q)g
The eigenvalues of 4 and ¢, form a complex conjugate pair.

@ The point in parameter space where the P7-symmetry
spontaneously breaks is referred to as exceptional point.
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Broken and unbroken P 7 -symmetry

Spontaneously broken P7-symmetry gives conjugate eigenvalues
@ Spontaneously broken PT-symmetry:

[H,PT]=0 A PTO#0d

@ Instead
[H,PT]=0 A PTd =0,

H¢1 = &1 (D1 Hq)g = 52492

= PTHO1 =PTe1® = HPTP = E?PT¢1 = Hoy = E:q)g
The eigenvalues of 4 and ¢, form a complex conjugate pair.

@ The point in parameter space where the P7-symmetry
spontaneously breaks is referred to as exceptional point.

PT-symmetry is only an example of an antilinear operator.
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P T -symmetric quantum mechanics - time-independent H

Spectral analysis - Broken and unbroken P 7 -symmetry

PT-symmetry versus spontaneously broken P7-symmetry

E1)

[PT,H]=0

PT(D1=(D1, E1G|R

2/\ g
1l ]
/ PT ¢1 =CD2, €1 =E£
1 2| 3
1t

-2 PT ®,=®,, 6,eR

real parts are solid lines, imaginary parts are dotted lines
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Supersymmetry (Darboux transformation)

Supersymmetry (Darboux transformation)
Decompose Hamiltonian H as:

H=H,oH.=QQao QQ
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Supersymmetry (Darboux transformation)

Supersymmetry (Darboux transformation)
Decompose Hamiltonian H as:

H=H,oH =QQa QQ
e intertwining operators: QH_ = H,.Q and QH, = H_Q

= [H,Q=[H,Q =0
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Supersymmetry (Darboux transformation)

Supersymmetry (Darboux transformation)
Decompose Hamiltonian H as:

H=H,oH =QQa QQ
e intertwining operators: QH_ = H,.Q and QH, = H_Q
= [H.Q=[HQ=0
o realization: Q= & + Wand Q= -2 + W

= Hi=-A+WH+W =-A+V,
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Supersymmetry (Darboux transformation)
Decompose Hamiltonian H as:

H=H,oH =QQa QQ
e intertwining operators: QH_ = H,.Q and QH, = H_Q
= [H.Q=[HQ=0
o realization: Q= & + Wand Q= -2 + W
= Hi=-A+WPEtW=-A+V,

e ground state: H_¢, =¢,¢, and H_¢, =0
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P T -symmetric quantum mechanics - time-independent H Spectral analysis - Supersymmetry (Darboux transformation)

Supersymmetry (Darboux transformation)
Decompose Hamiltonian H as:

H=H,oH =QQa QQ
e intertwining operators: QH_ = H,.Q and QH, = H_Q
= [H.Q=[HQ=0
o realization: Q= & + Wand Q= -2 + W
= Hi=-A+WPEtW=-A+V,

e ground state: H_¢, =¢,¢, and H_¢, =0
=-isospectral Hamiltonians

HP' = A+ VD + Ep, HPOF = E,0f forn>m

H™ non-Hermitian and HT Hermitian when ReW = 10y In(ImW).
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework

How to formulate a quantum mechanical framework?
@ orthogonality
© observables
© uniqueness
© technicalities (new metric etc)
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Orthogonality

Orthogonality
e Take hto be a Hermitian and diagonalisable Hamiltonian:

<¢n|h¢m> = <h¢n‘ ¢m>

|hom) =em  |dm)
(hop | = &5 (®nl
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Orthogonality
e Take hto be a Hermitian and diagonalisable Hamiltonian:

<¢n|h¢m> = <h¢n‘ ¢m>
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Orthogonality
e Take hto be a Hermitian and diagonalisable Hamiltonian:

<¢n|h¢m> = <h¢n‘ ¢m>

<¢n ‘h¢m> =Em <¢n ‘¢m> _ e
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Orthogonality

Orthogonality
e Take hto be a Hermitian and diagonalisable Hamiltonian:

<¢n|h¢m> = <h¢n‘ ¢m>

<¢n ‘h¢m> =Em <(]5n ‘¢m> _ .
(N6n| bm) = =5 (0] Om) } = 0= (em =) (6n|Pm)

= n=m: ep=c¢; n<m: {(¢,|lom =0
e Take H to be a non-Hermitian Hamiltonian:

H|®p) = en|®p)
- reality and orthogonality no longer guaranteed. Define
<¢n‘¢m>n = <¢n\772¢m>

-where (0 [H®p), = (HOn[®m), = (®n|®m), = dnm
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Orthogonality

H is Hermitian with respect to new metric
e Assume pseudo-Hermiticity:
h=nHy™' =h' =@ ")'H" < Hnln=nlnH
o=nl¢ pl=y
= H is Hermitian with respect to the new metric




P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Orthogonality

H is Hermitian with respect to new metric
e Assume pseudo-Hermiticity:

h=nHy " =h' = ") H < Hiylp=nnH

d=no gl=gp

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (V[*Ho)
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H is Hermitian with respect to new metric
e Assume pseudo-Hermiticity:

h=nHy " =h' = ") H < Hiylp=nnH

d=nlo gl=n

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (V[P H®) = (" "pln?Hy~'¢) = (i [nHn~"¢) =
(6 1h8) = (el @) = (nHn~"lg) = (HY|ng) = (HV|17®)
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Orthogonality

H is Hermitian with respect to new metric
e Assume pseudo-Hermiticity:

h=nHy " =h' = ") H < Hiylp=nnH

d=no gl=gp

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (W [nPH®) = (n~"y[nPHn " ¢) = (4 [nHn~"¢) =

(6 1) = (ol @) = (nHn~"Ulg) = (HY|ng) = (HW|1?®)
= (HV|®),

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 15/56



P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Orthogonality

H is Hermitian with respect to new metric
e Assume pseudo-Hermiticity:

h=nHy " =h' = ") H < Hiylp=nnH

d=no gl=gp

= H is Hermitian with respect to the new metric
Proof:

(W[H®), = (V[P H®) = (" "pln?Hy~'¢) = (i [nHn~"¢) =
(6 1) = (ol @) = (nHn~"Ulg) = (HY|ng) = (HW|1?®)
= (HV|®),

Using the same reasoning as in the Hermitian case:
= Eigenvalues of H are real, eigenstates are orthogonal
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Observables

Observables
@ Observables are associated to self-adjoint (Hermitian) operators

(¥ ]og) = (0]¢)

@ Observables in the non-Hermitian system are associated to
self-adjoint (Hermitian) operators O with a re-defined metric

(V|09), = (W[n'nod) = (OV[n'ne) = (OV[P),

= observables O in the non-Hermitian system are
pseudo/quasi-Hermitian with regard to the observables o in the
Hermitian system:

0= 77_1077 & of = p(?p_1
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Observables

Observables
@ Observables are associated to self-adjoint (Hermitian) operators

(¥ ]og) = (0]¢)

@ Observables in the non-Hermitian system are associated to
self-adjoint (Hermitian) operators O with a re-defined metric

(V|09), = (W[n'nod) = (OV[n'ne) = (OV[P),

= observables O in the non-Hermitian system are
pseudo/quasi-Hermitian with regard to the observables o in the
Hermitian system:

0= 77_1077 & of = p(?p_1

Examples: In H = }p? + ix® x, p are not observables,
but X = n~"xn, P =n"pn are.
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Construction of p and

General technique, construction of metric and Dyson maps

either solve nHn='=h for n = p=1n'y

® Given H{ or solve H' = pHp™" for p =n=,/p
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Construction of p and

General technique, construction of metric and Dyson maps
either solve nHn='=h for n = p=1n'y
or solve H' = pHp™" for p =n=,/p
@ involves complicated commutation relations

@ Given H{
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General technique, construction of metric and Dyson maps
either solve nHn='=h for n = p=1n'y
or solve H' = pHp™" for p =n=,/p
@ involves complicated commutation relations

@ often this can only be solved perturbatively

@ Given H{
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Construction of p and

General technique, construction of metric and Dyson maps
either solve nHn='=h for n = p=1n'y
or solve H' = pHp™" for p =n=,/p
@ involves complicated commutation relations

@ often this can only be solved perturbatively

@ Ambiguities:
Given H the metric is not uniquely defined for unknown h.
= Given only H the observables are not uniquely defined.
This is different in the Hermitian case.
- Fixing one more observable achieves uniqueness. 2

@ Given H{

2Scholtz, Geyer, Hahne, , Ann. Phys. 213 (1992) 74
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P T -symmetric quantum mechanics - time-independent H Quantum mechanical framework - Construction of p and

General technique, construction of metric and Dyson maps
either solve nHn='=h for n = p=1n'y
or solve H' = pHp™" for p =n=,/p
@ involves complicated commutation relations

@ often this can only be solved perturbatively

@ Ambiguities:
Given H the metric is not uniquely defined for unknown h.
= Given only H the observables are not uniquely defined.
This is different in the Hermitian case.
- Fixing one more observable achieves uniqueness. 2

@ Given H{

2Scholtz, Geyer, Hahne, , Ann. Phys. 213 (1992) 74

Note:
@ Thus, this is not re-inventing or disputing the validity of quantum
mechanics. We only give up the restrictive requirement that
Hamiltonians have to be Hermitian.

v
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P T -symmetric quantum mechanics - time-independent H Worked out examples - finite dimensional Hilbert space

An example with a finite dimensional Hilbert space:
Two-level system

1 .
H= 5 [Wl+ Aoz + iko]

with eigensystem

._ 2_ 2
Ei:—lcu:lz1 N2 — K2, Py = i(=A£ VAT =K%
K

2 2
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P T -symmetric quantum mechanics - time-independent H Worked out examples - finite dimensional Hilbert space

An example with a finite dimensional Hilbert space:
Two-level system
1 )
H= 5 [Wl+ Aoz + iko]

with eigensystem

Erm ot 2022, o= [ (AEVN R
K

2 2
with PT-symmetry PT =710z, 7 1 — —i

[PT,H =0, and PTy,=—p, for |\l > |k|
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P T -symmetric quantum mechanics - time-independent H Worked out examples - finite dimensional Hilbert space

An example with a finite dimensional Hilbert space:
Two-level system

1 .
H= 5 [Wl+ Aoz + iko]

with eigensystem

,_ 2_ 2
Eo- il %z(’( A+ VA ,@))
K

2 2
with PT-symmetry PT =70z, 70 — —i
[PT,H =0, and PTy,=—p, for |\l > |k|
with broken PT-symmetry PT = 1oz, 7: 1 — —i

[PT,H =0,  PTeL#es [Al <]k

v
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P T -symmetric quantum mechanics - time-independent H Worked out examples - finite dimensional Hilbert space

An example with a finite dimensional Hilbert space:
Two-level system

1 .
H= 5 [Wl+ Aoz + iko]

with eigensystem

._ 2_ 2
Eo- il %z(’( A+ VA ,@))
K

2 2
with PT-symmetry PT =70z, 70 — —i
[PT,H =0, and PTy,=—p, for |\l > |k|
with broken PT-symmetry PT = 1oz, 7: 1 — —i

[PT,H =0,  PTeL#es [Al <]k

Claim: This system has real energies for |\(f)| < |x(t)]!
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P T -symmetric quantum mechanics - time-independent H Worked out examples - infinite dimensional Hilbert space

PT symmetrically coupled harmonic oscillator (co- dim Hilbert space)
Hk = aKi + bKo + iAKj, a,b\eR

with Lie algebraic generators
Kio= (B2+x2) /2, Ko=(PE+y2) /2, Ka=(x+pepy) /2
Ks = (Xpy —ypx) /2

[Ki,K2] =0, [Ki, K] = iKy,  [Ki, Kq] = —iKs,
(Ko, Ka] = —iKa,  [Ko, Ka] = iKs, [Ks, Ka] = i(K1 — K2)/2
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P T -symmetric quantum mechanics - time-independent H Worked out examples - infinite dimensional Hilbert space

PT symmetrically coupled harmonic oscillator (co- dim Hilbert space)
Hk = aKi + bKo + iAKj, a,b\eR

with Lie algebraic generators

Kio= (B2+x2) /2, Ko=(PE+y2) /2, Ka=(x+pepy) /2
Ks = (Xpy —ypx) /2

[Ki,K2] =0, [Ki, K] = iKy,  [Ki, Kq] = —iKs,
(Ko, Ka] = —iKa,  [Ko, Ka] = iKs, [Ks, Ka] = i(K1 — K2)/2

e Hy is PT-symmetric: [PT+,Hk] =0
PTi:X%ixsy—):Fyst%:FpX’p}/_)ipy’i—>_i
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P T -symmetric quantum mechanics - time-independent H Worked out examples - infinite dimensional Hilbert space

PT symmetrically coupled harmonic oscillator (co- dim Hilbert space)

with Lie algebraic generators

K = (pi + X2) /2, Kz = (pﬁ +y2) /2, Kg = (xXy + pxpy) /2
Ks = (Xpy —ypx) /2
[Ki, K] =0, [Ki, K] = iKy,  [Ki, Kq] = —iKs,

(Ko, Ka] = —iKa,  [Ko, Ka] = iKs, [Ks, Ka] = i(K1 — K2)/2

e Hy is PT-symmetric: [PT+,Hk] =0
PTi:X%ixsy—):Fyst%:FpX’p}/_)ipy’i—>_i
e Hy is quasi-Hermitian: hx = nHxn™!

hg = (a+ b) (Ky + K2) /2 +1/(a— b)2 — )2 (Ky — Kp) /2
Dison mai: g = 29K+, 9 = arctanh[\/(b — a)], PT-symm. |\| < |a — b|
Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 19/56
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P T -symmetric quantum mechanics - time-dependent H(t) Theoretical framework (key equations)

Theoretical framework (key equations)
Time-dependent Schradinger eqn for h(t) = hi(t), H(t) # Hi(t)

h0)o(t) = ilded(t),  and  H(OW(E) = ihdpV (1)
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P T -symmetric quantum mechanics - time-dependent H(t) Theoretical framework (key equations)

Theoretical framework (key equations)
Time-dependent Schradinger eqn for h(t) = hi(t), H(t) # Hi(t)

h(t)p(t) = ihorp(t), and H(H)W(t) = iho(t)
Time-dependent Dyson operator
o(t) = n(t)V(1)
= Time-dependent Dyson relation

h(t) = n(OH(E)n ™" () + inden(tyn (1)

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 20/56



P T -symmetric quantum mechanics - time-dependent H(t) Theoretical framework (key equations)

Theoretical framework (key equations)
Time-dependent Schradinger eqn for h(t) = hi(t), H(t) # Hi(t)

h(t)g(t) = ihowp(t), and H(t)V(t) = ihoyV(t)
Time-dependent Dyson operator
o(t) = n(t)V(1)
= Time-dependent Dyson relation
h(t) = n(t)H(tyn ™" () + indem(t)n ™~ (¢)
= Time-dependent quasi-Hermiticity relation

H'p(t) — p(t)H = ihdsp(t)

[from conjugating Dyson relation and p(t) := 7 (t)n(t))]
PT in quantum and nonlinear systems IPN-UPIITA 20/56




P T -symmetric quantum mechanics - time-dependent H(t) Theoretical framework (key equations)

The Hamiltonian H(t) is nonobservable and not the energy operator

Recall: Observables o(t) in the Hermitian system are self-adjoint.
Observables O(t) in the non-Hermitian system are quasi Hermitian

o(t) = n(H)O(t)n~ (1)

A. Fring, T. Frith, Phys. Rev. A 95 (2017) 010102
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P T -symmetric quantum mechanics - time-dependent H(t) Theoretical framework (key equations)

The Hamiltonian H(t) is nonobservable and not the energy operator

Recall: Observables o(t) in the Hermitian system are self-adjoint.
Observables O(t) in the non-Hermitian system are quasi Hermitian

o(t) = n(H)O(t)n~ (1)

Then we have

{o(t) lo(t)e(1)) = (W(1) |p()O(1)W(1)) -

A. Fring, T. Frith, Phys. Rev. A 95 (2017) 010102
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P T -symmetric quantum mechanics - time-dependent H(t) Theoretical framework (key equations)

The Hamiltonian H(t) is nonobservable and not the energy operator

Recall: Observables o(t) in the Hermitian system are self-adjoint.
Observables O(t) in the non-Hermitian system are quasi Hermitian

o(t) = n()O(tyn~ ()
Then we have
(o(t) [o(t)p(t)) = (W (1) [p(H)O(t)W (1)) .

Since H(t) is not quasi/pseudo Hermitian it is not an observable.
The observable energy operator is

H(t) = 0" (h(t)n(t) = H(t) + it~ (£)9p(t).

A. Fring, T. Frith, Phys. Rev. A 95 (2017) 010102
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Applications Applications - Optics

Nature Physics volume 11, page 799 (2015)

nf
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!n énperposﬂ’on

Helmholtz equation
in paraxial approximation:

82
/82 + z‘ka—;ﬁJrkv(x)w =0

1 = envelope function of E
v(x)=n/ng —1

n = reflection index

ny = reflection index
k=nw/c

w = frequency

with z — ¢
this becomes formally
the Schrédinger equation
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Applications Applications - Mending the broken regime

Time-dependent coupled oscillators

a

) At)

t ,
H(t) = (2 (p)z( +p5 + x° +y2> + i (xy + pxpy) » a(t), A1) €

Ansatz: .
7”([‘) = Hi71 e’Yl’(l‘)Ki7 v € R
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Applications Applications - Mending the broken regime

Time-dependent coupled oscillators

a(t) A(t)

H(t) = 5 (P)z( +P;2/ + X2 +y2> + iT (xy + pxpy), a(t), A(t) €

Ansatz: A
e ’Yl(t)l{l .
nt) =] _ e ser
Time-dependent Dyson equations is satisfied when
Constraint:
Y1 =72 =0Q1, 7Y3=—Acoshry,, 4= Atanh~ygsinh~yy,

Al sinh g (Ki — K2)

hlt) = a(t) (Ko + ko) + =5~ o
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Applications Applications - Mending the broken regime

Time-dependent coupled oscillators

a(t) A(t)

H(t) = 5 (P)z( +P;2/ + X2 +y2> + iT (xy + pxpy), a(t), A(t) €

Ansatz: .

n(t) = Hi71 e’Yi(t)Ki’ v € R
Time-dependent Dyson equations is satisfied when
Constraint:

Y1 =72=q1, 73 =—Acoshyy, J4=Atanhyzsinhyy,
A(t) sinh v,
= Ki + K: —— (K1 — K
h(t) = a(t) (K1 + K) + — Cosh%( 1 — Kz)

Solution: 4 = arcsinh (r sechy3), x(t) := cosh~s, k = const
with dissipative Ermakov-Pinney equation

. A . 2 /QZ,XE
— —Y — )\ =
=T Xx =3

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA
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Applications Applications - Mending the broken regime

Instanteneous energies are real even in the broken P7T regime !
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Applications

Applications - Entropy revival

Von Neumann entropy in P7-symmetric systems
Standard behaviour:
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Applications Applications - Entropy revival

Von-Neumann entropy in the P77 symmetric regime

0.8|
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Applications Applications - Entropy revival

Von-Neumann entropy at the exceptional point

5
1.0,
0.8]

— N=2

— N=18

— N=28

— N=50
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Applications Applications - Entropy revival

Von-Neumann entropy in the broken P7T regime

Lo

0.8

— N=2
— N=10
— N=20
— N=50

0.61\\

0.4

0.2

0.0 0.5 Lo LS 2.0

For more detail on this part of the talk see

A. Fring,"An introduction to PT-symmetric quantum mechanics —
time-dependent systems." arXiv:2201.05140 (2022). To appear
Journal of Physics: Conference Series
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Reality of N-Soliton charges

The complex KdV equation equals two coupled real equations

Pt + 6P,Dx + Pxxx — 6qu =0
gt +6(pq), + Qo = 0

with u(x, t) = p(x, t) +iq(x, t), p(x,t), g(x,t) € R

U+ 6UUx + Uy =0 & {
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Reality of N-Soliton charges

The complex KdV equation equals two coupled real equations

Pt + 6P,Dx + Pxxx — 6qu =0
gt +6(pq), + Qo = 0

with u(x, t) = p(x, t) +iq(x, t), p(x,t), g(x,t) € R
@ Unifies some know special cases:
- for (pqg), — pQgx: complex KdV = Hirota-Satsuma equations
- for gxxx — 0 complex KdV =- Ito equations

U+ 6UUx + Uy =0 & {
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Reality of N-Soliton charges

The complex KdV equation equals two coupled real equations

Pt + 6P,Dx + Pxxx — 6qu =0
gt +6(pq), + Qo = 0

with u(x, t) = p(x, t) +iq(x, t), p(x,t), g(x,t) € R
@ Unifies some know special cases:
- for (pqg), — pQgx: complex KdV = Hirota-Satsuma equations
- for gxxx — 0 complex KdV =- Ito equations
@ PT-symmetry:
X— —X,t——-ti—>—-iu—up—pqg——q

U+ 6UUx + Uy =0 & {
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Reality of N-Soliton charges

The complex KdV equation equals two coupled real equations

Pt + 6P,Dx + Pxxx — 6qu =0
9t +6(Pq)x + Grox = 0

with u(x, t) = p(x, t) +iq(x, t), p(x,t), g(x,t) € R

@ Unifies some know special cases:
- for (pqg), — pQgx: complex KdV = Hirota-Satsuma equations
- for gxxx — 0 complex KdV =- Ito equations

@ PT-symmetry:
X— —X,t——-ti—>—-iu—up—pqg——q

@ Integrability:
Lax pair:

U+ 6UUx + Uy =0 & {

1 1
Lt:[M’L] L:8)2(+EU,MZ48§+U8X+§UX
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Reality of complex soliton solutions Reality of one-soliton charges

Solutions from Hirota’s direct method

Convert KdV equation into Hirota’s bilinear form
(D;‘+DXDt)T-T:o

with u = 2(In 7)xx. (Dx, D; are Hirota derivatives)
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Solutions from Hirota’s direct method

Convert KdV equation into Hirota’s bilinear form

(D;‘+DXDt)T-T:o

with u = 2(In 7)xx. (Dx, D; are Hirota derivatives)
Expanding 7 = >4, A¥7 gives multi-soliton solutions

TH;Oé(X7 t) =
Tiu?l/;awg(x’ t) =
TM%P?‘%@’Y(X’ t) =

1+ @'l

1+ eluie + @it + 3¢(av, B)€Miat s

1+ @lwa + @it + € + 5(a, B)GWH;QHIV;B
e L R CRI L
(ct, B)elt, ) ¢( B, ) e

With 1, = aX — a3t + i, (o, B) = (o — B/(a+ B2
w,v,peC,a,B,vyeR
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Reality of complex soliton solutions Reality of one-soliton charges

One-soliton solution

We find

a® + a® cosf cosh(ax — %t) ; a?sin @ sinh(ax — adt)

ui0;a(xa t) = 2 3172
[cos 6 + cosh(ax — aBt)] [cos 8 + cosh(ax — a3t)]
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We find

a® + a® cosf cosh(ax — %t) ; a?sin @ sinh(ax — adt)

ui0;a(xa t) = 2 3172
[cos 6 + cosh(ax — aBt)] [cos 8 + cosh(ax — a3t)]
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Reality of complex soliton solutions Reality of one-soliton charges

One-soliton solution

We find
a? + a®cosfcosh(ax —a®t) . a?sinfsinh(ax — adt)
U,'g;a(X, t) = 5 i >
[cos 6 + cosh(ax — aBt)] [cos 6 + cosh(ax — aBt)]
¢ -pzﬁ:&(l’it) I n}z_' ------------ ; ----------------------- ]
or ] A o? 0
Puto) = e (5)
' . 0?
P.(0) = T cot? (6)
A (0) = arccosh(cosf — 2sech)

Andreas Fring PT in quantum and nonlinear systems
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Reality of complex soliton solutions Reality of one-soliton charges

One-soliton solution

We find
Ui (X, ) a? + a2 cosf cosh(ax — a3t) ; a?sin @ sinh(ax — adt)
i0;a\ A5 = -
I [cos 0 + cosh(ax — a3t))° [cos 0 + cosh(ax — a3t))°
6 T T
Gigra (2, 1) t2 e Ayi(0)/ax

_ 8a2,/5 + cos(20) + cos IA

Qu(6) [6 cosf + A]2 /sinf

1 1
Aj(§) = arccosh [2 cosf + 4A}

A =/2,/17 + cos(20)

L L L L L
26 27 28 29 30 31 32
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Reality of complex soliton solutions Reality of one-soliton charges

Real charges from one-soliton solution

Mass: m, = / Uig.o (X, t)dX = 2

o0 2
Momentum : p, = / Uz, dx = §a3

Energy: E, = / [ZU,%;Q — (Ujg.o )2 | O = 2.5

oo X 5
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Reality of complex soliton solutions Reality of one-soliton charges

Real charges from one-soliton solution

Mass: m, = / Uig.o (X, t)dX = 2

—00

Momentum : p, = / Uz, dx = §a3

Energy : E, = / [ZU%;Q — (uig;a)ﬂ dx = 5¢

2n—1

Generic: I :/ Wop_o(X, t)dx = 2n2—1a
Reality follows_ior?lmediately from PT-symmetry
E = [T dxH[oX]] = — [ dxH[g[-x]] = [7 dxHI[o[x]] = E*

IPN-UPIITA 30/56
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Reality of complex soliton solutions Reality of one-soliton charges

Real charges from one-soliton solution

Mass: m, = / Uig.o (X, t)dX = 2

—00

o0 2
Momentum : p, = / Uz, dx = Za®

. 3
P 2 2 5
Energy : E, = / |:2ui6';oz - (UiG;a)x} dx = 504

i~ [ _ 2 ont
Generic: In_/_ Wan_o(X, t)dx = 5p 7

Reality follows ior?lmediately from PT-symmetry
E = [, axH[oIx]] = — [ dxH[e[-x]] = [ dxHT[g]x]] = E*
PT-broken solutions (1 = s + i0) = PT-symmetric I,:
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Reality of complex soliton solutions Reality of one-soliton charges

Real charges from one-soliton solution

Mass: m, = / Uig.o (X, t)dX = 2

—00

o0 2
Momentum : p, = / Uz, dx = §a3

o 2
Energy : E, = / [ZU%;Q - (uig;a)ﬂ dx = 5045

i~ [ _ 2 ont
Generic: I,,_/_ Wan_o(X, t)dx = 5p 7

Reality follows ior?lmediately from PT-symmetry

E = [ axHIg[X]] = — [ oxm[e[-x]] = [, dxHI[plx] = E*
PT-broken solutions (1 = s + i0) = PT-symmetric I,:

Uirio:a (X, t) = Ujp.o (X + k/a, t) then absorb in integral limits
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Reality of complex soliton solutions Reality of one-soliton charges

Real charges from one-soliton solution

Mass: m, = / Uig.o (X, t)dX = 2

—00

o0 2
Momentum : p, = / Uz, dx = Za®

. 3
P 2 2 5
Energy : E, = / |:2ui6';oz - (UiG;a)x} dx = 504

i~ [ _ 2 ont
Generic: I,,_/_ Wan_o(X, t)dx = 5p 7

Reality follows ior?lmediately from PT-symmetry

E = [, dxH[oIx]] = — [ axm[o[-x]] = 2, axH![o[x] = E*
PT-broken solutions (1 = s + i0) = PT-symmetric I,:

Uirio:a (X, t) = Ujp.o (X + k/a, t) then absorb in integral limits
Uptig:a(X, 1) = Uig.o(X, t — r/a?) then use charges are conserved
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Reality of complex soliton solutions Reality of one-soliton charges

Real charges from one-soliton solution

Mass: m, = / Uig.o (X, t)dX = 2

—00

o0 2
Momentum : p, = / Uz, dx = Za®

. 3
P 2 2 5
Energy : E, = / |:2ui6';oz - (UiG;a)x} dx = 504

i~ [ _ 2 ont
Generic: In_/_ Wan_o(X, t)dx = 5p 7

Reality follows ior?lmediately from PT-symmetry

E = [ axHIg[X]] = — [ oxm[e[-x]] = [, dxHI[plx] = E*
PT-broken solutions (1 = s + i0) = PT-symmetric I,:

Uirio:a (X, t) = Ujp.o (X + k/a, t) then absorb in integral limits
Uptig:a(X, 1) = Uig.o(X, t — r/a?) then use charges are conserved
This is not possible for N-soliton solutions with N> 2,

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 30/56



Reality of complex soliton solutions Reality of N-soliton charges

Reality of complex N-soliton charges

Asymptotically complex N-solitons factor into N one-solitons

Charges based on one-solitons solutions are real by P7-symmetry
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Reality of complex soliton solutions Reality of N-soliton charges

Reality of complex N-soliton charges

Asymptotically complex N-solitons factor into N one-solitons
Charges based on one-solitons solutions are real by P7-symmetry

Therefore

Reality condition
PT-symmetry and integrability ensure the reality of all charges. J

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 31/56



New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality

Consider higher order nonlinear Schrédinger equation

A
iqr + 2 Qoc + 9% q =0
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New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality

Consider higher order nonlinear Schrédinger equation
. 1 :
9+ 5 Goc + 19 G+ = [0Gous + 51012 ax + 7 1qlZ] =0

PT-symmetry: PT :x — —x, t - —t,i——i,q—q
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New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality

Consider higher order nonlinear Schrédinger equation
. 1 :
9+ 5 Goc + 19 G+ = [0Gous + 51012 ax + 7 1qlZ] =0

PT-symmetry: PT :x — —x, t - —t,i——i,q—q

Integrable cases:

e = 0 =nonlinear Schrédinger equation (NLSE)
a:p:y=0:1:1=derivative NLSE of type |
:~v=0:1:0 = derivative NLSE of type |l
:v=1:6:3 = Sasa-Satsuma equation

e °

Qﬁ
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New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality

Consider higher order nonlinear Schrédinger equation
. 1 :
9+ 5 Goc + 19 G+ = [0Gous + 51012 ax + 7 1qlZ] =0

PT-symmetry: PT :x — —x, t - —t,i——i,q—q

Integrable cases:
e = 0 =nonlinear Schrédinger equation (NLSE)
a:fB:v=0:1:1=derivative NLSE of type |

a:fB:v=0:1:0=derivative NLSE of type Il
a:f:v=1:6:3= Sasa-Satsuma equation
a:f:vy=1:6:0=Hirota equation

A -
iqt + 5 G + 101 G+ i |G +61G1% G| =0

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 32/56



New type of models from 77 -symmetry Nonlocal Hirota equation

Zero curvature condition
HU—0V+[U,V]=0
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New type of models from 77 -symmetry Nonlocal Hirota equation

Zero curvature condition
HU—0V+[U,V]=0

—ix g(x,t) A(x,t) B(x,t)
U= < r(x,t)  ix ) V= < C(x,t) —Ax,1) )
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Zero curvature condition
HU—0V+[U,V]=0

_ —ix g(x,t) _( Ax,t) B(x,t)
U= < r(x,t) i ) ’ V= < C(x,t) —A(x,t) )

Ax(x,t) = q(x,t)C(x,t)—r(x, t)B(x,t)

BX(X7 t) = qt(Xa t) - ZQ(X7 t)A(Xa t) - ZIAB(Xv t)
Cx(x,t) = n(x,t)+2r(x, )A(x,t) + 2i\C(x, t)
A(x,t) = —iagr—_2ia)?+ 3 (rqx —qry — 4iX3 — 2i)\qr>

B(x,1) = iagx+20Aq+ B (2G%r - Gux + 2iAGs + 4)%q)

C(x,t) = —iary+2a\r+ 8 <2qr2 — e — 2iAr + 4)\2r)
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Zero curvature condition
HU—0V+[U,V]=0

_ —ix g(x,t) _( Ax,t) B(x,t)
U= < r(x,t) i ) ’ V= < C(x,t) —A(x,t) )

Ax(x,t) = q(x,t)C(x,t)—r(x, t)B(x,t)

BX(X7 t) = qt(Xa t) - ZQ(X7 t)A(Xa t) - ZIAB(Xv t)
Cx(x,t) = n(x,t)+2r(x, )A(x,t) + 2i\C(x, t)
A(x,t) = —iagr—_2ia)?+ 3 (rqx —qry — 4iX3 — 2i)\qr>

B(x,t) = iagx+2arg+f (2q2r — G + 2iNGx + 4>\2q>
C(x,t) = —iary+2a\r+ 8 <2qr2 — e — 2iAr + 4)\2r)

Q: — iaQxx + 2ioeq2r + B [gxx —69rgx] = 0
It + oy — 2iozq1’2 + B (rox —6qrry) = 0

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA
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New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality from zero curvature condition

Complex conjugate pair: r(x,t) = kq*(x, t) (Hirota equation)

g = —o(qu—2x19”q)— #(qux — 6r191° )
~igi = —a (g — 219 q")+ i8(q — 61191 a5
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New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality from zero curvature condition

Complex conjugate pair: r(x,t) = kq*(x, t) (Hirota equation)

g = —o(qu—2x19”q)— #(qux — 6r191° )
~igi = —a (g — 219 q")+ i8(q — 61191 a5

P conjugate pair: r(x, t) = kq*(—x, t) (Nonlocal Hirota equ”)
it = —« [QXX — 2/‘567*q2} + 0[qxxx — 65997 x|
G = o | @ — 250(8")?] ~ 0(di — 653" q35)
B =10, a,6 €R,q:=q(x1);q:=q(-x,1)
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New type of models from P 7 -symmetry Nonlocal Hirota equation

Nonlocality from zero curvature condition

Complex conjugate pair: r(x,t) = kq*(x, t) (Hirota equation)

g = —o(qu—2x19”q)— #(qux — 6r191° )
~igi = —a (g — 219 q")+ i8(q — 61191 a5

P conjugate pair: r(x, t) = kq*(—x, t) (Nonlocal Hirota equ”)
gt = —a [qxx - 2567*672} + 0[Qxxx — 6590 gx]
G = o | @ — 250(8")?] ~ 0(di — 653" q35)

B =16, a,6 €R,q:=q(x1);q:=q(—x,1)
T conjugate pair: r(x,t) = kq@*(x, —t)

igr = —id [ xx — 2567*5/2} + 0[Qux — 615047 qx]
i = 18 [ — 26q(8")2] + 6(Gx — 6507 qE})

~ ~

N~ — A

IPN-UPIITA 7 34/56
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New type of models from 77 -symmetry Nonlocal Hirota equation

PT-conjugate pair: r(x,t) = kg*(—x, —t)
q = =6 [qxx 2k q } BlGxx — 6£9G" qx]
G = =5 G — 26q(§")?] + Bl — 1G5
a=1i5;9,8€R;§:=q(—x,—1)
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New type of models from 77 -symmetry Nonlocal Hirota equation

PT-conjugate pair: r(x,t) = kg*(—x, —t)
qr = — [QXX 250" q } BlQxxx — 6£9G* qx]
i = D |G 26G(8" V] + Bl — 650 q05)

a=1i5;9,8€R;§:=q(—x,—1)
P transformed pair: r(x,t) = kq(—x, t):

g = —« [qXX — 255]‘72} + [gxxx — 6£QQQx]
—iqr = —a [Elxx - 2’“7572} — 6(Quxx — 6£9QQx)
B=1i0;a,6 €R
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New type of models from 77 -symmetry Nonlocal Hirota equation

PT-conjugate pair: r(x,t) = kg*(—x, —t)
qr = — [QXX 250" q } BlQxxx — 6£9G* qx]
i = D |G 26G(8" V] + Bl — 650 q05)

a=1i5;9,8€R;§:=q(—x,—1)
P transformed pair: r(x,t) = kq(—x, t):

iqr = —« [QXX - ZHEIQZ} + [qxx — 6KQqQQx]
~iGr = —a |G — 268G | — 0(Gu — 653GT)
B=1i0;a,6 €R
T transformed pair: r(x, t) = kq(x, —t)
i = —ib [qu 2mq*q]+5[qxxx—6mq&*qx]
G = 18 |G — 20Q(G")] + 0(Go — 650748

a=10;6=10,0,0 R
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New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality in Hirota’s direct method

Bilinearisation of the local Hirota equation (g = g/f)
2 iat + auc — 25a[gl® g + B (@ — B51q1° )| =
f [iDtg f+aD?g - f+iBD%g- } [315 ( f — gx> — ag]
X [D)Z(f ot 2/@\9]2]

n—k k
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New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality in Hirota’s direct method

Bilinearisation of the local Hirota equation (g = g/f)
° [iqt + A — 260r|qf* g + iﬁ(qxxx ~6rlql® qx)} =
fiDg-f+aD2g-f+isD3g- 1] + [3i8 (6 — g¢) — ag]
X [fo ot 2/@\9]2]
on— k ak
k
o9 =301, () 1 )5

iDig-f+aD2g-f+iBD3g-f=0,  D2f -f=—2k|g|?

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 36/56



New type of models from 77 -symmetry Nonlocal Hirota equation

Nonlocality in Hirota’s direct method

Bilinearisation of the local Hirota equation (g = g/f)
2 iat + auc — 25a[gl® g + B (@ — B51q1° )| =
fiDg-f+aD2g-f+isD3g- 1] + [3i8 (6 — g¢) — ag]
X [D)Z(f ot 2/@\9]2]

on— Kk 8k
o9 =301, () 1 )5
iDig-f+aD?g-f+iBD3g-f=0, Df-f=—2k|g|?
Solve by formal power series that becomes exact

2252kf2k(xa t), and g(x,t)= ZEZK Tgor—1(x, 1)
= k=1
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New type of models from 77 -symmetry Nonlocal Hirota equation

Bilinearisation of the nonlocal Hirota equation
3f [iqt+ aQxx + 208* G — 0(Quxx + 6q6*qx)} =
7+ [iDtg f+aD?g - f—6D3g- f} + <3;5ng fo ag>
x (?*D)Q(f- f 2fgg*)

not bilinear yet

iDig-f+aD?g-f—6D3g-f=0, FDf-f=2fgy"
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New type of models from 77 -symmetry Nonlocal Hirota equation

Bilinearisation of the nonlocal Hirota equation

3t [iqt+ G + 208 q° — 5( Qo + 6q@*qx)} =

7+ [iDtg f+aD?g - f—6D3g- f} + <3;5ng fo ag>

x (?*D)Q(f- f 2fgg*)

not bilinear yet

iDig-f+aD?g-f—6D3g-f=0, FDf-f=2fgy"
introduce additional auxiliary function

D2f-f=hg, and 2§ = hf*

Solve again formal power series that becomes exact

_ k
h(x, t) = E L€ hi(x, t).
PT in quantum and nonlinear systems IPN-UPIITA 37/56



New type of models from 77 -symmetry Nonlocal Hirota equation

Two-types of nonlocal solutions (one-soliton)
Truncated expansions: f =1+ ¢%f,, g=-cegy, h=ch

0 = e[i(91) + @ (91)xx — 6(G1)xxx]
+e3[2(F2) 4 (91)x — 91 [(B) e + 1 (B) ] + 2 [(G1); + 1(G1) ]

0 = &2[2(fo)xx — g1n] + £* |2 )c — 2()3]
0 = e[25; — ]+ [2@@: - ?;h@

Standard solution, solve six equations independently, then ¢ — 1

M _ A — 1 )27y

. 2 -
(= P+ A Tn Ty

Xt (fe—Bp)t+
7.”77()(, t) — gxtpt(ia—Bu)tty

f ) e
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New type of models from 77 -symmetry Nonlocal Hirota equation

Two-types of nonlocal solutions (one-soliton)

Truncated expansions: f = 1 + £25,

g =¢€g1, h:5h1

0 = e[i(91) + @ (91)xx — 6(G1)xxx]
+e3[2(F2) 4 (91)x — 91 [(B) e + 1 (B) ] + 2 [(G1); + 1(G1) ]
0 = &2[2(fo)xx — g1h] + £* [26a(fo)s — 2(12)3

0 = [257 — ]+ [267 — ]

Nonstandard solution, solve five equations, last one for e = 1

|Gnonst|

— =15 0

———= t=—1.0 ! :

------- t=-0.9 2b‘|

----- 1=-0.6 i q(1) ()T
5 nonst — 3~ . =% -
Fat T4 T 720 —ig

%,
o
T
MR

o apX+pP(ia—Bp)t+
T,W(X,t) — @xtpt(la—Bu)tty

-15 -10 -5

0 5
Andreas Fring PT in quantum and nonlinear systems
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Two-soliton solution
Truncated expansions:
f=1 +€2f2+€4f4, g = €04 +€3gg, h:e’:‘h1 +€3h3
q(2)(X t): g1(X7 t)+g3(xvt)
nl ’ 1 +f2(X, t)+f4(X, t)

91 = Tuy+Tus

_ (n—v) — (n—v)? .

T T e T e S
, TuAT, 'y Tu67T 1y TuoaT.s Tv.sT0s

2 2 2

(=) (=) (u—v)y? (v—v)
2 % *\2
— VvV — VUV ~ ~

f — (n—v) (p ) e

2 2 2
(= 1) (v = )P (= )P (v = v)
h = 27 +27h;
2([1,* _V*)Z ~% o~k 2(H*_V*)2 ~ %
2 2T Tv, 6Ty >
(w =) (=) "7 (wr —v)" (v —r*)
PT in quantum and nonlinear systems

hs =

2 TMKYT'/ 6Tv,6
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New type of models from 77 -symmetry Nonlocal Hirota equation

Two-soliton solution
Truncated expansions:
f=1 —|—€2f2+€4f4, g = €04 —|—€3g3, h:€h1 —|—53h3

) og1(x, )+ ga(x, 1)
i (X, 1) = 1+ b(x, 1) + f4(x, 1)

Nonlocal regular two-soliton solution

il

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 39/56



Stability analysis of complex solutions Generalities

Stability analysis — generalities
Consider systems of the general form

L =0up0"p/2 — V()
Euler-Lagrange equation

o—¢"+0V(p)/0p =0
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Stability analysis of complex solutions Generalities

Stability analysis — generalities
Consider systems of the general form

L =0up0"p/2 — V()
Euler-Lagrange equation
=" +0V(p)/0p=0

Linearise the Euler-Lagrange equation with ¢ — @5 +¢ex, ¢ < 1

. %
velion+y (2s0)
Ps 88(;

oV (p)
I

955_90/3/"’_

) +0() =0

Ps
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Stability analysis of complex solutions Generalities

Stability analysis — generalities
Consider systems of the general form

L =0up0"p/2 — V()
Euler-Lagrange equation
=" +0V(p)/0p=0

Linearise the Euler-Lagrange equation with ¢ — @5 +¢ex, ¢ < 1

IV (e) o 82‘/(@)
9 sos+€<x e Op?

955_90/3/"’_

) +0() =0

Ps

With x(x, t) = e*o(x) = Sturm-Liouville eigenvalue problem

9*V(p) 2
S =)\%0,
ot
Ps
PT in quantum and nonlinear systems IPN-UPIITA 40/56
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Stability analysis of complex solutions Generalities

Stability analysis — generalities
Consider systems of the general form

L =0up0"p/2 — V()
Euler-Lagrange equation
=" +0V(p)/0p=0

Linearise the Euler-Lagrange equation with ¢ — @5 +¢ex, ¢ < 1

IV (e) o 82‘/(@)
9 ¢S+€<X e Op?

955_90/3/"’_

) +0() =0

Ps

With x(x, t) = e*o(x) = Sturm-Liouville eigenvalue problem

— P +

02V(p) © — 320 ) € R = stable solutions
02 o ’ A € C = growth or decay
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Stability analysis of complex solutions Generalities

Stability analysis — generalities
Consider systems of the general form

L =0up0"p/2 — V()
Euler-Lagrange equation
=" +0V(p)/0p=0

Linearise the Euler-Lagrange equation with ¢ — @5 +¢ex, ¢ < 1

IV (e) o 82‘/(@)
9 ¢S+€<X e Op?

955_90/3/""

) +0() =0

Ps

With x(x, t) = e*o(x) = Sturm-Liouville eigenvalue problem

—®ux +

92V(yp) © — 320 ) € R = stable solutions
0p? |, ’ A € C = growth or decay
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Stability analysis of complex solutions The Bullough-Dodd model

The Bullough-Dodd model

1 1 3
- _ L, _@f — _@=2¢p 1 = i
LBp 28“@8 p—e 29 + 5 with o € C

Euler-Lagrange equation:  — ¢ + &% — e 20 _0
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Stability analysis of complex solutions The Bullough-Dodd model

The Bullough-Dodd model

1 1 3
- _ B @f _ _a=2p 2 i
LBp 5 Lol — e 26 +2 with o € C

Euler-Lagrange equation: ¢ —¢” + €% —e 2 =0

[ cosh (ﬁ + VK2 -3t + kX) +2

Type I sol.: o (x,t) =In
’ cosh (§+ VK2 =3t + kx) F 1

/\/54 AL

—t=7
— =15

x =3

kK| > v3:
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Stability analysis of complex solutions The Bullough-Dodd model

The Bullough-Dodd model
1 1 3
- _ e, _@f — _@=2¢ L 2 i
LBp 5 Lol — e 26 + 5 with o € C

Euler-Lagrange equation: ¢ —¢” + €% —e 2 =0

cosh (ﬁ—i— m1‘+kx> +2

Type I sol.: o (x,t) =In
’ cosh (§+ VK2 =3t + kx) F 1

, BeC

— t==14

x —— =1
— =3
— =7
— =I5

\Y
o7, k| >V3: g
Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 41/56



Stability analysis of complex solutions The Bullough-Dodd model

The Bullough-Dodd model

1 1 3
- _ B @f _ _a=2p 2 i
LBp 5 Lol — e 26 +2 with o € C

Euler-Lagrange equation: ¢ —¢” + €% —e 2 =0

cosh (ﬁ +vk2 — 3t + kX)
cosh <ﬁ + VK2 =3t + kX)

Type I sol.: o7 (x,t) = In

I—l

— t=-14
— t==5

~3 =1
E%%%E%"-—_?x — t=3
— =67

@
3|
2|
1]

BeC

2 -3 e
oL k| < /3 -
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Stability analysis of complex solutions The Bullough-Dodd model

Sturm-Liouville auxiliary problem
with potential

3 8 sinh* [; <ﬁ+\@x>}
1- + .
1 — cosh (8 + v3x) 2+ cosh (5 +v3x)]
Vi(x,8) = Vi (x,8~im)

V1+(X7/B) =
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Stability analysis of complex solutions The Bullough-Dodd model

Sturm-Liouville auxiliary problem
with potential

3 8 sinh* [; <ﬁ+\@x>}
1 — cosh (8 + v3x) 2+ cosh (5 +v3x)]
Vi(x,8) = Vi (x,8~im)

Darboux transformation = exactly solvable partner potential

3 fx)_

V1+(X7/B) =

2

9 2
Vo =3 sech (2 5

We find one bound state with A = 3/2 = the solution is stable.
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Stability analysis of complex solutions The Bullough-Dodd model

Sturm-Liouville auxiliary problem
with potential

Vi(x.8) = 1- 3 Bsinh* |3 (8 + V)]

Vi(x,8) = Vi (x,8—ir)

Darboux transformation = exactly solvable partner potential

S > (B V3x
Vo =3 zsech (2 2)

We find one bound state with A\ = 3/2 = the solution is stable.

- 2
1 — cosh (5 + \/§X> [2 + cosh (ﬂ + \/éx)}

Similarly for type Il solutions
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Stability analysis of complex solutions The Bullough-Dodd model

Sturm-Liouville auxiliary problem
with potential

3 . gsinh* |1 (8 + V3x)]
1 — cosh (54-\@)() [Z—i-cosh <B+\/§X)r
Vi(x,8) = V| (x,B—ir)

Darboux transformation =- exactly solvable partner potential

Becn2 (2 VX
Vo =3 2sech <2+ 2)

V‘IJF(XHB) = 1-

We find one bound state with A = 3/2 = the solution is stable.

Also the nonlocal solutions are found to be stable,
see J. Cen, F. Correa, F, A. Fring, T. Taira, Stability in integrable

nonlocal nonlinear ei uations Physics Letters A, 435(2022) 128060
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Non-Hermitian gauge field theories Motivation and references

Motivation

Based on:

A. Fring, T. Taira, Nucl. Phys. B, 950,(2020) 114834

A. Fring, T. Taira, Phys. Rev. D, 101 (2020) 045014

A. Fring, T. Taira, Phys. Lett. B, 807 (2020) 135583

A. Fring, T. Taira, J. Phys. A: Math. Theor., 53 (2020) 455701

A. Fring, T. Taira, arXiv:2004.00723 to appear Europ. J. Physics Plus
A. Fring, T. Taira, J. of Physics: Conf. Series 203 (2021) 012010
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Non-Hermitian gauge field theories Motivation and references

Motivation

Based on:

A. Fring, T. Taira, Nucl. Phys. B, 950,(2020) 114834

A. Fring, T. Taira, Phys. Rev. D, 101 (2020) 045014

A. Fring, T. Taira, Phys. Lett. B, 807 (2020) 135583

A. Fring, T. Taira, J. Phys. A: Math. Theor., 53 (2020) 455701

A. Fring, T. Taira, arXiv:2004.00723 to appear Europ. J. Physics Plus
A. Fring, T. Taira, J. of Physics: Conf. Series 203 (2021) 012010

General motivation: shortcomings in the Standard Model
e theoretical:
incomplete in many ways, at least 19 parameters,
neutrino oscillations, dark matter/energy,...
e recent experiments:
lepton universality (CERN), muon g-factor (Fermilab)

= explore sectors in the Standard Model
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Non-Hermitian gauge field theories Problems with non-Hermitain field theory

Problem with non-Hermitain field theory
Consider action of the general form

I- / d* X [0,00"6" — V()]

complex scalar fields ¢ = (¢4, ..., ¢,), potential V(¢) # Vi(4)
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Non-Hermitian gauge field theories Problems with non-Hermitain field theory

Problem with non-Hermitain field theory
Consider action of the general form

I- / d* X [0,00"6" — V()]

complex scalar fields ¢ = (¢4, ..., ¢,), potential V(¢) # Vi(4)

Then the equations of motion are incompatible

85I, 0L [ oL ]

~% 5 aa

On _ 980 _ 4
5 ¢ "

9 (0udy)

0Tn  OLn [ OLn ]_0
9 (9u07)

v
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Non-Hermitian gauge field theories Problems with non-Hermitain field theory

Problem with non-Hermitain field theory
Consider action of the general form

I- / d* X [0,00"6" — V()]

complex scalar fields ¢ = (¢4, ..., ¢,), potential V(¢) # Vi(4)
Then the equations of motion are incompatible

0T, OLn [ OLn ] 0Tn  OLn [ OLn ]_0

~% 5 aa

9 (0u97)

5¢;  0g;

9 (0udy)

v

Resolutions:
@ Keep surface terms
[J. Alexandre, J. Ellis, P. Millington, D. Seynaeve]
@ Seek similarity transformation
[C. Bender, H. Jones, R. Rivers, P. Mannheim, ...
A. Fring, T. Taira ]
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

Goldstone theorem and Higgs mechanism

Key findings:

Goldstone theorem in non-Hermitian field theories
@ The GT holds in the PT-symmetric regime
@ The GT breaks down in the broken P7T regime
@ At exceptional points the Goldstone boson can be identified
@ At the zero EP the Goldstone boson can NOT be identified
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Key findings:

Goldstone theorem in non-Hermitian field theories
@ The GT holds in the PT-symmetric regime
@ The GT breaks down in the broken P7T regime
@ At exceptional points the Goldstone boson can be identified
@ At the zero EP the Goldstone boson can NOT be identified

Higgs mechanism in non-Hermitian field theories
@ Higgs mechanism works in the P7-symmetric regime
@ Higgs mechanism does not work in the broken PT regime
@ The gauge boson remains massless at the zero EP
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

Goldstone theorem and Higgs mechanism

Key findings:

Goldstone theorem in non-Hermitian field theories
@ The GT holds in the PT-symmetric regime
@ The GT breaks down in the broken P7T regime
@ At exceptional points the Goldstone boson can be identified
@ At the zero EP the Goldstone boson can NOT be identified

Higgs mechanism in non-Hermitian field theories
@ Higgs mechanism works in the P7-symmetric regime
@ Higgs mechanism does not work in the broken PT regime

@ The gauge boson remains massless at the zero EP

Non-Hermitian systems posses intricate physical parameter spaces

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 45/56



Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

Standard Goldstone theorem:

Each generator of a global continuous symmetry group that is broken
by the vacuum gives rise to a massless particle.
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

Standard Goldstone theorem:

Each generator of a global continuous symmetry group that is broken
by the vacuum gives rise to a massless particle.

7= / o [;aucpa%* - V(d>)]

Vacua dg:
oV(®) _0
od b=,
Symmetry ® — & + 5®: V(®) = V(d) + VV (d)7 60,
V(@)
5o 00i(9) =0
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

Standard Goldstone theorem:

Each generator of a global continuous symmetry group that is broken
by the vacuum gives rise to a massless particle.

7= / d*x [;aﬂcpam* - V(<I>)]

Vacua dg:

oV(®d) 0
0P oo,
Symmetry & — & + dd: V(d) = V(d) + VV (d)7 60,
oV(®)
0d;
Differentiating with respect to ®; at a vacuum &,
22V(d) oV(o) D5d;(D)
0P;00; D, 0P, D=0, 0P;

50,(®) =0

=0
=0
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

Standard Goldstone theorem:

Each generator of a global continuous symmetry group that is broken

by the vacuum gives rise to a massless particle.

7- / o [;aucpam* - V(d>)]

Vacua dg:
V(o) _0
0P |p_a,
Symmetry ® — & + §d: V(d) = V(d) + VV (¢)7 60,
oV(®) B
9%, doi(d)=0
Differentiating with respect to ®; at a vacuum @
22V () oV(o) D5P;
5b;(dg) +
00;00; |¢_q (®0)+ 5, =relli TR
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

H(®0)3®;(®g) = MP3b;(dg) = 0
H(®y) is the Hessian matrix of the potential V(®)
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

H(®0)3®;(®g) = MP3b;(dg) = 0

H(®y) is the Hessian matrix of the potential V(®)
Therefore:

invariant vacuum: 5®i(dg) =0 = no restriction on M?
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

H(®0)3®;(®g) = MP3b;(dg) = 0
H(®y) is the Hessian matrix of the potential V(®)

Therefore:
invariant vacuum: 5®i(dg) =0 = no restriction on M?
broken vacuum: 5i(dg) #0 = M? has zero eigenvalue
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Non-Hermitian gauge field theories Goldstone theorem and Higgs mechanism

H(®0)3®;(®g) = MP3b;(dg) = 0
H(®y) is the Hessian matrix of the potential V(®)

Therefore:
invariant vacuum: 5®i(dg) =0 = no restriction on M?
broken vacuum: 5i(dg) #0 = M? has zero eigenvalue

Non-Hermitian version:
1= / d*x BE)MCDAIWCD* — V(o)
TH(0)d®;(Pg) = M25d;(dg) = 0
M2 is no longer Hermitian
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Non-Hermitian gauge field theories An Abelian model with three complex scalar fields

An Abelian model with three complex scalar fields

3
I3 = /d4X Zi:1 6Mq§,-8“q§}k — V3

3
Va=—" G667 + G (60 — 0501 )+6,% (9205 — Ga05)+ (017 )2
i=1

with m;, u,v,g € Rand ¢;, ¢,, ¢, = £1
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Non-Hermitian gauge field theories An Abelian model with three complex scalar fields

An Abelian model with three complex scalar fields

3
I3 = /d4X Zi:1 @qu,-@“@k — V3

3
Va=—" G667 + G (60 — 0501 )+6,% (9205 — Ga05)+ (017 )2

=1
with m;, u,v,g € Rand ¢;, ¢,, ¢, = £1
Properties:

@ discrete modified CPT -transformations

CPT 12 6i(%) = (=) 167 (~x,)
CPT2: ¢i(X) = (=1)'¢i(=xu), =123
@ continuous global U(1)-symmetry
b; — €%, ¢f — e, i=1,2,3,acR
@ non-Hermitian potential V3 # Vg

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA
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Non-Hermitian gauge field theories An Abelian model with three complex scalar fields

(incompatible) equations of motion:

Oy — crm2éy—CupiPen + gqﬁ?@ﬂ‘ =
Oy — ComMBgp+Cuioy + C1Phs =
Oég — C3MBes =

061 — 1M gi-+0uit6s + S01(67)° =
O3 — Camag3—Cup® 0 — c°es =

2
O¢sz — csmsz ¢

This can be fixed with a similarity transformation:

O O O O o o

T T
n=ep|5 [ dxnzix Dgx. 0| e |5 [ dxmyx rax. b
nom ' = (=), oty = (=02}
PT in quantum and nonlinear systems IPN-UPIITA 49/56



Non-Hermitian gauge field theories An Abelian model with three complex scalar fields

Equivalent version (f3 =nZsn~ ") ¢ = 1/V2(p; + ix))

I3 —/d4x Z, 1 2 1)’ [8%0/8“80/ + Ouxi0"x; + Gim? (%2 + XIZ)}
g
+Cutt? (p1x2 — P2ax1) + Cuv® (P3X2 — PoX3) — ﬁ(w? +x3)?

(compatible) equations of motion:

2 2 g 2 2
—Opy = —Ccimipy — Cuuxo + 1901(% +Xx7)
~Oxp = —Combxp + CupiPy + Py
—Opg = —c3mips — GPxs

g

—Oxy = —eimixs + Cufpz + Zx1(95 +x5)
—Opy, = —Comby, — Cuixq — CPxs
—Oxs = —C3Mixs+ G2,
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Non-Hermitian gauge field theories An Abelian model with three complex scalar fields

Hessian matrix H (q’ = (1, X2, ¥3: X1, P2, Xs)T):

2 2
9(39014'5‘X1) — ¢ m.’12 —CM/JZ 0 %@1 X4 0 0
—C 2 coms —c, 1P 0 0 0
0 —c,v®  —cymi 0 0 0
2 3 2
Se1xq 0 0 w —oim; 0
0 0 0 Cu? com;  c,P
0 0 0 0 c,v?  —csmi
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Non-Hermitian gauge field theories An Abelian model with three complex scalar fields

Hessian matrix H (q’ = (1, X2, ¥3: X1, P2, Xs)T):

2 2
9(39014'5‘X1) — ¢ m.’12 —CM/JZ 0 %@1 X4 0 0
—C 2 coms —c, 1P 0 0 0
0 —c,v®  —cymi 0 0 0
2 3 2
Se1xq 0 0 w —oim; 0
0 0 0 Cu? com;  c,P
0 0 0 0 c,v?  —csmi

No Goldstone bosons for U(1)-invariant vacuum (no zero EV of M?)
3 =(0,0,0,0,0,0)
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Non-Hermitian gauge field theories An Abelian model with three complex scalar fields

Hessian matrix H (q’ = (1, X2, ¥3: X1, P2, Xs)T):

2 2
9(39014'5‘X1) — ¢ m.’12 —CM/JZ 0 %@1 X4 0 0
—C 2 coms —c, 1P 0 0 0
0 —c,v®  —cymi 0 0 0
2 3 2
Se1xq 0 0 w —oim; 0
0 0 0 Cu? com;  c,P
0 0 0 0 c,v?  —csmi

No Goldstone bosons for U(1)-invariant vacuum (no zero EV of M?)
=(0,0,0,0,0,0)

One Goldstone bosons for U(1)-broken vacuum (one zero EV of M?)

) )

2 2 0 2,2 0
o0 — (0 C3CuMap™py _ CuCuV ™Iy
b v K K

3 MaPK(#9) €. Cu P K(#9)
—K(g), == 1, 2 !

KR K

z .
with K(x) := i\/ o C‘m — X2, k= cooamami + vt
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Non-Hermitian gauge field theories Non-Abelian models

Non-Abelian models

SU(N)-symmetric model with n complex scalars:

n n—1
£SUN) _ > 0ubl0 e+ cimEolei+ > ki (¢,T¢i+1 — ol ¢i)

i=1 i=1

2 (i)

SUN) : ¢;—e“Tg,

Properties:

CPTi2 + ¢i(Xu) = F67 (—Xu) for 5 €L

Jj+1

Z
5 €

¢j(Xu) = £¢7(=xu) for ——
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Non-Hermitian gauge field theories Non-Abelian models

Non-Abelian models

SU(N)-symmetric model with n complex scalars:

n n—1
£SUN) _ > 0ubl0 e+ cimEolei+ > ki (¢,T¢i+1 — ol ¢i)

i=1 i=1

2 (i)

SUN) : ¢;— €T,

Properties:

CPT1)2 oi(Xy) = Foi (—Xyu) for 5 cZ

Jj+1
2
We discard models with ill-defined classical mass spectrum.

Andreas Fring PT in quantum and nonlinear systems IPN-UPIITA 52/56
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Non-Hermitian gauge field theories Non-Abelian models

Physical regions in the parameter space for E?U(z):

c1=1,c=-1

e
-------- OEP E
----- Radius=0 Yy
EP
0.0 L h L L

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
my? | my?

1.0

0.8

0.6

0.4

0.2

C1=—1,Cz=1
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. : . su(2
Physical regions in the parameter space for £, ).

C1=—1,Cz=1

c1=1,c=-1 1.0F

3.5f

0.8

0.6-
e
e Y = I OEP E
< i 7\ ] ===-- Radius=0 Yy

-t L

EP 0.4
0.2+
0.0HA4T n n T f n | 0.0 . . . . .
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 0.0 0.2 0.4 0.6 0.8 1.0
my? | my? my? | my?

Physical region: expected # of Goldstone bosons
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Non-Hermitian gauge field theories Non-Abelian models

Physical regions in the parameter space for E?U(Z):
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Physical regions in the parameter space for E?U(Z):
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Non-Hermitian gauge field theories Non-Abelian models

Physical regions in the parameter space for E?U(Z):
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Non-Hermitian gauge field theories Non-Abelian models

Physical regions in the parameter space for E?U(Z):

3.5f

c1=1,c=-1

0.0 0.5 1.0 1.5 2.0
my? | my?

Physical region:

Trivial vacuum:
Standard EP:
Zero EP:

25 3.0 35

expected # of Goldstone bosons

Radius = 0
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a
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0.2

no Goldstone bosons

expected # of Goldstone bosons
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Non-Hermitian gauge field theories The Higgs mechanism

Higgs mechanism

Global to local symmetry: ¢; — e’“Ta¢j to ¢; — e’aTa(X)¢j

2
£ =3 1Du6il? + m? |62 — 12 (6}62 — k1) — 5
i=1

minimal coupling: D,, = 0,, — ieA,

Lie algebra valued field strength: F,, = 0,A, — 0, A,

Andreas Fring PT in quantum and nonlinear systems
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Non-Hermitian gauge field theories The Higgs mechanism

Higgs mechanism

Global to local symmetry: ¢; — e""Ta¢j to ¢; — e’aTa(X)czbj

2
2= Y 10w, + R 02 — 2 (6102 — ohon) — 9 (101[2) — FFuF™
i=1

minimal coupling: D,, = 0,, — ieA,
Lie algebra valued field strength: F,, = 0,A, — 0, A, — ie[A., A)]
Mass of the gauge vector boson:

eRf

My = ———
g 2
my

4
m2 - u47

with Ry = \/4(,u,4 + creom2m3)/gma
Thus the Higgs mechanism fails for a) Rs = 0 or b) mg =u
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2= Y 10w, + R 02 — 2 (6102 — ohon) — 9 (101[2) — FFuF™
i=1

minimal coupling: D,, = 0,, — ieA,
Lie algebra valued field strength: F,, = 0,A, — 0, A, — ie[A., A)]
Mass of the gauge vector boson:

eRf

My = ———
g 2
my

4
m2 - u47

with Ry = \/4(,u,4 + creom2m3)/gma
Thus the Higgs mechanism fails for a) Ry = 0 or b) mg = u

a) trivial vacuum with no GB
b) zero exception point with no identifiable GB
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Kinetic term in the physical region:

3
L =) 0,G0"G" — mgA,0"G' + mgAL0"G' + mgA0" G’ + %mgAzAa“ +...

a=1

Vol 1N 1 o, 1\ 1 o, 1, =)
:Emg AH—EBHG +§mg “+Fga“ +§mg M+Fg i + ...

BiB* + ...

I
N =
‘QBN

M

1

with Goldstone fields { G}
new gauge field B2 = A2 + migauGa

[
Il
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Kinetic term in the physical region:

3
L =) 0,G0"G" — mgA,0"G' + mgAL0"G' + mgA0" G’ + %mgAzAa“ +...
a=1
Vol 1N 1 o, 1\ 1 o, 1, =)
= Emg AH — Fga‘uG +§mg AH"—EaHG + Emg AN—’_EBMG + ...

m2

Y BiBY 4. ...

M

N =

1

with Goldstone fields { G}
new gauge field B2 = A2 + migauGa

[
Il

The Higgs mechanism breaks down at the zero exceptional point with
the Goldstone boson being unidentifiable and the gauge particle
unable to acquire a mass.
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