A Pearl on SAT Solving in Prolog

Jacob Howe and Andy King

Funded by EPSRC grants EP/E033106 and EP/E034519
and a Royal Society Industrial Fellowship

FLOPS'10, Sendai, 21st April

#
ﬁﬁa CITY UNIVERSITY
/. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Introduction

SAT solving: DPLL with watched literals
Stability tests in fixpoint calculations
A solver exploiting delay in Prolog

Some quick experiments

vV v.v. v Yy

Discussion

#
fﬁﬁa CITY UNIVERSITY
/. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

The DPLL algorithm

function DPLL(f: CNF formula, € : truth assignment)
begin
01 := 0 U unit-propagation(f, 6);
if (is-satisfied(f, 01)) then
return 01;
else if (is-conflicting(f, 61)) then
return _L;
endif
x = choose-free-variable(f, 01);
0> := DPLL(f, 61 U {x — true});
if (02 # L) then
return 05;

w N =

N

W N R O — — ——————

else

N

return DPLL(f, 61 U {x — false}); 4

) IS 4

; CITY UNIVERSITY
endif ﬁ LONDON

end

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

e e e e e e R e I i ot e Lo O L
=== === O 00N O O

S O
o — O — — —

Unit propagation with Watched Literals

» Where the variables are {u, v, w, x,y, z}, consider:
xVz,uV-wvVw, - wVyV-z

» With the partial assignment 6 = {x +— true} this becomes:
falseVz,uNV —=vVw,—~wVyV-z

» For the first clause to be satisfied, the only unassigned
variable z must be assigned to true, and @ is extended with
this, becoming 6’ = {x +— true, z — true}
false \V true,uNV =v VvV w,=w \V y V false

» It is only necessary to monitor two unassigned variables in a
clause.

» With 0" extended to 6" = {x — true,z — true, y — false},
unit propagation leads to w being assigned to false, but the
second clause does not react to this as w is not n%tored

i

false V true,u NV —wv V false, true V false V false n ‘fgﬁéﬁ;"f“s”"

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Background: a Pos-based groundness analyser

» Stability in a fixpoint calculation

true might be checked by testing
whether f; = fiy1 and fiy1 | ;.
» These entailments become SAT
X<y xVy y X problems, for example

-
(x = y) E x V y becomes cnf
problem —x V y, —=x, —y.
y

» This has satisfying assignment
/ {x+ 0,y — 0}, indicating that

the entailment does not hold.

XNy » Whereas, x |= x < y becomes
x,y,—x. This does not have a
satisfying assignment, hence the

entailment holds. Z%% ciTy UNIVERSITY
/. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Delay in Prolog

» Logic Programming = Logic+ Control
» Delay is a fundamental aspect of Control

» |t is used to suspend execution until arguments are
appropraitely instantiated:
:- block merge(-,7,-), merge(?7,-,-).
merge([], Y, V).
merge (X, [1, X).
merge([HIX], [E|Y], [HIZ]) :- H @< E, merge(X, [EIY], Z).
merge ([HIX], [ElY], [EIZ]) :- H @>= E, merge([HIX], Y, Z).
» Delays solve the control generation problem: it is always
possible to introduce delays into clauses so as to induce a
terminating control strategy.

» That is, by adding control (delays) to clauses, the I?gical

specification of an algorithm can be |mpIemented CITY UNIVERSITY
ON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Code (SICStus)

sat(Clauses, Vars) :-
problem_setup(Clauses), elim_var(Vars).

elim_var([]).
elim_var([Var | Vars]) :-
elim_var (Vars), (Var = true; Var = false).

problem_setup([]).

problem_setup([Clause | Clauses]) :-
clause_setup(Clause),
problem_setup(Clauses).

clause_setup([Pol-Var | Pairs]) :- \

set_watch(Pairs, Var, Pol). SAEE CITY UNIVERSITY
/. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Code (SICStus)

set_watch([], Var, Pol) :- Var = Pol.
set_watch([Pol2-Var2 | Pairs], Varl, Poll):-
watch(Varl, Poll, Var2, Pol2, Pairs).

:- block watch(-, ?, -, 7, 7).
watch(Varl, Poll, Var2, Pol2, Pairs) :-
nonvar (Varl) ->
update_watch(Varl, Poll, Var2, Pol2, Pairs);
update_watch(Var2, Pol2, Varl, Poll, Pairs).

update_watch(Varl, Poll, Var2, Pol2, Pairs) :-
Varl == Poll -> true; set_watch(Pairs, Var2, Pol2).
#

%ﬁ CITY UNIVERSITY
/. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

X
X
Y
—X
X

y

Block:
Block:

—Z

v

<< < <

y
\Y,
\Y,
AV V4
V
\Y,
V

v V

J
N = N & & N

sat_engine:watch(_X,false,_Y,false, [true-_Z])

sat_engine:watch(_X,false,_Z,false, [false-_U])

A
f@ﬁ CITY UNIVERSITY
/. LoNDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Z +— true
Unblock: sat_engine:watch(_X,false,true,false, [false-_U])
Block: sat_engine:watch(_X,false, _U,false,[])

X — true
Unblock: sat_engine:watch(true,false,_Y,false, [true-truel)

Unblock: sat_engine:watch(true,false,_U,false,[])

U — false, results in failure

X — false

Unblock: sat_engine:watch(false,false,_Y,false, [true-true]l,
Unblock: sat_engine:watch(false,false,_U,false,[])

4
etc 2 CITY UNIVERSITY
o AL, LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Delay in other Prolog systems

SWI: when

set_watch([], Var, Pol) :- Var = Pol.
set_watch([Pol2-Var2 | Pairs], Varil, Poll):-
when(; (nonvar(Var1l) ,nonvar(Var2)),
watch(Varl, Poll, Var2, Pol2, Pairs)).

watch(Varl, Poll, Var2, Pol2, Pairs) :- ...
SWI (plus...): freeze

set_watch([], Var, Pol) :- Var = Pol.
set_watch([Pol2-Var2 | Pairs], Varl, Poll):-
freeze(Varl,V=u), freeze(Var2,V=u),

freeze(V, watch(Varl,Poll,Var2,Pol2,Pairs)).
#

ﬁﬁa CITY UNIVERSITY
watch(Varl, Poll, Var2, Pol2, Pairs):- ... «A/. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Extensions

» Static variable ordering: order variables by frequency of
occurrence in the problem. This wins in two ways: the
problem size is quickly reduced by satisfying clauses and the
amount of propagation achieved is greater.

» Preprocessing with resolution: a popular tactic is to change
the problem by restructuring it using limited applications of
resolution steps.

» Backjumping: allows the solver to avoid exploring fruitless
branches of the search tree.

» Dynamic variables ordering: reorder variables during search.
Reordering can be implemented using similar tactics to
backjumping, but a good implementation also needs'3 learning...

fﬁﬁ“ CITY UNIVERSITY
4\ /. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

benchmark vars clauses sat sics mini assigns

chat_80_1.cnf 13 31 true 0 1 9
chat_80_2.cnf 12 30 true 0 1 5
uf20-0903.cnf 20 91 true 0 1 8
uf50-0429.cnf 50 218 true 10 1 89
uf100-0658.cnf 100 430 true 20 1 176

uf150-046.cnf 150 645 true 290 15 3002
uf250-091.cnf 250 1065 true 2850 171 13920
uufs50-0168.cnf 50 218 false 0 1 79
uufl00-0592.cnf 100 430 false 50 6 535
uuf150-089.cnf 150 645 false 770 18 8394
uuf250-016.cnf 250 1065 false t/o 1970
2bitcomp_5.cnf 125 310 true 130 1 7617
flat200-90.cnf 600 2237 true 380 12 \ 1811

fﬁﬁ CITY UNIVERSITY
4\ /. LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

» Large problems: the programmer does not have the
fine-grained memory control required to store and access
hundreds of thousands of clauses.

» Learning: clauses are added to the problem that express
regions of the search space that do not contain a solution.
Unfortunately, it is not clear how to achieve this cleanly in this
Prolog solver, as calls to the learnt clauses would be lost on
backtracking.

[

ﬁﬁa CITY UNIVERSITY
4\ [LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

Conclusions

» A SAT solver can be cleanly and simply implemented in
Prolog using logic: variables and assignment; and control:
unit propagation with watched literal.

» However, the solver will struggle with large problems, owing to
the lack of fine grained memory control required.

» The solver presented provides an easy entry to SAT solving,
and is useful for small to medium sized SAT instances.

[

ﬁﬁa CITY UNIVERSITY
4\ [LONDON

Jacob Howe and Andy King A Pearl on SAT Solving in Prolog

