
INTERNATIONAL J CONSORTIUM™ Draft SPECIFICATION
JEFF™ File Format.

P. O. Box 1565

Cupertino, CA 95015-1565

USA
www.j-consortium.org

Copyright 2000, 2002, J Consortium, All rights reserved

Permission is granted by the J Consortium to reproduce this International Draft Specification for the
purpose of review and comment, provided this notice is included. All other rights are reserved.

THIS DRAFT SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND
IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY
IMPLEMENTATION OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S
OWN RISK, AND NEITHER THE J CONSORTIUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS,
SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY
DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY ARISING FROM THE
IMPLEMENTATION OF THIS SPECIFICATION.

J Consortium and the J Consortium logo are trademarks or service marks, or registered trademarks and
service marks, of J Consortium, Inc. in the U.S. and a trademark in other countries.

JEFF is a trademark of J Consortium, Inc.

Java is a registered trademark of Sun Microsystems, Inc. in the United States and in other countries.

JEFF Draft Specification Version 1.2 as of 7 March 2002

Copyright 2000-2002, J Consortium, All Rights Reserved 2/48

JEFF File Format
Working Draft Specification

1 Introduction... 4
1.1 Foreword ...4
1.2 What is JEFF ..4

1.2.1 Benefits ..5
1.3 Scope..5
1.4 References..5
1.5 Definitions ...6

2 Data Types... 7
2.1 Basic Types...7
2.2 Language Types..7
2.3 Strings...7

2.3.1 Definition ..7
2.3.2 Comparison..7
2.3.3 Representation ...7

2.4 Specific Types...8
2.4.1 Access Flags ..8
2.4.2 Type Descriptor ..9
2.4.3 Offsets..11

3 File Structure... 12
3.1 Definitions ...12

3.1.1 Fully Qualified Names ..12
3.1.2 Internal Classes and External Classes ..12
3.1.3 Fields and Methods ..12
3.1.4 Field Position..13

3.2 Conventions ..14
3.2.1 Notations ..14
3.2.2 Byte Order..14
3.2.3 Alignment and Padding...14

3.3 Definition of the File Structures ...15
3.3.1 File Header...16
3.3.2 Class Section ...18

3.3.2.1 Class Header...19
3.3.2.2 Interface Table ..21
3.3.2.3 Referenced Class Table ..21
3.3.2.4 Internal Field Table..22
3.3.2.5 Internal Method Table..23
3.3.2.6 Referenced Field Table ...24
3.3.2.7 Referenced Method Table ...25
3.3.2.8 Bytecode Block Structure...25
3.3.2.9 Exception Table List ..26
3.3.2.10 Constant Data Section...27

3.3.3 Attributes Section ...29

Copyright 2000-2002, J Consortium, All Rights Reserved 3/48

3.3.3.1 Attribute Type..29
3.3.3.2 Class Attributes ...30
3.3.3.3 Attribute Table ...31

3.3.4 Symbolic Data Section ...31
3.3.5 Constant Data Pool...32

3.3.5.1 Constant Data Pool Structure ..33
3.3.5.2 Descriptor ..33
3.3.5.3 Method Descriptor ...34

3.3.6 Digital Signature ...34
4 Bytecodes.. 35

4.1 Principles ..35
4.2 Translations...35

4.2.1 The tableswitch Opcode ...36
4.2.2 The lookupswitch Opcode...36
4.2.3 The new Opcode ..37
4.2.4 Opcodes With a Class Operand..37
4.2.5 The newarray Opcode ..38
4.2.6 The multianewarray Opcode...38
4.2.7 Field Opcodes ..39
4.2.8 Method Opcodes ..39
4.2.9 The ldc Opcodes ..40
4.2.10 The wide <opcode> Opcodes ...41
4.2.11 The wide iinc Opcode ...41
4.2.12 Jump Opcodes ...42
4.2.13 Long Jump Opcodes...42
4.2.14 The sipush Opcode...43
4.2.15 The newconstarray Opcode ..43

4.3 Unchanged Instructions ...44
4.3.1 One-Byte Instructions ...44
4.3.2 Two-bytes Instructions ..45

4.4 Complete Opcode Mnemonics by Opcode...46
5 Restrictions ... 48

Copyright 2000-2002, J Consortium, All Rights Reserved 4/48

1 Introduction

1.1 Foreword
Since this draft has been written, JEFF has become an ISO standard known as ISO/IEC
20970. We recommend people who want to have access to the exact final ISO standard
definition of JEFF to get a copy of the ISO/IEC 20970 through their national ISO body. The list
of ISO national bodies is available at
http://www.iso.ch/iso/en/aboutiso/isomembers/MemberCountryList.MemberCountry.

This working draft provided by the J Consortium is intended to allow people to get quickly a
first discovery of the main features of JEFF in order to fasten the knowledge and acceptance
of this new format.

1.2 What is JEFF
This draft describes the JEFF File Format. This format is designed to download and store on a
platform object oriented programs written in portable code. The distribution of applications is
not the target of this specification.

The goal of JEFF is to provide a ready-for-execution format allowing programs to be executed
directly from static memory, thus avoiding the necessity to recopy classes into dynamic
runtime memory for execution.

The constraints put on the design of JEFF are the following:
• Any set of class files must be translatable into a single JEFF file.
• JEFF must be a ready-for-execution format. A virtual machine can use it efficiently,

directly from static memory (ROM, flash memory…). No copy in dynamic runtime
memory or extra data modification shall be needed.

• All the standard behaviors and features of a virtual machine such as Java™ virtual
machine must be reproducible using JEFF.

• In particular, JEFF must facilitate “symbolic linking” of classes. The replacement of a
class definition by another class definition having a compatible signature (same class
name, same fields and same method signatures) must not require any modifications in
the other class definitions.

The main consequences of these choices are:
• A JEFF file can contain several classes from several packages. The content can be a

complete application, parts of it, or only one class.
• To allow “symbolic linking” of classes, the references between classes must be kept at

the symbolic level, even within a single JEFF file.
• The binary content of a JEFF file is adapted to be efficiently read by a wide range of

processors (with different byte orders, alignments, etc.).
• JEFF is also a highly efficient format for the dynamic downloading of class definitions

to dynamic memory (RAM).

Copyright 2000-2002, J Consortium, All Rights Reserved 5/48

1.2.1 Benefits
JEFF is a file format, which allows storing on-platform non pre-linked classes in a form that
does not require any modification for efficient execution. JEFF exhibits a large range of
benefits:

• The first of these benefits is that classes represented with JEFF can be executed
directly from storage memory, without requiring any loading into runtime memory in
order to be translated in a format adequate for execution. This results in a dramatic
economy of runtime memory: programs with a size of several hundreds of kilobytes
may then be executed with only a few kilobytes of dynamic runtime memory thanks to
JEFF.

• The second benefit of JEFF is the saving of the processing time usually needed at the
start of an execution to load into dynamic memory the stored classes.

• The third benefit is that JEFF does not require the classes to be pre-linked, hence fully
preserving the flexibility of portable code technologies. With JEFF, programs can be
updated on-platform by the mere replacement of some individual classes without
requiring to replace the complete program. This provides a decisive advantage over
previously proposed "ready-for-execution" formats providing only pre-linked programs.

• A last benefit of JEFF is that it allows a compact storage of programs, twice smaller
than usual class file format, and this without any compression.

1.3 Scope
JEFF can be used with benefits on all kinds of platform.

JEFF’s most immediate interest is for deploying portable applications on small footprint
devices. JEFF provides dramatic savings of dynamic memory and execution time without
sacrificing any of the flexibility usually attached to the use of non-pre-linked portable code.

JEFF is especially important to provide a complete solution to execute portable programs of
which code size is bigger than the available dynamic memory.

JEFF is also very important when fast reactivity of programs is important. By avoiding the
extra-processing related to loading into dynamic memory and formatting classes at runtime,
JEFF provides a complete answer to the problem of class-loading slow-down.

These benefits are particularly interesting for small devices supporting financial applications.
Such applications are often complex and relying on code of significant size, while the pressure
of the market often imposes to these devices to be of a low price and, consequently, to be
very small footprint platforms. In addition, to not impose unacceptable delays to customers, it
is important these applications to not waste time in loading classes into dynamic memory when
they are launched but, on the contrary, to be immediately actively processing the transaction
with no delay. When using smart cards, there are also some loose real-time constraints that
are better handled if it can be granted that no temporary freezing of processing can occur due
to class loading.

JEFF can also be of great benefit for devices dealing with real-time applications. In this case,
avoiding the delays due to class loading can play an important role to satisfy real-time
constraints.

1.4 References
This document is a self-contained draft specification of the JEFF format. However, to ease the
understanding of this specification, the reading of the following document is recommended as
informative reference :

Copyright 2000-2002, J Consortium, All Rights Reserved 6/48

[1] The Java™ Virtual Machine Specification, Second Edition, by Tim Lindholm and Frank
Yellin, 496 pages, Addison Wesley, April 1999, ISBN 0201432943.

The next references are normative references:

[2] IEC 60559:1989, Binary floating point arithmetic for microprocessor systems

[3] ISO/IEC 10646-1:2000 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane

[4] ISO/IEC 10646-2:2001 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 2: Supplementary Planes

[5] ISO/IEC 10646-1:2000/FDAM 1 Mathematical symbols and other characters

And to get access to the official final specification of JEFF, the reader is recommended to get
the following official reference:

[6] ISO/IEC 20970

1.5 Definitions
Class Logical entity that provides a set of related fields and methods. The

class is a basic element for object-oriented languages.
Package Set of classes
bytecode A bytecode is the binary value of the encoding of a JEFF instruction.

By extension, bytecode is used to designate the instruction itself.
cell 4-octet word used by bytecode interpreters.
byte an octet: representation of an unsigned 8-bit value

Copyright 2000-2002, J Consortium, All Rights Reserved 7/48

2 Data Types
This chapter describes the data types used by the JEFF format specification. All the values in
a JEFF file are stored on one, two, four or eight contiguous bytes. In this document, the
expression “null value” is a synonym for a value of zero of the appropriate type.

2.1 Basic Types
The types TU1, TU2, and TU4 represent an unsigned one-, two- and four-byte integer,
respectively. The types TS1, TS2, and TS4 represent a signed one-, two- and four-byte
integer, respectively.

2.2 Language Types
The language types are represented internally as follows:

Format
Types

Language
Types

Format

JBYTE byte 8-bit signed integer
JSHORT short 16-bit signed integer
JINT int 32-bit signed integer
JLONG long 64-bit signed integer
JFLOAT float IEC 60559 [2] single

format
JDOUBLE double IEC 60559 [2]

double format

2.3 Strings

2.3.1 Definition
In this specification, a character is defined in [3], [4], [5]. A string is an array of characters.
Strings are encoded in the JEFF files as a VMString type (see below).

2.3.2 Comparison
In this document, comparisons of strings are based on the lexicographic order of the numerical
values of their characters.

2.3.3 Representation
In the JEFF file, strings are stored according to the following structure:

VMString {
 TU2 nStringLength;
 TU1 nStringValue[nStringLength];
}

The items of the VMString structure are as follows:

nStringLength

Copyright 2000-2002, J Consortium, All Rights Reserved 8/48

The length of the encoded string, in bytes. This value may be different from the number of
characters in the string.

nStringValue
This array of byte is an encoding of the value of the string following the UTF-8 encoding
algorithm defined in [3], [4], [5].

2.4 Specific Types
These types are used to store values with a specific meaning.

Types Description Format
VMACCESS Access Flag (see 2.4.1) 16-bit vector
VMTYPE Type descriptor (see 2.4.2) 8-bit vector
VMNCELL Index in an array of U4 values 16-bit unsigned integer
VMOFFSET Memory offset (see 2.4.3) 16-bit unsigned integer
VMDOFFSET Memory offset (see 2.4.3) 32-bit unsigned integer
VMCINDEX Class Index (see 3.1) 16-bit unsigned integer
VMPINDEX Package Index (see 3.1) 16-bit unsigned integer
VMMINDEX Method Index (see 3.1) 32-bit unsigned integer
VMFINDEX Field Index (see 3.1) 32-bit unsigned integer

2.4.1 Access Flags
The VMACCESS type describes the access privileges for classes, methods and fields. The
VMACCESS type is a bit vector with the following values:

Flag Name Value Meaning
Class

ACC_PUBLIC 0x0001 Is public; may be accessed from outside of its
package.

ACC_FINAL 0x0010 Is final; no subclasses allowed.
ACC_SUPER 0x0020 Modify the behavior of the jeff_invokespecial

bytecodes included in the bytecode area list of this
class.

ACC_INTERFACE 0x0200 Is an interface.
ACC_ABSTRACT 0x0400 Is abstract; may not be instantiated.

Field
ACC_PUBLIC 0x0001 Is public; may be accessed from outside of its

package.
ACC_PRIVATE 0x0002 Is private; usable only within the defined class.
ACC_PROTECTED 0x0004 Is protected; may be accessed within subclasses.
ACC_STATIC 0x0008 Is static.
ACC_FINAL 0x0010 Is final; no further overriding or assignment after

initialization.
ACC_VOLATILE 0x0040 Is volatile; cannot be cached.
ACC_TRANSIENT 0x0080 Is transient; not written or read by a persistent object

manager.
Method

ACC_PUBLIC 0x0001 Is public; may be accessed from outside of its
package.

ACC_PRIVATE 0x0002 Is private; usable only within the defined class.

Copyright 2000-2002, J Consortium, All Rights Reserved 9/48

ACC_PROTECTED 0x0004 Is protected; may be accessed within subclasses.
ACC_STATIC 0x0008 Is static.
ACC_FINAL 0x0010 Is final; no overriding is allowed.
ACC_SYNCHRONIZED 0x0020 Is synchronized; wrap use in monitor lock.
ACC_NATIVE 0x0100 Is native; implemented in a language other than the

source language.
ACC_ABSTRACT 0x0400 Is abstract; no implementation is provided.
ACC_STRICT 0x0800 The VM is required to perform strict floating-point

operations.

2.4.2 Type Descriptor
A type descriptor is composed of a type value (a VMTYPE), an optional array dimension value
(a TU1) and an optional class index (a VMCINDEX).

The presence or the absence of the optional elements of a type descriptor is explicitly
specified everywhere a type descriptor is used in the specification.

Type Value

The VMTYPE type is a byte whose low nibble contains one of the following values:

VM_TYPE_VOID 0x00 Used for the return type of a method
VM_TYPE_SHORT 0x01
VM_TYPE_INT 0x02
VM_TYPE_LONG 0x03
VM_TYPE_BYTE 0x04
VM_TYPE_CHAR 0x05
VM_TYPE_FLOAT 0x06
VM_TYPE_DOUBLE 0x07
VM_TYPE_BOOLEAN 0x08
VM_TYPE_OBJECT 0x0A

These values are interpreted as a bit field as follows:

7—---4 3--2 1--0
 0000 | XX | YY |

Where:
• YY is an encoded representation of the type size in bytes. The actual type size is:

1<<YY.
• XX serves to differentiate types having the same size.

The following flags may be set:

VM_TYPE_TWO_CELL 0x10 for a type using two virtual machine cells (this flag is
not set for an array)

VM_TYPE_REF 0x20 for an object or an array
VM_TYPE_MONO 0x40 for a mono-dimensional array
VM_TYPE_MULTI 0x80 for an n-dimensional array, where n >= 2

Dimension Value

The dimension value gives the number of dimensions (0-255) of an array type. This value is
optional for non-array and mono-dimensional array types. This value is not present for a void

Copyright 2000-2002, J Consortium, All Rights Reserved 10/48

return type. For a multi-dimensional array, the VM_TYPE_MULTI flag is set in the type value
and the dimension value must be present.

The dimension values are as follows:
0 for a non-array type,
1 for a simple array (e.g. int a[2]),
2 for a 2 dimensional array (e.g. long array[2][8]),
...
255 for a 255 dimensional array.

Class Index

The optional class index gives the exact type of descriptor of a class or of an array of a class.
For a scalar type or an array of scalar types, the class index must not be present.

Summary

Here is a list of the possible code:

Type Type value Dimension Class Index
void 0x00 0 or absent absent
short 0x01 0 or absent absent
int 0x02 0 or absent absent
long 0x13 0 or absent absent
byte 0x04 0 or absent absent
char 0x05 0 or absent absent
float 0x06 0 or absent absent
double 0x17 0 or absent absent
boolean 0x08 0 or absent absent
reference 0x0A 0 or absent index of the class
short[] 0x61 1 or absent absent
int[] 0x62 1 or absent absent
long[] 0x63 1 or absent absent
byte[] 0x64 1 or absent absent
char[] 0x65 1 or absent absent
float[] 0x66 1 or absent absent
double[] 0x67 1 or absent absent
boolean[] 0x68 1 or absent absent
reference[] 0x6A 1 or absent index of the class
short[][][]… 0x81 dimension absent
int[][][]… 0x82 dimension absent
long[][][]… 0x83 dimension absent
byte[][][]… 0x84 dimension absent
char[][][]… 0x85 dimension absent
float[][][]… 0x86 dimension absent
double[][][]… 0x87 dimension absent
boolean[][][]… 0x88 dimension absent
reference[][][]… 0x8A dimension index of the class

Examples

The examples are not normative. They are just an illustration of the above explanations.

A simple instance of the class mypackage.MyClass: type = 0x2A, optional dimension =
0x00, class index = index of mypackage.MyClass

Copyright 2000-2002, J Consortium, All Rights Reserved 11/48

A primitive type descriptor of a short: type = 0x01, optional dimension = 0x00, no class index

A simple array of integers (e.g. int[5]): type = 0x62, optional dimension = 0x01, no class
index

A simple array of class mypackage.MyClass (e.g. MyClass[5]) : type = 0x6A, optional
dimension = 0x01, class index = index of mypackage.MyClass

A primitive type descriptor of a long: type = 0x13, optional dimension = 0x00, no class index

A 3-dimensional array of long (e.g. long[5][4][]): type = 0xA3, dimension = 0x03, no
class index

A 4-dimensional array of class mypackage.MyClass (e.g. MyClass[5][4][][]): type =
0xAA, dimension = 0x04, class index = index of mypackage.MyClass

A void return type (for a method): type = 0x00, no dimension, no class index

2.4.3 Offsets
There are two types of offset values used in the specification: VMOFFSET and VMDOFFSET.

A VMOFFSET is an unsigned 16-bit value located in a class area section (See 3.3.2). This
value is an offset in bytes from the beginning of the class header of the class area section.

A VMDOFFSET is an unsigned 32-bit value. This value is an offset in bytes from the
beginning of the file header.

Copyright 2000-2002, J Consortium, All Rights Reserved 12/48

3 File Structure
This chapter gives the complete structure of the JEFF file format.

3.1 Definitions
This part describes the definitions and rules used in the specification.

3.1.1 Fully Qualified Names
Fully qualified names are string with the following definition:

• The fully qualified name of a named package that is not a sub-package of a named
package is its simple name.

• The fully qualified name of a named package that is a sub-package of another named
package consists of the fully qualified name of the containing package followed by the
character “U+ 002E, FULL STOP” followed by the simple (member) name of the sub-
package.

• The fully qualified name of a class or interface that is declared in an unnamed
package is the simple name of the class or interface.

• The fully qualified name of a class or interface that is declared in a named package
consists of the fully qualified name of the package followed by the character “U+
002E, FULL STOP” followed by the simple name of the class or interface.

3.1.2 Internal Classes and External Classes
A JEFF file contains the definition of one or several classes. For a given file, the classes
stored in the file are called internal classes. The classes referenced by the internal classes but
not included in the same file are called external classes.

The packages of the internal and external classes are ordered following the crescent
lexicographic order of their fully qualified names. This order defines an index value (of type
VMPINDEX) for each package. The package index range is 0 to number of packages – 1. If
an internal or an external class has no package, this class is defined in the default package, a
package with no name. In this case the default package must be counted in the number of
packages and its index is always 0.

The internal classes and the external classes are ordered and identified by an index value (of
type VMCINDEX). The class index range is:

0 to InternalClassCount – 1 for the internal classes
InternalClassCount to TotalClassCount – 1 for the external classes

The class index values follow the crescent lexicographic order of the classes fully qualified
names (separately for the internal classes and for the external classes)

The package index and the class index assignments are local to the file.

3.1.3 Fields and Methods
Field Symbolic Name
A field symbolic name is the concatenation of the field name, a character “U+ 0020, SPACE”
and the field descriptor string.

Copyright 2000-2002, J Consortium, All Rights Reserved 13/48

Method Symbolic Name
A method symbolic name is the concatenation of the method name, a character “U+ 0020,
SPACE” and the method descriptor string.

Algorithm
The field indexes are computed as follows:
Let n be the number of different symbolic names associated to the internal class fields
1 - The symbolic names of the internal class fields are indexed according to their crescent
lexicographic order, with index increment of 1, indexes ranging from zero up to n-1.
2 – The symbolic names of the external class fields that are not also symbolic names of
internal class fields are indexed according to their crescent lexicographic order, with index
increment of 1, starting at n.

Each entry in the table is identified by a zero-based index (a VMFINDEX value).

By definition of the field symbolic name and the construction of the table, the following
properties are deducted:

• Two different field indexes identify two different symbolic names.
• Two different fields, internal or external, share the same index if and only if they have

the same name and the same descriptor.

The same construction is used to define the method indexes (VMMINDEX).

By definition of the method symbolic name and the construction of the table, the following
properties are deducted:

• Two different method indexes identify two different symbolic names.
• Two different methods, internal or external, share the same index if and only if they

have the same name and the same descriptor.

The field index and the method index assignments are local to the file.

3.1.4 Field Position
JEFF includes some information about the position of the field in memory. These pre-
computed values are useful to speed up the download of classes and to allow a quick access
to the fields at runtime.

The computation must take into account the following constraints:
• Class fields and instance fields are stored in separate memory spaces.
• The field data must be aligned in memory according to their sizes.
• Most of the virtual machines store the field values contiguously for each class.
• When a class A inherits from a class B, the way the instance fields of an instance of A

are stored depends on the virtual machine. Some virtual machines store the fields of A
first and then the fields of B, others use the opposite order and other stores them in
non-contiguous memory areas.

• The binary compatibility requirement (see Overview) implies that the values computed
for a class are independent of the values computed for its super classes, whether or
not they are included in the same file.

The consequences of these constraints are the following:
• The pre-computed values are redundant with the field information. They are only

included to speedup the virtual machine.
• Some virtual machines may not use these values.
• The values are computed independently for each class.

Copyright 2000-2002, J Consortium, All Rights Reserved 14/48

The same construction process is applied separately for the class fields and the instance
fields. The fields of the super-class and the field of the sub-classes are not taken into account.

o The fields are ordered in a list. The order used follows the size of each field. The
longer fields are stored first (type long or double), the smaller fields are stored at the
end of the list (type byte). The order used between fields of the same size is
undefined. This ordering allows keeping the alignment between the data.

o The position of a given field is the position of the preceding field in the list plus the
size of the preceding field. The first field position is zero.

o The total size of the field area is the sum of the size of each field in the list.

3.2 Conventions
The following conventions are use in this chapter.

3.2.1 Notations
The format is presented using pseudo-structures written in a C-like structure notation. Like the
members of a C structure, successive items are stored sequentially, with padding and
alignment.

This document contains notations to represent lists and arrays of elements. An array or a list is
the representation of a set of several consecutive structures. In an array, the structures are
identical with a fix size and there are no padding bytes between them. In a list, the structures
may be of variable length and some padding bytes may be added between them. When a list
is used, the comments precise the length of each structure and the presence of padding bytes.

3.2.2 Byte Order
All the values are stored using the byte order defined by a set of flags specified in the file
header. Floating-point numbers and integer values are treated differently.

3.2.3 Alignment and Padding
If a platform requires alignment of the multi-byte values in memory, JEFF allows efficient
access to all its data without requiring byte-by-byte reading.

When a JEFF file is stored on the platform, the first byte of the file header must always be
aligned in memory on an 8-byte boundary.

Copyright 2000-2002, J Consortium, All Rights Reserved 15/48

All the items constituting the file are aligned in memory. The following table gives the memory
alignment:

Elements Element
size, in
bytes

Alignment on
memory
boundaries of

TU1, TS1, JBYTE, VMTYPE 1 1 byte
TU2, TS2, JSHORT, VMACCESS,
VMNCELL, VMOFFSET, VMCINDEX,
VMPINDEX

2 2 bytes

TU4, TS4, JINT, JFLOAT, VMDOFFSET,
VMMINDEX, VMFINDEX

4 4 bytes

JLONG, JDOUBLE 8 8 bytes

When aligning data, some extra bytes may be needed for padding. These bytes must be set to
null.

Structures are always aligned following the alignment of their first element.

Example:

VMStructure {
 VMOFFSET ofAnOffset;
 TU1 <0-2 byte pad>
 TU4 nAnyValue;
}

The structure is aligned on a 2-byte boundary because VMOFFSET is a 2-byte type. The field
nAnyValue is aligned on a 4-byte boundary. A padding of 2 bytes may be inserted between
ofAnOffset and nAnyValue.

3.3 Definition of the File Structures
All the structures defined in this specification are stored in the JEFF file one after the other
without overlapping and without any intermediate data other than padding bytes required for
alignment. Every unspecified data may be stored in an optional attribute as defined in
the Attribute Section.

The file structure is composed of six sections ordered as follows:

Section Description
File Header File identification and directory
Class Section List of class areas
Attributes Section List of the attributes
Symbolic Data Section The symbolic information used by the classes
Constant Data Pool Set of common constant data
Digital Signature Signature of the complete file

File Header
The file header contains the information used to identify the file and a directory to access to
the other sections' contents.

Copyright 2000-2002, J Consortium, All Rights Reserved 16/48

Class Section
The class section describes the content and the properties of each class.

Attributes Section
This optional section contains the attributes for the file, the classes, the methods and the
fields.

Symbolic Data Section
This section contains the symbolic information used to identify the classes, the methods and
the fields.

Constant Data Pool
The constant strings and the descriptors used by the Optional Attribute Section and the
Symbolic Data Section are stored in this structure.

Digital Signature
This part contains the digital signature of the complete file.

3.3.1 File Header
The file header is always located at the beginning of the file. In the file structure, some
sections have a variable length. The file header contains a directory providing a quick access
to these sections.

VMFileHeader {
 TU1 nMagicWord1;
 TU1 nMagicWord2;
 TU1 nMagicWord3;
 TU1 nMagicWord4;
 TU1 nFormatVersionMajor;
 TU1 nFormatVersionMinor;
 TU1 nByteOrder;
 TU1 nOptions;
 TU4 nFileLength;
 TU2 nFileVersion;
 TU2 nTotalPackageCount;
 TU2 nInternalClassCount;
 TU2 nTotalClassCount;
 TU4 nTotalFieldCount;
 TU4 nTotalMethodCount;
 VMDOFFSET dofAttributeSection;
 VMDOFFSET dofSymbolicData;
 VMDOFFSET dofConstantDataPool;
 VMDOFFSET dofFileSignature;
 VMDOFFSET dofClassHeader[nInternalClassCount];
}

The items of the VMFileHeader structure are as follows:

nMagicWord1, nMagicWord2, nMagicWord3, nMagicWord4
The format magic word is nMagicWord1 = 0x4A, nMagicWord2 = 0x45, nMagicWord3 =
0x46 and nMagicWord4 = 0x46 ("JEFF" in ASCII).

nFormatVersionMajor, nFormatVersionMinor,
Version number of the file format. For this version (1.0), the values are nFormatVersionMajor
= 0x01 for the major version number and nFormatVersionMinor = 0x00 for the minor version
number.

Copyright 2000-2002, J Consortium, All Rights Reserved 17/48

nByteOrder
This 8-bit vector gives the byte order used by all the values stored in the file, except the magic
number. The following set of flags gives the byte order of integer values and the floating-point
values separately. In the definitions, the term “integer value” defines all the two-, four- and
eight-bytes long values, except the JFLOAT and JDOUBLE values.

VM_ORDER_INT_BIG 0x01 If this flag is set, integer values are stored using the
big-endian convention. Otherwise, they are stored
using the little-endian convention.

VM_ORDER_INT_64_INV 0x02 If this flag is set, the two 32-bit parts of the 64-bit
integer values are inverted.

VM_ORDER_FLOAT_BIG 0x04 If this flag is set, JFLOAT and JDOUBLE values
are stored using the big-endian convention.
Otherwise, they are stored using the little-endian
convention.

VM_ORDER_FLOAT_64_IN
V

0x08 If this flag is set, the two 32-bit parts of the
JDOUBLE values are inverted.

nOptions
A set of information describing some properties of the internal classes.

This item is an 8-bit vector with the following flag values:

VM_USE_LONG_TYPE 0x01 One of the classes uses the "long" type (in the
fields types, the methods signatures, the constant
values or the bytecode instructions).

VM_USE_UCS_BMP 0x02 All the characters encoded in the strings of this file
are in the “Basic Multilingual Plane” defined in [3],
[4], [5], therefore their encoding is in the range U+
0000 to U+ FFFF included.

VM_USE_FLOAT_TYPE 0x04 One of the classes uses the "float" type and/or the
"double" type (in the fields types, the methods
signatures, the constant values or the bytecode
instructions).

VM_USE_STRICT_FLOAT 0x08 One of the classes contains bytecodes with strict
floating-point computation (the "strictfp" keyword is
used in the source file).

VM_USE_NATIVE_METHOD 0x10 One of the classes contains native methods.
VM_USE_FINALIZER 0x20 One of the classes has an instance finalizer or a

class finalizer.
VM_USE_MONITOR 0x40 One of the classes uses the flag

ACC_SYNCHRONIZED or the bytecodes
jeff_monitorenter or jeff_monitorexit in one of its
methods.

nFileLength
Size in bytes of the file (all elements included).

nFileVersion
Version number of the file itself. The most significant byte carries the major version number.
The less significant byte carries the minor version number. This specification does not define
the interpretation of this field by a virtual machine.

Copyright 2000-2002, J Consortium, All Rights Reserved 18/48

nTotalPackageCount
The total number of unique packages referenced in the file (for the internal classes and the
external classes).

nInternalClassCount
The number of classes in the file (internal classes).

nTotalClassCount
The total number of the classes referenced in the file (internal classes and external classes).

nTotalFieldCount
The total number of field symbolic names used in the file.

nTotalMethodCount
The total number of method symbolic names used in the file.

dofAttributeSection
Offset of the Optional Attribute Section, a VMAttributeSection structure. This field is set to
null if no optional attributes are stored in the file.

dofSymbolicData
Offset of the symbolic data section, a VMSymbolicDataSection structure.

dofConstantDataPool
Offset of the constant data pool, a VMConstantDataPool structure.

dofFileSignature
Offset of the file signature defined in a VMFileSignature structure. This value is set to null if
the file is not signed.

dofClassHeader
Offsets of the VMClassHeader structures for all internal classes. The entries of this table
follow the class index order and the class areas are stored in the same order.

3.3.2 Class Section
For each class included in the file, a class area contains the information specific to the class.
The Class Section contains these class areas stored consecutively in an ordered list following
the crescent order of the corresponding class indexes.

The first element of this area is the class header pointed to from the dofClassHeader array in
the file header. The other structures in the class area are stored one after the other without
overlapping and without any intermediate data other than padding bytes required for
alignment.

Copyright 2000-2002, J Consortium, All Rights Reserved 19/48

The ten sections of the class area must be ordered as follows:

Section Description
Class Header Class identification and directory
Interface Table List of the interfaces implemented by the current class
Referenced Class Table List of the classes referenced by the current class
Internal Field Table List of the fields of the current class
Internal Method Table List of the methods of the current class
Referenced Field Table List of the fields of other classes used by the current class
Referenced Method Table List of the methods of other classes used by the current class
Bytecode Area List List of the bytecode areas for the methods of the current class
Exception Table List List of the exception handler tables for the methods of the

current class
Constant Data Section Set of constant data used by the current class

3.3.2.1 Class Header

The class header is always located at the beginning of the class representation. In the class
file structure, some sections have a variable length. The directory is used as a redirector to
have a quick access to these sections.

For the classes, the class area has the following structure:

VMClassHeader {
 VMOFFSET ofThisClassIndex;
 VMPINDEX pidPackage;
 VMACCESS aAccessFlag;
 TU2 nClassData;
 VMOFFSET ofClassConstructor;

 VMOFFSET ofInterfaceTable;
 VMOFFSET ofFieldTable;
 VMOFFSET ofMethodTable;
 VMOFFSET ofReferencedFieldTable;
 VMOFFSET ofReferencedMethodTable;
 VMOFFSET ofReferencedClassTable;
 VMOFFSET ofConstantDataSection;

 VMOFFSET ofSuperClassIndex;
 TU2 nInstanceData;
 VMOFFSET ofInstanceConstructor;
}

 For the interfaces, the class area has the following structure:

Copyright 2000-2002, J Consortium, All Rights Reserved 20/48

VMClassHeader {
 VMOFFSET ofThisClassIndex;
 VMPINDEX pidPackage;
 VMACCESS aAccessFlag;
 TU2 nClassData;
 VMOFFSET ofClassConstructor;

 VMOFFSET ofInterfaceTable;
 VMOFFSET ofFieldTable;
 VMOFFSET ofMethodTable;
 VMOFFSET ofReferencedFieldTable;
 VMOFFSET ofReferencedMethodTable;
 VMOFFSET ofReferencedClassTable;
 VMOFFSET ofConstantDataSection;
}

The items of the VMClassHeader structure are as follows:

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

pidPackage
The current class package index.

aAccessFlag
Class access flags. The possible bit values are the following:

ACC_PUBLIC Is public; may be accessed from outside its package.
ACC_FINAL Is final; no subclasses allowed.
ACC_SUPER Treat superclass methods specially in invokespecial.
ACC_INTERFACE Is an interface.
ACC_ABSTRACT Is abstract; may not be instantiated.

nClassData
This value is the total size, in bytes, of the class fields. The algorithm used to compute the
value is given in 3.1.4 Field Position. The size is null if there is no class field in the class.

ofClassConstructor
Offset of the class constructor "<clinit>". Offset of the corresponding VMMethodInfo
structure. Null if there is no class constructor.

ofInterfaceTable
Offset of the interface table, a VMInterfaceTable structure. This value is null if the current
class implements no interfaces.

ofFieldTable
Offset of the internal field table, a VMFieldInfoTable structure. This value is null if the current
class has no field.

ofMethodTable
Offset of the internal method table, a VMMethodInfoTable structure. This value is null if the
current class has no method.

Copyright 2000-2002, J Consortium, All Rights Reserved 21/48

ofReferencedFieldTable
Offset of the referenced field table, a VMReferencedFieldTable structure. This value is null if
the bytecode uses no field.

ofReferencedMethodTable
Offset of the referenced method table, a VMReferencedMethodTable structure. This value is
null if the bytecode uses no method.

ofReferencedClassTable
Offset of the referenced class table, a VMReferencedClassTable structure.

ofConstantDataSection
Offset of the constant data section, a VMConstantDataSection structure. This value is null if
the class does not contain any constants.

ofSuperClassIndex
Offset of the super class index, a VMCINDEX value stored in the “referenced class table” of
the current class. If the current class is java.lang.Object, the offset value is zero. This value is
not present for an interface.

nInstanceData
This value is the total size, in bytes, of the instance fields. The algorithm used to compute the
value is given in 3.1.4 Field Position. The size is null if there is no instance field in the class.
This value is not present for an interface

ofInstanceConstructor
Offset of the default instance constructor "<init> ()V". Offset of the corresponding
VMMethodInfo structure. The value is null if there is no default instance constructor. This
value is not present for an interface.

3.3.2.2 Interface Table

This structure is the list of the interfaces implemented by this class or interface.

VMInterfaceTable {
 TU2 nInterfaceCount;
 VMOFFSET ofInterfaceIndex [nInterfaceCount];
}

The items of the VMInterfaceTable structure are as follows:

nInterfaceCount
The number of interfaces implemented.

ofInterfaceIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. The corresponding class is a super interface implemented by the current class
or interface.

3.3.2.3 Referenced Class Table

Every class, internal or external, referenced by the current class is represented in the following
table:

Copyright 2000-2002, J Consortium, All Rights Reserved 22/48

VMReferencedClassTable {
 TU2 nReferencedClassCount;
 VMCINDEX cidReferencedClass [nReferencedClassCount];
}

The current class is also represented in this table.

The items of the VMReferenceClassTable structure are as follows:

nReferencedClassCount
The number of referenced classes.

cidReferencedClass
The class index (VMCINDEX value) of a class referenced by the current class.

3.3.2.4 Internal Field Table

Every field member of the defined class is described by a field information structure located in
a table:

VMFieldInfoTable {
 TU2 nFieldCount;
 TU1 <0-2 byte pad>
 {
 VMFINDEX fidFieldIndex;
 VMOFFSET ofThisClassIndex;
 VMTYPE tFieldType;
 TU1 nTypeDimension;
 VMACCESS aAccessFlag;
 TU2 nFieldDataOffset;
 } VMFieldInfo [nFieldCount];
}

The instance fields are always stored first in the table. The class fields follow them. Instance
fields and class fields are stored following the crescent order of their index. The items of the
VMFieldInfoTable structure are as follows:

nFieldCount
The number of fields in the class.

fidFieldIndex
The field index.

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

tFieldType
The field type. By definition, the field type gives the size of the value stored by the field.

nTypeDimension
The array dimension associated with the type. This value is always present.

aAccessFlag
Field access flag. The possible values are:

ACC_PUBLIC Is public; may be accessed from outside its package.

Copyright 2000-2002, J Consortium, All Rights Reserved 23/48

ACC_PRIVATE Is private; usable only within the defined class.
ACC_PROTECTED Is protected; may be accessed within subclasses.
ACC_STATIC Is static.
ACC_FINAL Is final; no further overriding or assignment after initialization.
ACC_VOLATILE Is volatile; cannot be cached.
ACC_TRANSIENT Is transient; not written or read by a persistent object manager.

nFieldDataOffset
This value is an offset, in bytes, of the field data in the class field value area or in the instance
value area. The algorithm used to compute the value is given in 3.1.4 Field Position. The total
size of the instance field data area is given by nInstanceData. The total size of the class field
data area is given by nClassData.

3.3.2.5 Internal Method Table

Every method of the defined class, including the special internal methods, <init> or <clinit>,
is described by a method information structure located in a table:

VMMethodInfoTable {
 TU2 nMethodCount;
 TU1 <0-2 byte pad>
 {
 VMMINDEX midMethodIndex;
 VMOFFSET ofThisClassIndex;
 VMNCELL ncStackArgument;
 VMACCESS aAccessFlag;
 VMOFFSET ofCode;
 } VMMethodInfo [nMethodCount];

 TU4 nNativeReference[];
}

The instance methods are always stored first in the table. The class methods follow them.
Instance methods and class methods are stored following the crescent order of their index.
The items of the VMMethodInfoTable structure are as follows:

nMethodCount
The number of methods in the class.

midMethodIndex
The method index.

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

ncStackArgument
Size of the method arguments in the stack. The size includes the reference to the instance
used for calling an instance method. This size does not include the return value of the method.
The bytecode interpreter uses ncStackArgument to clean the stack after the method return.
The size, in cells, is computed during the class translation.

aAccessFlag
Method access flag. The possible values are:

ACC_PUBLIC Is public; may be accessed from outside its package.

Copyright 2000-2002, J Consortium, All Rights Reserved 24/48

ACC_PRIVATE Is private; usable only within the defined class.
ACC_PROTECTED Is protected; may be accessed within subclasses.
ACC_STATIC Is static.
ACC_FINAL Is final; no overriding is allowed.
ACC_SYNCHRONIZED Is synchronized; wrap use in monitor lock.
ACC_NATIVE Is native; implemented in a language other than the source language.
ACC_ABSTRACT Is abstract; no implementation is provided.
ACC_STRICT The VM is required to perform strict floating-point operations.

ofCode
For a non-native non-abstract method, this value is the offset of the bytecode block, a
VMBytecodeBlock structure. For an abstract method, the offset value is null. For a native
method, the value is the offset of one of the nNativeReference values. Each native method
must have a different ofCode value.

nNativeReference
This array of TU4 values contains as many elements as the class has native methods. To
each TU4 value corresponds one and only one native method of the class. The TU4 values
are stored following the order of storage of the corresponding VMMethodInfo structure. The
TU4 values are not specified and reserved for future use.

3.3.2.6 Referenced Field Table

The referenced field table describes the internal or external class fields that are not members
of the current class but are used by this class. If an instruction refers to such a field, the
bytecode gives the offset of the corresponding VMReferencedField structure.

VMReferencedFieldTable {
 TU2 nFieldCount;
 TU1 <0-2 byte pad>
 {
 VMFINDEX fidFieldIndex;
 VMOFFSET ofClassIndex;
 VMTYPE tFieldType;
 TU1 nTypeDimension;
 } VMReferencedField [nFieldCount];
}

The items of the VMReferencedFieldTable structure are as follows:

nFieldCount
The number of fields in the table.

fidFieldIndex
The field index.

ofClassIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class containing the field.

tFieldType
The field type. By definition, the field type gives the size of the value stored by the field. This
information is used to retrieve in the operand stack the reference of the object instance (for an
instance field).

Copyright 2000-2002, J Consortium, All Rights Reserved 25/48

nTypeDimension
The array dimension associated with the type. This value is always present.

3.3.2.7 Referenced Method Table

The referenced method table describes the internal or external class methods that are not
members of the current class but are used by this class. If an instruction refers to such a
method, the bytecode gives the offset of the corresponding VMReferencedMethod structure.

VMReferencedMethodTable {
 TU2 nMethodCount;
 TU1 <0-2 byte pad>
 {
 VMMINDEX midMethodIndex;
 VMOFFSET ofClassIndex;
 VMNCELL ncStackArgument;
 } VMReferencedMethod [nMethodCount];
}

The items of the VMReferencedMethodTable structure are as follows:

nMethodCount
The number of methods in the table.

midMethodIndex
The method index.

ofClassIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class containing the method.

ncStackArgument
Size of the method arguments in the stack. The size includes the reference to the instance
used for calling an instance method. This size does not include the return value of the method.
The bytecode interpreter uses ncStackArgument to clean the stack after the method return.
The size, in cells, is computed during the class translation.

3.3.2.8 Bytecode Block Structure

This section is a list of consecutive bytecode block structures. To each bytecode block
structure corresponds one and only one non-native, non-abstract method of the internal
method table of this class area. The bytecode block structures are stored following the order of
storage of the corresponding methods in the internal method table.

Each bytecode block is represented by the following structure:

VMBytecodeBlock {
 VMNCELL ncMaxStack;
 VMNCELL ncMaxLocals;
 VMOFFSET ofExceptionCatchTable;
 TU2 nByteCodeSize;
 TU1 bytecode[nByteCodeSize];
}

The items of the VMBytecodeBlock structure are as follows:

Copyright 2000-2002, J Consortium, All Rights Reserved 26/48

ncMaxStack
The value of the ncMaxStack item gives the maximum number of cells on the operand stack
at any point during the execution of this method.

ncMaxLocals
The value of the ncMaxLocals item gives the number of local variables used by this method,
including the arguments passed to the method on invocation. The index of the first local
variable is 0. The greatest local variable index for a one-cell value is ncMaxLocals-1. The
greatest local variable index for a two-cell value is ncMaxLocals-2.

ofExceptionCatchTable
Offset of the caught exception table, a VMExceptionCatchTable structure. Null if no
exception is caught in this method.

nByteCodeSize
The size of the bytecode block in bytes. The value of nByteCodeSize must be greater than
zero; the code array must not be empty.

bytecode
The bytecode area contains the instructions for the method. All branching instructions included
in a bytecode area must specify offsets within the same bytecode area. All exception handlers
defined for a bytecode area must reference offsets within that bytecode area. The bytecode
area may only contain bytecodes defined in this specification, their operands and padding
bytes (if needed for alignment).

Note for the class initializer

Since the initialization values of the static fields are not included in JEFF, a piece of code
must be added at the beginning of the class initializer “<clinit>” to perform the initialization of
these fields (if needed).

3.3.2.9 Exception Table List

This section is a list of consecutive exception table structures. To each exception table
structure corresponds one and only one method of the internal method table of this class area.
Some methods have no corresponding exception table structure. The exception tables are
stored following the order of storage of the corresponding methods in the internal method
table.

An exception table gives the exception handling information for a method.

VMExceptionCatchTable {
 TU2 nCatchCount;
 {
 VMOFFSET ofStartPc;
 VMOFFSET ofEndPc;
 VMOFFSET ofHandlerPc;
 VMOFFSET ofExceptionIndex;
 } VMExceptionCatch [nCatchCount];
}

The items of the VMExceptionCatchTable structure are as follows:

nCatchCount
The value of the nCatchCount item indicates the number of elements in the table.

Copyright 2000-2002, J Consortium, All Rights Reserved 27/48

ofStartPc
Offset of the first byte of the first bytecode in the range where the exception handler is active.

ofEndPc
Offset of the first byte following the last byte of the last bytecode in the range where the
exception handler is active.

ofHandlerPc
Offset of the first byte of the first bytecode of the exception handler.

ofExceptionIndex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class of the caught exception. The offset value is null if
the exception handler has to be called for any kind of exception.

3.3.2.10 Constant Data Section

This section contains the constant data values of the class. They are always referred through
offsets.

Single values of type JINT, JLONG, JFLOAT or JDOUBLE can be referred to by the
bytecodes ildc, lldc, fldc and dldc. The VMString structures are referred to by the sldc
bytecode.

The newconstarray bytecode refers contiguous set of values of type JDOUBLE, JLONG,
JFLOAT, JINT, JSHORT and JBYTE. This bytecode also uses the strings encoded in
VMString structures to create character arrays.

VMConstantDataSection {
 TU2 nConstFlags;
 TU2 nDoubleNumber;
 TU2 nLongNumber;
 TU2 nFloatNumber;
 TU2 nIntNumber;
 TU2 nShortNumber;
 TU2 nByteNumber;
 TU2 nStringNumber;
 JDOUBLE nDoubleValue[nDoubleNumber];
 JLONG nLongValue[nLongNumber];
 JFLOAT nFloatValue[nFloatNumber];
 JINT nIntValue[nIntNumber];
 JSHORT nShortValue[nShortNumber];
 JBYTE nByteValue[nByteNumber];
 TU1 <0-1 byte pad>
 VMString strConstString[nStringNumber];
}

The items of the VMConstantDataSection structure are as follows:

nConstFlags
The nConstFlags value is a set of flags giving the content of the section as follows:

VM_CONST_DOUBLE 0x0001 The section contains values of type double
VM_CONST_LONG 0x0002 The section contains values of type long
VM_CONST_FLOAT 0x0004 The section contains values of type float
VM_CONST_INT 0x0008 The section contains values of type int

Copyright 2000-2002, J Consortium, All Rights Reserved 28/48

VM_CONST_SHORT 0x0010 The section contains values of type short
VM_CONST_BYTE 0x0020 The section contains values of type byte
VM_CONST_STRING 0x0040 The section contains constant strings

nDoubleNumber
The number of JDOUBLE values. This non-null value is only present if the
VM_CONST_DOUBLE flag is set in nConstFlags.

nLongNumber
The number of JLONG values. This non-null value is only present if the VM_CONST_LONG
flag is set in nConstFlags.

nFloatNumber
The number of JFLOAT values. This non-null value is only present if the VM_CONST_FLOAT
flag is set in nConstFlags.

nIntNumber
The number of JINT values. This non-null value is only present if the VM_CONST_INT flag is
set in nConstFlags.

nShortNumber
The number of JSHORT values. This non-null value is only present if the
VM_CONST_SHORT flag is set in nConstFlags.

nByteNumber
The number of JBYTE values. This non-null value is only present if the VM_CONST_BYTE
flag is set in nConstFlags.

nStringNumber
The number of VMString structures. This non-null value is only present if the
VM_CONST_STRING flag is set in nConstFlags.

nDoubleValue
A value of type double.

nLongValue
A value of type long.

nFloatValue
A value of type float.

nIntValue
A value of type int.

nShortValue
A value of type short.

nByteValue
A value of type byte.

strConstString
A constant string value (See the definition of the VMString structure).

Copyright 2000-2002, J Consortium, All Rights Reserved 29/48

3.3.3 Attributes Section
This optional section contains the optional attributes for the file, the classes, the methods and
the fields. The format of the attributes will be included in an Annex of the JEFF specification.

VMAttributeSection {
 VMDOFFSET dofFileAttributeList;
 VMDOFFSET dofClassAttributes[nInternalClassCount];
 TU2 nAttributeTypeCount;
 TU2 nClassAttributeCount;
 VMAttributeType sAttributeType[nAttributeTypeCount];
 VMClassAttributes sClassAttributes[nClassAttributeCount]
 TU2 nAttributeTableCount;
 VMAttributeTable sAttributeTable[nAttributeTableCount];
 }

The nInternalClassCount value is defined in the file header.

The items of the VMAttributeSection structure are as follows:

dofFileAttributeList
This value is the offset of a VMAttributeTable structure. This structure defines the attribute
list of the file. The offset value is zero if and only if the JEFF file has no file attributes.

dofClassAttributes
The index in this table is the class index. Each entry value is the offset of a
VMClassAttributes structure. This structure defines the attributes for the internal class of
same index. The offset value is zero if and only if the corresponding class has no attributes.

nAttributeTypeCount
This value is the number of attribute types used in the file.

nClassAttributeCount
This value is the number of VMClassAttributes structures used in the file.

nAttributeTableCount
This value is the number of attribute lists (VMAttributeTable structures) used in the file.

3.3.3.1 Attribute Type

This structure defines an attribute type.

VMAttributeType {
 VMDOFFSET dofTypeName;
 TU2 nTypeFlags;
 TU2 nTypeLength;
 }

The items of the VMAttributeType structure are as follows:

dofTypeName
Offset of a VMString structure stored in the constant data pool. The string value is the
attribute type name.

nTypeFlags
This value is a set of flags defining the attribute type. The flag values are the following:

Copyright 2000-2002, J Consortium, All Rights Reserved 30/48

VM_ATTR_INDEXES 0x0001 The attribute contains some index values of type
VMPINDEX, VMCINDEX, VMMINDEX or VMFINDEX.

VM_ATTR_VMOFFSETS 0x0002 The attribute contains some values of type
VMOFFSET.

VM_ATTR_VMDOFFSETS 0x0004 The attribute contains some values of type
VMDOFFSET.

VM_ATTR_BYTE_ORDER 0x0008 The elements stored in nData (See the
VMAttributeTable structure) contain byte ordered
values.

VM_ATTR_CST_LENGTH 0x0010 The length of the attribute is constant and given by
the nTypeLength item. This flag can only be used if
the length of the attribute structure is not subject to
variations caused by the type alignment and if the
length can be encoded with a TU2 variable.

The VM_ATTR_BYTE_ORDER flag must be set if the VM_ATTR_INDEXES,
VM_ATTR_VMOFFSETS, or VM_ATTR_VMDOFFSETS flags are specified.

nTypeLength
This value is the fixed length of the attribute in bytes, not including the type index (See the
VMAttributeTable structure). This value is null if the VM_ATTR_CST_LENGTH flag is not set
in nTypeFlags.

3.3.3.2 Class Attributes

The attributes used by a class such as the class attributes, the method attribute and the field
attributes are defined in this structure.

 VMClassAttributes {
 VMDOFFSET dofClassAttributeList;
 VMDOFFSET dofFieldAttributeList[nFieldCount];
 VMDOFFSET dofMethodAttributeList[nMethodCount];
 }

The items of the VMClassAttribute structure are as follows:

dofClassAttributeList
This value is the offset of a VMAttributeTable structure. This structure defines the attribute
list of the class.

dofFieldAttributeList
This item defines the attribute list of a field. The value is the offset of a VMAttributeTable
structure. The position of the offset in the list is equal to the position of the field in the internal
field list of the corresponding class. The value of the offset is null if the field has no attributes.
The value of nFieldCount is given by the internal field table structure of the corresponding
class.

dofMethodAttributeList
This item defines the attribute list of a method. The value is the offset of a VMAttributeTable
structure. The position of the offset in the list is equal to the position of the method in the
internal method list of the corresponding class. The value of the offset is null if the method has
no attributes. The value of nMethodCount is given by the internal method table structure of
the corresponding class.

Copyright 2000-2002, J Consortium, All Rights Reserved 31/48

3.3.3.3 Attribute Table

This structure is used to store each attribute list.

VMAttributeTable {
 TU2 nAttributeCount;
 {
 TU2 nAttributeType;
 TU1 <0-2 byte pad>
 TU4 nTypeLength;
 TU1 nData[nTypeLength];
 } VMAttribute[nAttributeCount]
 }

The items of the VMAttributeTable structure are as follows:

nAttributeType
This value is the index of a VMAttributeType structure in the attribute type table. The
structure defines the type of the attribute.

nTypeLength
This value is the length, in bytes, of the nData array. This value is only present if the
VM_ATTR_CST_LENGTH flag is not set in nTypeFlags item of the VMAttributeType
structure pointed to by dofAttributeType. The value must take in account variations of length
due to type alignment in the structure of the attribute.

nData
The structure presented is a generic structure that all the attributes must follow. The nData
byte array stands for the true attribute data. These data must follow all the alignment and
padding constraints given in section 3.2.3

3.3.4 Symbolic Data Section
This section contains the symbolic information used to identify the elements of the internal and
external classes. The reflection feature also uses this section.

VMSymbolicDataSection {
 VMPINDEX pidExtClassPackage[nTotalClassCount-nInternalClassCount];
 TU1 <0-2 byte pad>
 VMDOFFSET dofPackageName[nTotalPackageCount];
 VMDOFFSET dofClassName[nTotalClassCount];

 {
 VMDOFFSET dofFieldName;
 VMDOFFSET dofFieldDescriptor;
 } VMFieldSymbolicInfo[nTotalFieldCount]

 {
 VMDOFFSET dofMethodName;
 VMDOFFSET dofMethodDescriptor;
 } VMMethodSymbolicInfo[nTotalMethodCount]
 }

The nTotalPackageCount, nTotalClassCount, nInternalClassCount, nTotalFieldCount
and nTotalMethodCount values are defined in the file header.

The items of the VMSymbolicDataSection structure are as follows:

Copyright 2000-2002, J Consortium, All Rights Reserved 32/48

pidExtClassPackage
This table gives the package of the corresponding external class. If n is a zero-based index in
this table, the corresponding entry pidExtClassPackage[n], gives the package index for the
external class with a class index value of n + nInternalClassCount.

dofPackageName
Offset of a VMString structure stored in the constant data pool. The string value is the
package fully qualified name. The index used in this table is the package index (a VMPINDEX
value). If the JEFF file references the “default package”, a package with no name, the
corresponding dofPackageName value is the offset of a VMString structure with a null length.

dofClassName
Offset of a VMString structure stored in the constant data pool. The string value is the simple
class name. The index of an entry in this table is the class index (a VMCINDEX value).

 VMFieldSymbolicInfo
 Table of field symbolic information. The index of an entry in this table is the field index (a
VMFINDEX value).

 dofFieldName
Offset of a VMString structure stored in the constant data pool. The string value is the simple
field name.

 dofFieldDescriptor
 Offset of a VMDescriptor structure stored in the constant data pool. The descriptor value
gives the field type.

 VMMethodSymbolicInfo
 Table of method symbolic information. The index of an entry in this table is the method index
(a VMMINDEX value).

 dofMethodName
The value is an offset of a VMString structure stored in the constant data pool representing
either one of the special internal method names, either <init> or <clinit>, or a method name,
stored as a simple name.

 dofMethodDescriptor
 Offset of a VMMethodDescriptor structure stored in the constant data pool. The descriptor
gives the type of the method arguments and the type of return value.

3.3.5 Constant Data Pool
This structure stores the constant strings and the descriptors used by the Optional Attribute
Section and the Symbolic Data Section.

Copyright 2000-2002, J Consortium, All Rights Reserved 33/48

3.3.5.1 Constant Data Pool Structure
VMConstantDataPool {
 TU4 nStringCount;
 TU4 nDescriptorCount;
 TU4 nMethodDescriptorCount;
 VMString strConstantString[nStringCount];
 VMDescriptor sDescriptor[nDescriptorCount];
 VMMethodDescriptor sMethodDescriptor[nMethodDescriptorCount];
}

The items of the VMConstantDataPool structure are as follows:

nStringCount
The number of constant strings stored in the structure.

nDescriptorCount
The number of individual descriptors stored in the structure. This number does not take the
descriptors included in the method descriptors into account.

nMethodDescriptorCount
The number of method descriptors stored in the structure.

strConstantString
A constant string value (See the definition of the VMString structure).

sDescriptor
A descriptor value as defined below.

sMethodDescriptor
A method descriptor value as defined below.

3.3.5.2 Descriptor
VMDescriptor
{
 VMTYPE tDataType;
 TU1 nDataTypeDimension;
 TU1 <0-1 byte pad>
 VMCINDEX cidDataTypeIndex;
}

The items of the VMDescriptor structure are as follows:

tDataType
The data type. It must be associated to the nDataTypeDimension and cidDataTypeIndex
items to have the full field descriptor.

nDataTypeDimension
The array dimension associated with the type. This value is only present if the type is an n-
dimensional array, where n >= 2.

cidDataTypeIndex
The class index associated with the data type. This item is present only if the tDataType is not
a primitive type or an array of primitive types.

Copyright 2000-2002, J Consortium, All Rights Reserved 34/48

3.3.5.3 Method Descriptor
VMMethodDescriptor {
 TU2 nArgCount;
 VMDescriptor sArgumentType[nArgCount];
 VMDescriptor sReturnType;
}

The items of the VMMethodDescriptor structure are as follows:

nArgCount
The number of arguments, which for a method without any arguments is zero.

sArgumentType
The descriptor of an argument type.

sReturnType
The descriptor of the type returned by the method.

3.3.6 Digital Signature
The JEFF specification does not impose any algorithm or any scheme for the signature a
JEFF file. The digital signature of the JEFF file is stored in a VMFileSignature structure
defined as follows:

VMFileSignature {
 TU1 nSignature[];
}

Where the byte array nSignature contains the signature data. The length of the array can be
deduced from the position of the VMFileSignature structure and the total size of the JEFF.

Copyright 2000-2002, J Consortium, All Rights Reserved 35/48

4 Bytecodes
This chapter describes the instruction set used in JEFF. The operational semantics of the
instruction is not provided, as it does not impact the structural description of the JEFF format.

An instruction is an opcode followed by its operands. An opcode itself is coded on one byte. A
<n>-bytes instruction is an instruction of which operands take <n-1> bytes. A one-byte
instruction is an instruction without operand. A two-bytes instruction is an instruction with one
operand coded on one byte.

4.1 Principles
The section 4.2 describes only the differences between the class file bytecodes and the JEFF
bytecodes. The two instruction sets are equivalent in term of functionality. The main purpose
of the bytecode translation is to create an efficient instruction set adapted to the structure of
the file.

Translation Rules

Several operations are applied to the bytecode:
• The replacement. A bytecode is replaced by another bytecode with the same behavior

but using another syntax for its operands.
• The bytecode splitting. A single bytecode with a wide set of functionalities is replaced

by several bytecodes implementing a part of the original behavior. The choice of the
new bytecode depends on the context.

• The bytecode grouping. A group of bytecodes frequently used is replaced by a new
single bytecode performing the same task.

If an instruction is not described in section 4.2, its syntax shall be unchanged with respect to
the one assigned to the instruction of same opcode value in class file bytecode (the mnemonic
of the opcode is then the mnemonic of the original opcode as found in class file bytecode
prefixed by "jeff_").

The instructions of JEFF bytecode that result from a particular translation are completely
defined in section 4.2.

All the instructions not described in section 4.2 are one-byte or two-bytes instructions and are
defined in section 4.3.

Section 4.4 provides the complete set of opcodes with their mnemonics used in JEFF
bytecode.

Alignment and Padding

The bytecodes and their operands follow the rules of alignment and padding defined in 3.2.3
Alignment and Padding.

4.2 Translations
This chapter defines all the instructions of JEFF bytecode that are not exactly the same than
those found in the class file format bytecode. This chapter describes also all the translation
operations from which these JEFF instructions result, but this description is not necessary for

Copyright 2000-2002, J Consortium, All Rights Reserved 36/48

the intrinsic definition of the JEFF instructions and the references to the instruction set of class
file format are here provided only for information purpose.

4.2.1 The tableswitch Opcode
 If the original structure of class file bytecode contains the following sequence:

 TU1 tableswitch
 TU1 <0-3 byte pad>
 TS4 nDefault
 TS4 nLowValue
 TS4 nHighValue
 TS4 nOffset [nHighValue - nLowValue + 1]

Where immediately after the padding follow a series of signed 32-bit values: nDefault,
nLowValue, nHighValue and then nHighValue - nLowValue + 1 further signed 32-bit
offsets.

The translated structure shall be the following sequence:

If the nLowValue and nHighValue values can be converted in 16-bit signed values, the
translated structure is:

 TU1 jeff_stableswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TS2 nLowValue
 TS2 nHighValue
 VMOFFSET ofJump [nHighValue - nLowValue + 1]

Otherwise, the translated structure is:

 TU1 jeff_tableswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TU1 <0-2 byte pad>
 TS4 nLowValue
 TS4 nHighValue
 VMOFFSET ofJump [nHighValue - nLowValue + 1]

The ofDefault and ofJump values are the jump addresses in the current bytecode block
(offsets in bytes from the beginning of the class header structure).

4.2.2 The lookupswitch Opcode
 If the original instruction in class file format is:

 TU1 lookupswitch
 TU1 <0-3 byte pad>
 TS4 nDefault
 TU4 nPairs
 match-offset pairs...
 TS4 nMatch
 TS4 nOffset

Copyright 2000-2002, J Consortium, All Rights Reserved 37/48

Where immediately after the padding follow a signed 32-bit values: nDefault, an unsigned 32-
bit values: nPairs, and then nPairs pairs of signed 32-bit values. Each of the nPairs pairs
consists of an int nMatch and a signed 32-bit nOffset.

The translated structure shall be the following sequence:

If all of the nMatch values can be converted in 16-bit signed value, the translated structure is:

 TU1 jeff_slookupswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TU2 nPairs
 TS2 nMatch [nPairs]
 VMOFFSET ofJump [nPairs]

Otherwise, the translated structure is:

 TU1 jeff_lookupswitch
 TU1 <0-1 byte pad>
 VMOFFSET ofDefault
 TU2 nPairs
 TU1 <0-2 byte pad>
 TS4 nMatch [nPairs]
 VMOFFSET ofJump [nPairs]

The ofDefault and ofJump values are the jump addresses in the current bytecode block
(offsets in bytes from the beginning of the class header structure).

4.2.3 The new Opcode
 If the original instruction in class file format is:

 TU1 new
 TU2 nIndex

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Class.

The translated structure shall be the following sequence:

 TU1 jeff_new
 TU1 <0-1 byte pad>
 VMOFFSET ofClassIndex

Where the ofClassIndex value is the offset of the class index, a VMCINDEX value stored in
the “referenced class table” of the current class.

4.2.4 Opcodes With a Class Operand
If the original instruction in class file format is:

 TU1 <opcode>
 TU2 nIndex

Copyright 2000-2002, J Consortium, All Rights Reserved 38/48

Where <opcode> is anewarray, checkcast or instanceof. The nIndex value is an index into
the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Class.

The translated structure shall be a variable-length instruction:

 TU1 <jeff_opcode>
 VMTYPE tDescriptor
 TU1 nDimension (optional)
 TU1 <0-1 byte pad>
 VMOFFSET ofClassIndex (optional)

The opcode translation array is:

classfile opcode JEFF opcode
anewarray jeff_newarray
checkcast jeff_checkcast
instanceof jeff_instanceof

The tDescriptor value reflects the CONSTANT_Class information. The descriptor associated
with the jeff_newarray bytecode has an array dimension equal to the array dimension of
CONSTANT_Class structure plus one. The nDimension value is the array dimension
associated with the descriptor. This value is only present if the VM_TYPE_MULTI is set in the
tDescriptor value. The ofClassIndex value is only present if tDescriptor describes a class or
an array of a class. It's the offset of the class index, a VMCINDEX value stored in the
“referenced class table” of the current class.

4.2.5 The newarray Opcode
If the original instruction in class file format is:

 TU1 newarray
 TU1 nType

Where the nType is a code that indicates the type of array to create.

The translated structure shall be the following sequence:

 TU1 jeff_newarray
 VMTYPE tDescriptor

The tDescriptor value reflects the nType information. The VM_TYPE_MONO flag is always
set in this value.

4.2.6 The multianewarray Opcode
If the original instruction in class file format is:

 TU1 multianewarray
 TU2 nIndex
 TU1 nDimensions

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Class. The nDimensions value represents the
number of dimensions of the array to be created.

Copyright 2000-2002, J Consortium, All Rights Reserved 39/48

The translated structure shall be a variable-length instruction:

 TU1 jeff_multianewarray
 TU1 nDimensions
 VMTYPE tDescriptor
 TU1 nArrayDimension
 TU1 <0-1 byte pad>
 VMOFFSET ofClassIndex (optional)

The tDescriptor value reflects the CONSTANT_Class information. The nArrayDimension
value is the array dimension associated with the descriptor. This value is only present if the
VM_TYPE_MULTI is set in the tDescriptor value. The ofClassIndex value is only present if
tDescriptor describes a class or an array of a class. It's the offset of the class index, a
VMCINDEX value stored in the “referenced class table” of the current class.

4.2.7 Field Opcodes
If the original instruction in class file format is:

 TU1 <opcode>
 TU2 nIndex

Where <opcode> is getfield, getstatic, putfield or putstatic. The nIndex value is an index
into the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Fieldref.

The translated structure shall be the following sequence:

 TU1 <JEFF opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofFieldInfo

The opcode translation array is:

classfile opcode JEFF opcode
getfield jeff_getfield
getstatic jeff_getstatic
putfield jeff_putfield
putstatic jeff_putstatic

If the instruction points to a field of the current class, the ofFieldInfo value is the offset of a
VMFieldInfo structure in the field list of the current class. If the field belongs to another class,
the value of ofFieldInfo is the offset of a VMReferencedField structure in the “referenced
field table” of the current class.

4.2.8 Method Opcodes
If the original instruction in class file format is:

 TU1 <opcode>
 TU2 nIndex

Where <opcode> is invokespecial, invokevirtual, or invokestatic. The nIndex value is an
index into the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Methodref structure.

Copyright 2000-2002, J Consortium, All Rights Reserved 40/48

or

 TU1 invokeinterface
 TU2 nIndex
 TU1 nArgs
 TU1 0

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_InterfaceMethodref structure. The nArgs value is
the size in words of the method's arguments in the stack.

The translated structure shall be the following sequence:

 TU1 <JEFF opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofMethodInfo

The opcode translation array is:

classfile opcode JEFF opcode
invokespecial jeff_invokespecial
invokevirtual jeff_invokevirtual
invokestatic jeff_invokestatic
invokeinterface jeff_invokeinterface

If the instruction points to a method of the current class, the ofMethodInfo value is the offset
of a VMMethodInfo structure in the method list of the current class. If the method belongs to
another class, the value of ofMethodInfo is the offset of a VMReferencedMethod structure in
the “referenced method table” of the current class.

4.2.9 The ldc Opcodes
If the original instruction in class file format is:

 TU1 ldc
 TU1 nIndex

or

 TU1 ldc_w
 TU2 nIndex

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Integer, a CONSTANT_Float, or a
CONSTANT_String.

or

 TU1 ldc2_w
 TU2 nIndex

Where the nIndex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Long, or a CONSTANT_Double.

The translated structure shall be the following sequence:

Copyright 2000-2002, J Consortium, All Rights Reserved 41/48

 TU1 <JEFF opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofConstant

Where <JEFF opcode> depends of the constant type. The ofConstant value is the offset of a
data value stored in the constant data section. The type of the value depends of the constant
type.

classfile opcode JEFF opcode type of the value pointed to by ofConstant
CONSTANT_String jeff_sldc VMString
CONSTANT_Integer jeff_ildc JINT
CONSTANT_Float jeff_fldc JFLOAT
CONSTANT_Long jeff_lldc JLONG
CONSTANT_Double jeff_dldc JDOUBLE

4.2.10 The wide <opcode> Opcodes
If the original instruction in class file format is:

 TU1 wide
 TU1 <opcode>
 TU2 nIndex

Where <opcode> is aload, astore, dload, dstore, fload, fstore, iload, istore, lload, lstore,
or ret. The nIndex value is an index to a local variable in the current frame.

The translated structure shall be the following sequence:

 TU1 <JEFF opcode>
 TU1 <0-1 byte pad>
 TU2 nIndex

Where nIndex is unchanged and the opcode translation array is:

classfile opcode JEFF opcode
wide aload jeff_aload_w
wide astore jeff_astore_w
wide dload jeff_dload_w
wide dstore jeff_dstore_w
wide fload jeff_fload_w
wide fstore jeff_fstore_w
wide iload jeff_iload_w
wide istore jeff_istore_w
wide lload jeff_lload_w
wide lstore jeff_lstore_w
wide ret jeff_ret_w

4.2.11 The wide iinc Opcode
If the original instruction in class file format is:

 TU1 wide
 TU1 iinc
 TU2 nIndex
 TS2 nConstant

Copyright 2000-2002, J Consortium, All Rights Reserved 42/48

Where the nIndex value is an index to a local variable in the current frame. The nConstant
value is a signed 16-bit constant.

The translated structure shall be the following sequence:

 TU1 jeff_iinc_w
 TU1 <0-1 byte pad>
 TU2 nIndex
 TS2 nConstant

Where nIndex and nConstant are unchanged.

4.2.12 Jump Opcodes
If the original instruction in class file format is:

 TU1 <opcode>
 TS2 nOffset

Where <opcode> is goto, if_acmpeq, if_acmpne, if_icmpeq, if_icmpne, if_icmplt,
if_icmpge, if_icmpgt, if_icmple, ifeq, ifne, iflt, ifge, ifgt, ifle, ifnonnull, ifnull or jsr.
Execution proceeds at the offset nOffset from the address of the opcode of this instruction.

The translated structure shall be the following sequence:

 TU1 <JEFF opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofJump

Where the opcode translation array is:

classfile opcode JEFF opcode
goto jeff_goto
if_acmpeq jeff_if_acmpeq
if_acmpne jeff_if_acmpne
if_icmpeq jeff_if_icmpeq
if_icmpne jeff_if_icmpne
if_icmplt jeff_if_icmplt
if_icmpge jeff_if_icmpge
if_icmpgt jeff_if_icmpgt
if_icmple jeff_if_icmple
ifeq jeff_ifeq
ifne jeff_ifne
iflt jeff_iflt
ifge jeff_ifge
ifgt jeff_ifgt
ifle jeff_ifle
ifnonnull jeff_ifnonnull
ifnull jeff_ifnull
jsr jeff_jsr

The ofJump value is the address of the jump in the current bytecode block. It's an offset (in
bytes) from the beginning of the class header structure.

4.2.13 Long Jump Opcodes
If the original instruction in class file format is:

Copyright 2000-2002, J Consortium, All Rights Reserved 43/48

 TU1 <opcode>
 TS4 nOffset

Where <opcode> is goto_w or jsr_w. Execution proceeds at the offset nOffset from the
address of the opcode of this instruction.

The translated structure shall be the following sequence:

 TU1 <JEFF opcode>
 TU1 <0-1 byte pad>
 VMOFFSET ofJump

Where the opcode translation array is:

classfile opcode JEFF opcode
goto_w jeff_goto
jsr_w jeff_jsr

The ofJump value is the address of the jump in the current bytecode block. It's an offset (in
bytes) from the beginning of the class header structure.

4.2.14 The sipush Opcode
If the original instruction in class file format is:

 TU1 sipush
 TS1 nByte1
 TU1 nByte2

The translated structure shall be the following sequence:

 TU1 jeff_sipush
 TU1 <0-1 byte pad>
 TS2 nValue

Where nValue is a TS2 with the value (nByte1 << 8) | nByte2.

4.2.15 The newconstarray Opcode
This bytecode creates a new array with the initial values specified in the constant pool. This
instruction replaces a sequence of bytecodes creating an empty array and filling it cell by cell.

 TU1 jeff_newconstarray
 VMTYPE tArrayType
 TU1 <0-1 byte pad>
 TU2 nLength
 VMOFFSET ofConstData

The tArrayType is a code that indicates the type of array to create. It must take one of the
following values: char[], byte[], short[], boolean[], int[], long[], float[] or double[]. The
VM_TYPE_MONO and VM_TYPE_REF flags are always set in this value.

The nLength value is the length, in elements, of the new array. This value cannot be zero.

The ofConstData value is the offset of an array of values in the constant data section. The
type of the array depends on the tArrayType value.

Copyright 2000-2002, J Consortium, All Rights Reserved 44/48

Type of
Array

tArrayType
Value

Structure pointed to by ofConstData

short[] 0x61 An array of nLength JSHORT values.
int[] 0x62 An array of nLength JINT values.
long[] 0x63 An array of nLength JLONG values.
byte[] 0x64 An array of nLength JBYTE values.
char[] 0x65 The first byte of a string of nLength characters encoded in

a VMString structure.
float[] 0x66 An array of nLength JFLOAT values.
double[] 0x67 An array of nLength JDOUBLE values.
boolean[] 0x68 An array of nLength JBYTE values. Where a zero value

means false and a non-zero value means true.

A new mono-dimensional array of nLength elements is allocated from the garbage-collected
heap. All of the elements of the new array are initialized with the values stored in the constant
structure. A reference to this new array object is pushed into the operand stack.

4.3 Unchanged Instructions
This section defines all the other instruction of JEFF bytecode not previously described in
section 4.2. As already noticed, these instructions are kept unchanged in the translation from
class file bytecode. In order for this document to be self-contained, they are defined here.

4.3.1 One-Byte Instructions
These instructions have no operand. Here is their list (the mnemonic name of the opcode is
preceded here by its value):

(0x00) jeff_nop
(0x01) jeff_aconst_null
(0x02) jeff_iconst_m1
(0x03) jeff_iconst_0
(0x04) jeff_iconst_1
(0x05) jeff_iconst_2
(0x06) jeff_iconst_3
(0x07) jeff_iconst_4
(0x08) jeff_iconst_5
(0x09) jeff_lconst_0
(0x0a) jeff_lconst_1
(0x0b) jeff_fconst_0
(0x0c) jeff_fconst_1
(0x0d) jeff_fconst_2
(0x0e) jeff_dconst_0
(0x0f) jeff_dconst_1
(0x1a) jeff_iload_0
(0x1b) jeff_iload_1
(0x1c) jeff_iload_2
(0x1d) jeff_iload_3
(0x1e) jeff_lload_0
(0x1f) jeff_lload_1
(0x20) jeff_lload_2
(0x21) jeff_lload_3
(0x22) jeff_fload_0
(0x23) jeff_fload_1
(0x24) jeff_fload_2
(0x25) jeff_fload_3

(0x26) jeff_dload_0
(0x27) jeff_dload_1
(0x28) jeff_dload_2
(0x29) jeff_dload_3
(0x2a) jeff_aload_0
(0x2b) jeff_aload_1
(0x2c) jeff_aload_2
(0x2d) jeff_aload_3
(0x2e) jeff_iaload
(0x2f) jeff_laload
(0x30) jeff_faload
(0x31) jeff_daload
(0x32) jeff_aaload
(0x33) jeff_baload
(0x34) jeff_caload
(0x35) jeff_saload
(0x3b) jeff_istore_0
(0x3c) jeff_istore_1
(0x3d) jeff_istore_2
(0x3e) jeff_istore_3
(0x3f) jeff_lstore_0
(0x40) jeff_lstore_1
(0x41) jeff_lstore_2
(0x42) jeff_lstore_3
(0x43) jeff_fstore_0
(0x44) jeff_fstore_1
(0x45) jeff_fstore_2
(0x46) jeff_fstore_3

Copyright 2000-2002, J Consortium, All Rights Reserved 45/48

(0x47) jeff_dstore_0
(0x48) jeff_dstore_1
(0x49) jeff_dstore_2
(0x4a) jeff_dstore_3
(0x4b) jeff_astore_0
(0x4c) jeff_astore_1
(0x4d) jeff_astore_2
(0x4e) jeff_astore_3
(0x4f) jeff_iastore
(0x50) jeff_lastore
(0x51) jeff_fastore
(0x52) jeff_dastore
(0x53) jeff_aastore
(0x54) jeff_bastore
(0x55) jeff_castore
(0x56) jeff_sastore
(0x57) jeff_pop
(0x58) jeff_pop2
(0x59) jeff_dup
(0x5a) jeff_dup_x1
(0x5b) jeff_dup_x2
(0x5c) jeff_dup2
(0x5d) jeff_dup2_x1
(0x5e) jeff_dup2_x2
(0x5f) jeff_swap
(0x60) jeff_iadd
(0x61) jeff_ladd
(0x62) jeff_fadd
(0x63) jeff_dadd
(0x64) jeff_isub
(0x65) jeff_lsub
(0x66) jeff_fsub
(0x67) jeff_dsub
(0x68) jeff_imul
(0x69) jeff_lmul
(0x6a) jeff_fmul
(0x6b) jeff_dmul
(0x6c) jeff_idiv
(0x6d) jeff_ldiv
(0x6e) jeff_fdiv
(0x6f) jeff_ddiv
(0x70) jeff_irem
(0x71) jeff_lrem
(0x72) jeff_frem
(0x73) jeff_drem
(0x74) jeff_ineg

(0x75) jeff_lneg
(0x76) jeff_fneg
(0x77) jeff_dneg
(0x78) jeff_ishl
(0x79) jeff_lshl
(0x7a) jeff_ishr
(0x7b) jeff_lshr
(0x7c) jeff_iushr
(0x7d) jeff_lushr
(0x7e) jeff_iand
(0x7f) jeff_land
(0x80) jeff_ior
(0x81) jeff_lor
(0x82) jeff_ixor
(0x83) jeff_lxor
(0x85) jeff_i2l
(0x86) jeff_i2f
(0x87) jeff_i2d
(0x88) jeff_l2i
(0x89) jeff_l2f
(0x8a) jeff_l2d
(0x8b) jeff_f2i
(0x8c) jeff_f2l
(0x8d) jeff_f2d
(0x8e) jeff_d2i
(0x8f) jeff_d2l
(0x90) jeff_d2f
(0x91) jeff_i2b
(0x92) jeff_i2c
(0x93) jeff_i2s
(0x94) jeff_lcmp
(0x95) jeff_fcmpl
(0x96) jeff_fcmpg
(0x97) jeff_dcmpl
(0x98) jeff_dcmpg
(0xac) jeff_ireturn
(0xad) jeff_lreturn
(0xae) jeff_freturn
(0xaf) jeff_dreturn
(0xb0) jeff_areturn
(0xb1) jeff_return
(0xbe) jeff_arraylength
(0xbf) jeff_athrow
(0xc2) jeff_monitorenter
(0xc3) jeff_monitorexit
(0xca) jeff_breakpoint

4.3.2 Two-bytes Instructions
These instructions have a one byte operand. Here is their list (the mnemonic name of the
opcode is preceded here by its value):

(0x10) jeff_bipush
(0x15) jeff_iload
(0x16) jeff_lload
(0x17) jeff_fload
(0x18) jeff_dload
(0x19) jeff_aload

(0x36) jeff_istore
(0x37) jeff_lstore
(0x38) jeff_fstore
(0x39) jeff_dstore
(0x3a) jeff_astore
(0xa9) jeff_ret

Copyright 2000-2002, J Consortium, All Rights Reserved 46/48

4.4 Complete Opcode Mnemonics by Opcode
This section is the list of all the mnemonics values used in JEFF.

(0x00) jeff_nop
(0x01) jeff_aconst_null
(0x02) jeff_iconst_m1
(0x03) jeff_iconst_0
(0x04) jeff_iconst_1
(0x05) jeff_iconst_2
(0x06) jeff_iconst_3
(0x07) jeff_iconst_4
(0x08) jeff_iconst_5
(0x09) jeff_lconst_0
(0x0a) jeff_lconst_1
(0x0b) jeff_fconst_0
(0x0c) jeff_fconst_1
(0x0d) jeff_fconst_2
(0x0e) jeff_dconst_0
(0x0f) jeff_dconst_1
(0x10) jeff_bipush
(0x11) jeff_sipush
(0x12) jeff_unused_0x12
(0x13) jeff_unused_0x13
(0x14) jeff_unused_0x14
(0x15) jeff_iload
(0x16) jeff_lload
(0x17) jeff_fload
(0x18) jeff_dload
(0x19) jeff_aload
(0x1a) jeff_iload_0
(0x1b) jeff_iload_1
(0x1c) jeff_iload_2
(0x1d) jeff_iload_3
(0x1e) jeff_lload_0
(0x1f) jeff_lload_1
(0x20) jeff_lload_2
(0x21) jeff_lload_3
(0x22) jeff_fload_0
(0x23) jeff_fload_1
(0x24) jeff_fload_2
(0x25) jeff_fload_3
(0x26) jeff_dload_0
(0x27) jeff_dload_1
(0x28) jeff_dload_2
(0x29) jeff_dload_3
(0x2a) jeff_aload_0
(0x2b) jeff_aload_1
(0x2c) jeff_aload_2
(0x2d) jeff_aload_3
(0x2e) jeff_iaload
(0x2f) jeff_laload
(0x30) jeff_faload
(0x31) jeff_daload
(0x32) jeff_aaload
(0x33) jeff_baload
(0x34) jeff_caload
(0x35) jeff_saload

(0x36) jeff_istore
(0x37) jeff_lstore
(0x38) jeff_fstore
(0x39) jeff_dstore
(0x3a) jeff_astore
(0x3b) jeff_istore_0
(0x3c) jeff_istore_1
(0x3d) jeff_istore_2
(0x3e) jeff_istore_3
(0x3f) jeff_lstore_0
(0x40) jeff_lstore_1
(0x41) jeff_lstore_2
(0x42) jeff_lstore_3
(0x43) jeff_fstore_0
(0x44) jeff_fstore_1
(0x45) jeff_fstore_2
(0x46) jeff_fstore_3
(0x47) jeff_dstore_0
(0x48) jeff_dstore_1
(0x49) jeff_dstore_2
(0x4a) jeff_dstore_3
(0x4b) jeff_astore_0
(0x4c) jeff_astore_1
(0x4d) jeff_astore_2
(0x4e) jeff_astore_3
(0x4f) jeff_iastore
(0x50) jeff_lastore
(0x51) jeff_fastore
(0x52) jeff_dastore
(0x53) jeff_aastore
(0x54) jeff_bastore
(0x55) jeff_castore
(0x56) jeff_sastore
(0x57) jeff_pop
(0x58) jeff_pop2
(0x59) jeff_dup
(0x5a) jeff_dup_x1
(0x5b) jeff_dup_x2
(0x5c) jeff_dup2
(0x5d) jeff_dup2_x1
(0x5e) jeff_dup2_x2
(0x5f) jeff_swap
(0x60) jeff_iadd
(0x61) jeff_ladd
(0x62) jeff_fadd
(0x63) jeff_dadd
(0x64) jeff_isub
(0x65) jeff_lsub
(0x66) jeff_fsub
(0x67) jeff_dsub
(0x68) jeff_imul
(0x69) jeff_lmul
(0x6a) jeff_fmul
(0x6b) jeff_dmul

Copyright 2000-2002, J Consortium, All Rights Reserved 47/48

(0x6c) jeff_idiv
(0x6d) jeff_ldiv
(0x6e) jeff_fdiv
(0x6f) jeff_ddiv
(0x70) jeff_irem
(0x71) jeff_lrem
(0x72) jeff_frem
(0x73) jeff_drem
(0x74) jeff_ineg
(0x75) jeff_lneg
(0x76) jeff_fneg
(0x77) jeff_dneg
(0x78) jeff_ishl
(0x79) jeff_lshl
(0x7a) jeff_ishr
(0x7b) jeff_lshr
(0x7c) jeff_iushr
(0x7d) jeff_lushr
(0x7e) jeff_iand
(0x7f) jeff_land
(0x80) jeff_ior
(0x81) jeff_lor
(0x82) jeff_ixor
(0x83) jeff_lxor
(0x84) jeff_iinc
(0x85) jeff_i2l
(0x86) jeff_i2f
(0x87) jeff_i2d
(0x88) jeff_l2i
(0x89) jeff_l2f
(0x8a) jeff_l2d
(0x8b) jeff_f2i
(0x8c) jeff_f2l
(0x8d) jeff_f2d
(0x8e) jeff_d2i
(0x8f) jeff_d2l
(0x90) jeff_d2f
(0x91) jeff_i2b
(0x92) jeff_i2c
(0x93) jeff_i2s
(0x94) jeff_lcmp
(0x95) jeff_fcmpl
(0x96) jeff_fcmpg
(0x97) jeff_dcmpl
(0x98) jeff_dcmpg
(0x99) jeff_ifeq
(0x9a) jeff_ifne
(0x9b) jeff_iflt
(0x9c) jeff_ifge
(0x9d) jeff_ifgt
(0x9e) jeff_ifle
(0x9f) jeff_if_icmpeq
(0xa0) jeff_if_icmpne
(0xa1) jeff_if_icmplt
(0xa2) jeff_if_icmpge
(0xa3) jeff_if_icmpgt
(0xa4) jeff_if_icmple
(0xa5) jeff_if_acmpeq

(0xa6) jeff_if_acmpne
(0xa7) jeff_goto
(0xa8) jeff_jsr
(0xa9) jeff_ret
(0xaa) jeff_tableswitch
(0xab) jeff_lookupswitch
(0xac) jeff_ireturn
(0xad) jeff_lreturn
(0xae) jeff_freturn
(0xaf) jeff_dreturn
(0xb0) jeff_areturn
(0xb1) jeff_return
(0xb2) jeff_getstatic
(0xb3) jeff_putstatic
(0xb4) jeff_getfield
(0xb5) jeff_putfield
(0xb6) jeff_invokevirtual
(0xb7) jeff_invokespecial
(0xb8) jeff_invokestatic
(0xb9) jeff_invokeinterface
(0xba) jeff_unused_0xba
(0xbb) jeff_new
(0xbc) jeff_newarray
(0xbd) jeff_unused_0xbd
(0xbe) jeff_arraylength
(0xbf) jeff_athrow
(0xc0) jeff_checkcast
(0xc1) jeff_instanceof
(0xc2) jeff_monitorenter
(0xc3) jeff_monitorexit
(0xc4) jeff_unused_0xc4
(0xc5) jeff_multianewarray
(0xc6) jeff_ifnull
(0xc7) jeff_ifnonnull
(0xc8) jeff_unused_0xc8
(0xc9) jeff_unused_0xc9
(0xca) jeff_breakpoint
(0xcb) jeff_newconstarray
(0xcc) jeff_slookupswitch
(0xcd) jeff_stableswitch
(0xce) jeff_ret_w
(0xcf) jeff_iinc_w
(0xd0) jeff_sldc
(0xd1) jeff_ildc
(0xd2) jeff_lldc
(0xd3) jeff_fldc
(0xd4) jeff_dldc
(0xd5) jeff_dload_w
(0xd6) jeff_dstore_w
(0xd7) jeff_fload_w
(0xd8) jeff_fstore_w
(0xd9) jeff_iload_w
(0xda) jeff_istore_w
(0xdb) jeff_lload_w
(0xdc) jeff_lstore_w
(0xdd) jeff_aload_w
(0xde) jeff_astore_w

Copyright 2000-2002, J Consortium, All Rights Reserved 48/48

5 Restrictions
The only restriction of JEFF when compared with class file format is the maximum size of a
class area. Within a file, the size of a class area cannot exceed 65536 bytes. A class area is
the block of data included between the VMClassHeader structure and the last data specific to
the class. The JEFF syntax is very compact and the class area does not include any symbolic
information. This means that the corresponding class file can be much bigger than 65536
bytes.

Otherwise, the following limits apply:
• The total size of a file cannot exceed 232 bytes.
• The number of classes stored in a file cannot exceed 65,535.
• The number of packages stored in a file cannot exceed 65,534.
• The number of fields in a file cannot exceed 232 - 1.
• The number of methods in a file cannot exceed 232 - 1.

