INTERNATIONAL J CONSORTIUM™ Draft SPECIFICATION
JEFF™ File Format.

&0, P. 0. Box 1565
:' .‘,'. Cupertino, CA 95015-1565
% o USA
.l..-@.'. WWW.j-consortium.org
CONSORTIUM

Copyright 2000, 2002, J Consortium, All rights reserved

Permission is granted by the J Consortium to reproduce this International Draft Specification for the
purpose of review and comment, provided this notice is included. All other rights are reserved.

THIS DRAFT SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND
IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY
IMPLEMENTATION OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S
OWN RISK, AND NEITHER THE J CONSORTIUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS,
SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY
DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY ARISING FROM THE
IMPLEMENTATION OF THIS SPECIFICATION.

J Consortium and the J Consortium logo are trademarks or service marks, or registered trademarks and
service marks, of J Consortium, Inc. in the U.S. and a trademark in other countries.
JEFF is a trademark of J Consortium, Inc.

Java is a registered trademark of Sun Microsystems, Inc. in the United States and in other countries.

JEFF Draft Specification Version 1.2 as of 7 March 2002

JEFF File Format
Working Draft Specification

b |] 4 0 o [o3 o o U 4
R o {11V o] (o RSP PTRUTRNE 4
B VLT T A SN | ol e ORSTTRN 4

1.2.1 YT L= 11 ST 5
R (ol 0] TP PTPRUPPRTRRUPIN 5
N (=) (=] (=) 41611 O RPNt 5
BT B 1<) {111 o] o RSP PTRUTRNE 6

P B - | = N L7 0= 7
N R = 7 1 (ol Y/ 0 1= P TSR TUPUTTTT 7
R - 1T [V = o [Y PPN 7
DG T | 1106 1 TSP 7

2.3.1 B L=) 111111 o PSSP 7

2.3.2 (Of0] 0] o F= T 1SY0] o [PP PTNPPPR 7

2.3.3 =] 0L 1= 11 10] o [P SPPT 7
S o 1Yo 1 (ol LY 0= PSRRI 8

2.4.1 ACCESS FIAOS .. ettt ettt e e e et e e e e e e et e e et e e et e e et e e et e e aaas 8

2.4.2 Y L=l B =YY o]] o) (o T UTNPPPR 9

2.4.3 (@] Y= (TR 11

J I 1 L= o {1 PSP 12

JC 0 R B 1< 171 1o o P PP SPIN 12
3.1.1 FUlly QUAlIfIEA NAIMES .. .oveiiiieiie e e e e e et e e et e e et e e ea e e et e eeaneeeen 12
3.1.2 Internal Classes and EXIErNal CIASSESuiiiuieiiiieiiiieei et et e e e e e e e e e aaas 12
3.1.3 Fields and METNOAScovnieiiiei e e e e e et e et e e e e e et e e eaeeeen 12
3.1.4 (=) (0l 0 Y 1110 o PRSPPI 13

A O 0] 4 \V/=] 011 o) 4 1P PPN 14
3.2.1 [L0 7= 1110 1 PSPPI 14
3.2.2 SV A =l @ (0 (=] PSPPI 14
3.2.3 AlIgNMENt anNd PaddiNg........cvvueiiiieiiiei et e e e e e e e e e e e e s e e aa e e aa e eraas 14

3.3 Definition Of the FIle STTUCTUIEScivuiiiiiei ettt e e e e e e e et eeaaeeees 15
3.3.1 [(3 (Y= 16 =] PSPPI 16
3.3.2 (012 ST =Tl 110 o [PPSR 18

3.3.2.1 (O TSNl (== 0 (=) (PP PPRPN 19
3.3.2.2 INEEITACE TADIEeeeci e e e e et e et erans 21
3.3.2.3 Referenced Class TabIEc..ceuuiiiiieiiii e e 21
3.3.2.4 INternal FIeld TablE.. ... e s 22
3.3.2.5 Internal Method TabIE.........civuiiiiieie et e e eaaes 23
3.3.2.6 Referenced Field Tablecouiivniiiiiiii et e e e 24
3.3.2.7 Referenced Method Tablecovuiiiiiiii e 25
3.3.2.8 ByteCode BIOCK SITUCTUIE.u.iiiiiiiieii ettt ettt e e e e et e e b e et eeaas 25
3.3.2.9 EXCEPLION TADIE LISTiiveiiiiiieiiieiii ettt e e e e et e e e et eeaaes 26
3.3.2.10 Constant Data SECHONciiuiiiiiei ettt e e e e et e et e e et e e et e e et eeb e erans 27

3.3.3 ALDULES SECHION . ovviiiit it e et e et e e e et e et e et eeaa e eeannns 29

Copyright 2000-2002, J Consortium, All Rights Reserved 2/48

3.3.3.1 F AN] o101 (ST AN/ TN 29

3.3.3.2 Class AHIIDULESiereiiiiei et e e e e e et e e et e e eaeeeen 30
3.3.3.3 ALTDULE TaADIE ..oeieie et e s 31
3.34 SYMDOIIC DAtA SECHION . ..uiiiiiiiiii e e e e e e et e et e e et e e st e eenneeees 31
3.3.5 CoNStaNt DAta POOL.......ccvuiiiiiiiiie et aan 32
3.3.5.1 Constant Data POOI STTUCTUIEcvuiiii i e e e e e e ea e een 33
3.3.5.2 BT EST ol 1 0] (] PSPPSR 33
3.3.5.3 [\ 1aTe Yol B =Y o]] o] (o] ST 34
3.3.6 (D] [o 1 e ST o [= U (PSPPI 34
I = YA (=T oo Lo [PSP 35
o R 10T o] [TUUPUPPRTTR 35
A N = 10 1 = 1[0 P PP PSPIN 35
4.2.1 The tableSWItCH OPCOUEvuiiiiiiiee et e et et e et e et e erans 36
4.2.2 The [0OKUPSWITCN OPCOUE.ccviiiit it e e et e et e et e et e eb e eaans 36
4.2.3 THE NEW OPCOUE ...ttt e e e et e et e e et e e et e e et e e et e e et e e et e e st e ebaeeerans 37
4.2.4 Opcodes With a ClasS OPEIANG........couuiiiiieiiieiie e e e e e e e e e et e e et e e eaeeens 37
4.2.5 The NEWAITAY OPCOUEiitiiiiii ettt e e e e et e et e e et e e et e e et e e et e e et e ebaeeernns 38
4.2.6 The MultiaNeWarray OPCOUEccevniiiieeete ettt e e e et e et e e et e e et e e et e e et e e et e ebeeerans 38
4.2.7 (1= [0 @] o] eT0Te [Ty PSPPI 39
4.2.8 1Y/ =110TeTo @) oTeTo o [T PSPPI 39
4.2.9 N 1=N (o (ol @] oloTa Yo [T PSSP 40
4.2.10 The wide <0pCOUE> OPCOUESuiiitniiiiiiiti et ee e ee e e ee e e et e et e e et e e et e e et e eeteseteeerneeees 41
4.211 The WIde lINC OPCOUEcvuiitieiti ettt e e e e e et e et e et e e st e e et e e et e eateestneeerneeees 41
4.2.12 JUMD OPCOUES .unietniiitee ittt ettt e et e et e et e et e et e e et e e et e e et e e et e e st e s st s setnssetnseateesteesrneeeen 42
4.2.13 LoNg JUMP OPCOAES.cctuiiitiieitiee it ettt e et e e e e et e et e e et e e et e e et e e st e seteseteeatneestneestneeeen 42
4.2.14 The SIPUSN OPCOUE. . ..uu ittt et e e e e e et e et e e et e e st e e et e e et e e et eeeteeerneeeen 43
4.2.15 The newcoNnStarray OPCOUEcuuiiiriieiieeit e eee e e e e et e et e et e e et e e et e e et e eateeeteeerneeeen 43
4.3 UNChanged INSITUCLIONScovuiiiiieiiieei et e e e et e e e e e et e e et e e et e e st eeateseteeenneeees 44
4.3.1 ONE-BYLE INSIIUCTIONS .. .evuiiiiiieii et ee et e et e et e et e e e e e et e e st e e et e e st e e st e eeteeenneeees 44
4.3.2 TWO-DYIES INSITUCTIONS ...vuiitieiitee it e e et e et e et e e et e e et e e et e e et e eb e erans 45
4.4 Complete Opcode MNeEMONICS DY OPCOUEuuiiiuiiiiiieii et e e e ees 46
Lo o] £ o] Ao] 1P 48

Copyright 2000-2002, J Consortium, All Rights Reserved 3/48

1 Introduction

1.1 Foreword

Since this draft has been written, JEFF has become an ISO standard known as ISO/IEC
20970. We recommend people who want to have access to the exact final ISO standard
definition of JEFF to get a copy of the ISO/IEC 20970 through their national ISO body. The list
of ISO national bodies is available at
http://www.iso.ch/iso/en/aboutiso/isomembers/MemberCountryList. MemberCountry.

This working draft provided by the J Consortium is intended to allow people to get quickly a
first discovery of the main features of JEFF in order to fasten the knowledge and acceptance
of this new format.

1.2 What is JEFF

This draft describes the JEFF File Format. This format is designed to download and store on a
platform object oriented programs written in portable code. The distribution of applications is
not the target of this specification.

The goal of JEFF is to provide a ready-for-execution format allowing programs to be executed
directly from static memory, thus avoiding the necessity to recopy classes into dynamic
runtime memory for execution.

The constraints put on the design of JEFF are the following:
- Any set of class files must be translatable into a single JEFF file.

JEFF must be a ready-for-execution format. A virtual machine can use it efficiently,
directly from static memory (ROM, flash memory...). No copy in dynamic runtime
memory or extra data modification shall be needed.
All the standard behaviors and features of a virtual machine such as Java™ virtual
machine must be reproducible using JEFF.
In particular, JEFF must facilitate “symbolic linking” of classes. The replacement of a
class definition by another class definition having a compatible signature (same class
name, same fields and same method signatures) must not require any modifications in
the other class definitions.

The main consequences of these choices are:
A JEFF file can contain several classes from several packages. The content can be a
complete application, parts of it, or only one class.
To allow “symbolic linking” of classes, the references between classes must be kept at
the symbolic level, even within a single JEFF file.
The binary content of a JEFF file is adapted to be efficiently read by a wide range of
processors (with different byte orders, alignments, etc.).
JEFF is also a highly efficient format for the dynamic downloading of class definitions
to dynamic memory (RAM).

Copyright 2000-2002, J Consortium, All Rights Reserved 4/48

1.2.1 Benefits

JEFF is a file format, which allows storing on-platform non pre-linked classes in a form that
does not require any modification for efficient execution. JEFF exhibits a large range of
benefits:
The first of these benefits is that classes represented with JEFF can be executed
directly from storage memory, without requiring any loading into runtime memory in
order to be translated in a format adequate for execution. This results in a dramatic
economy of runtime memory: programs with a size of several hundreds of kilobytes
may then be executed with only a few kilobytes of dynamic runtime memory thanks to
JEFF.
The second benefit of JEFF is the saving of the processing time usually needed at the
start of an execution to load into dynamic memory the stored classes.
The third benefit is that JEFF does not require the classes to be pre-linked, hence fully
preserving the flexibility of portable code technologies. With JEFF, programs can be
updated on-platform by the mere replacement of some individual classes without
requiring to replace the complete program. This provides a decisive advantage over
previously proposed "ready-for-execution” formats providing only pre-linked programs.
A last benefit of JEFF is that it allows a compact storage of programs, twice smaller
than usual class file format, and this without any compression.

1.3 Scope

JEFF can be used with benefits on all kinds of platform.

JEFF’'s most immediate interest is for deploying portable applications on small footprint
devices. JEFF provides dramatic savings of dynamic memory and execution time without
sacrificing any of the flexibility usually attached to the use of non-pre-linked portable code.

JEFF is especially important to provide a complete solution to execute portable programs of
which code size is bigger than the available dynamic memory.

JEFF is also very important when fast reactivity of programs is important. By avoiding the
extra-processing related to loading into dynamic memory and formatting classes at runtime,
JEFF provides a complete answer to the problem of class-loading slow-down.

These benefits are particularly interesting for small devices supporting financial applications.
Such applications are often complex and relying on code of significant size, while the pressure
of the market often imposes to these devices to be of a low price and, consequently, to be
very small footprint platforms. In addition, to not impose unacceptable delays to customers, it
is important these applications to not waste time in loading classes into dynamic memory when
they are launched but, on the contrary, to be immediately actively processing the transaction
with no delay. When using smart cards, there are also some loose real-time constraints that
are better handled if it can be granted that no temporary freezing of processing can occur due
to class loading.

JEFF can also be of great benefit for devices dealing with real-time applications. In this case,
avoiding the delays due to class loading can play an important role to satisfy real-time
constraints.

1.4 References

This document is a self-contained draft specification of the JEFF format. However, to ease the
understanding of this specification, the reading of the following document is recommended as
informative reference :

Copyright 2000-2002, J Consortium, All Rights Reserved 5/48

[1] The Java™ Virtual Machine Specification, Second Edition, by Tim Lindholm and Frank
Yellin, 496 pages, Addison Wesley, April 1999, ISBN 0201432943.

The next references are normative references:
[2] IEC 60559:1989, Binary floating point arithmetic for microprocessor systems

[3] ISO/IEC 10646-1:2000 Information technology — Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane

[4] ISO/IEC 10646-2:2001 Information technology — Universal Multiple-Octet Coded
Character Set (UCS) -- Part 2: Supplementary Planes

[5] ISO/IEC 10646-1:2000/FDAM 1 Mathematical symbols and other characters

And to get access to the official final specification of JEFF, the reader is recommended to get
the following official reference:

[6] ISO/IEC 20970

1.5 Definitions

Class Logical entity that provides a set of related fields and methods. The
class is a basic element for object-oriented languages.

Package Set of classes

bytecode A bytecode is the binary value of the encoding of a JEFF instruction.
By extension, bytecode is used to designate the instruction itself.

cell 4-octet word used by bytecode interpreters.

byte an octet: representation of an unsigned 8-bit value

Copyright 2000-2002, J Consortium, All Rights Reserved 6/48

2 Data Types

This chapter describes the data types used by the JEFF format specification. All the values in
a JEFF file are stored on one, two, four or eight contiguous bytes. In this document, the
expression “null value” is a synonym for a value of zero of the appropriate type.

2.1 Basic Types

The types TU1, TU2, and TU4 represent an unsigned one-, two- and four-byte integer,
respectively. The types TS1, TS2, and TS4 represent a signed one-, two- and four-byte
integer, respectively.

2.2 Language Types

The language types are represented internally as follows:

Format Language | Format

Types Types

JBYTE byte 8-bit signed integer

JSHORT | short 16-bit signed integer

JINT i nt 32-bit signed integer

JLONG | ong 64-bit signed integer

JFLOAT fl oat IEC 60559 [2] single
format

JDOUBLE | doubl e IEC 60559 [2]
double format

2.3 Strings

2.3.1 Definition

In this specification, a character is defined in [3], [4], [5]. A string is an array of characters.
Strings are encoded in the JEFF files as a VMString type (see below).

2.3.2 Comparison

In this document, comparisons of strings are based on the lexicographic order of the numerical
values of their characters.

2.3.3 Representation

In the JEFF file, strings are stored according to the following structure:
VMBSt ring {

TU2 nStringlLengt h;
TUL nStringVal ue[nStringLength];

}

The items of the VMString structure are as follows:

nStringLength

Copyright 2000-2002, J Consortium, All Rights Reserved 7148

The length of the encoded string, in bytes. This value may be different from the number of

characters in the string.

nStringValue

This array of byte is an encoding of the value of the string following the UTF-8 encoding

algorithm defined in [3], [4], [5]-

2.4 Specific Types

These types are used to store values with a specific meaning.

Types Description Format

VMACCESS Access Flag (see 2.4.1) 16-bit vector

VMTYPE Type descriptor (see 2.4.2) 8-bit vector

VMNCELL Index in an array of U4 values 16-bit unsigned integer
VMOFFSET Memory offset (see 2.4.3) 16-bit unsigned integer

VMDOFFSET | Memory offset (see 2.4.3)

32-bit unsigned integer

VMCINDEX Class Index (see 3.1) 16-bit unsigned integer
VMPINDEX Package Index (see 3.1) 16-bit unsigned integer
VMMINDEX Method Index (see 3.1) 32-bit unsigned integer
VMFINDEX Field Index (see 3.1) 32-bit unsigned integer

2.4.1 Access Flags

The VMACCESS type describes the access privileges for classes, methods and fields. The

VMACCESS type is a bit vector with the following values:

Flag Name | value [Meaning
Class

ACC_PUBLIC 0x0001 | Is public; may be accessed from outside of its
package.

ACC FINAL 0x0010 | Is final; no subclasses allowed.

ACC_SUPER 0x0020 | Modify the behavior of the jeff_invokespecial
bytecodes included in the bytecode area list of this
class.

ACC _INTERFACE 0x0200 | Is an interface.

ACC_ABSTRACT 0x0400 | Is abstract; may not be instantiated.

Field

ACC_PUBLIC 0x0001 | Is public; may be accessed from outside of its
package.

ACC_PRIVATE 0x0002 | Is private; usable only within the defined class.

ACC_PROTECTED 0x0004 | Is protected; may be accessed within subclasses.

ACC_STATIC 0x0008 | Is static.

ACC_FINAL 0x0010 | Is final; no further overriding or assignment after
initialization.

ACC VOLATILE 0x0040 | Is volatile; cannot be cached.

ACC_TRANSIENT 0x0080 | Is transient; not written or read by a persistent object
manager.

Method

ACC_PUBLIC 0x0001 | Is public; may be accessed from outside of its
package.

ACC_PRIVATE 0x0002 | Is private; usable only within the defined class.

Copyright 2000-2002, J Consortium, All Rights Reserved

8/48

ACC_PROTECTED 0x0004 | Is protected; may be accessed within subclasses.

ACC_STATIC 0x0008 | Is static.

ACC_FINAL 0x0010 | Is final; no overriding is allowed.

ACC_SYNCHRONIZED | 0x0020 | Is synchronized; wrap use in monitor lock.

ACC_NATIVE 0x0100 | Is native; implemented in a language other than the
source language.

ACC_ABSTRACT 0x0400 | Is abstract; no implementation is provided.

ACC_STRICT 0x0800 | The VM is required to perform strict floating-point
operations.

2.4.2 Type Descriptor

A type descriptor is composed of a type value (a VMTYPE), an optional array dimension value
(a TU1) and an optional class index (a VMCINDEX).

The presence or the absence of the optional elements of a type descriptor is explicitly
specified everywhere a type descriptor is used in the specification.

Type Value
The VMTYPE type is a byte whose low nibble contains one of the following values:
VM_TYPE_VOID 0x00 Used for the return type of a method
VM_TYPE_SHORT 0x01
VM_TYPE_INT 0x02
VM_TYPE_LONG 0x03
VM_TYPE_BYTE 0x04
VM_TYPE_CHAR 0x05
VM_TYPE_FLOAT 0x06

VM_TYPE_DOUBLE 0x07
VM_TYPE_BOOLEAN 0x08
VM_TYPE_OBJECT O0x0A

These values are interpreted as a bit field as follows:

7—--43--2 1--0
0000 | XX | YY |

Where:
YY is an encoded representation of the type size in bytes. The actual type size is:
1<<YY.
XX serves to differentiate types having the same size.

The following flags may be set:

VM_TYPE_TWO_CELL 0x10 for a type using two virtual machine cells (this flag is
not set for an array)

VM_TYPE_REF 0x20 for an object or an array
VM_TYPE_MONO 0x40 for a mono-dimensional array
VM_TYPE_MULTI 0x80 for an n-dimensional array, where n >= 2

Dimension Value

The dimension value gives the number of dimensions (0-255) of an array type. This value is
optional for non-array and mono-dimensional array types. This value is not present for a void

Copyright 2000-2002, J Consortium, All Rights Reserved 9/48

return type. For a multi-dimensional array, the VM_TYPE_MULTI flag is set in the type value
and the dimension value must be present.

The dimension values are as follows:
0 for a non-array type,
1 for a simple array (e.g.i nt a[2]),
2 for a 2 dimensional array (e.g. | ong array[2] [8]),

255 for a 255 dimensional array.

Class Index

The optional class index gives the exact type of descriptor of a class or of an array of a class.
For a scalar type or an array of scalar types, the class index must not be present.
Summary

Here is a list of the possible code:

Type Type value Dimension Class Index
void 0x00 0 or absent absent

short 0x01 0 or absent absent

int 0x02 0 or absent absent

long 0x13 0 or absent absent

byte 0x04 0 or absent absent

char 0x05 0 or absent absent

float 0x06 0 or absent absent

double 0x17 0 or absent absent

boolean 0x08 0 or absent absent

reference O0x0A 0 or absent index of the class
short]] 0x61 1 or absent absent

int[] 0x62 1 or absent absent

long] 0x63 1 or absent absent

byte[] 0x64 1 or absent absent

charf] 0x65 1 or absent absent

float(] 0x66 1 or absent absent

double(] 0x67 1 or absent absent

boolean(] 0x68 1 or absent absent
reference] Ox6A 1 or absent index of the class
short[](][]--- 0x81 dimension absent

int[110-.- 0x82 dimension absent
long(][I(]--- 0x83 dimension absent
byte[][l(]-- 0x84 dimension absent

charf][][]- .. 0x85 dimension absent
float[][][]--- 0x86 dimension absent
double[](](]--- 0x87 dimension absent
boolean[][][]... = 0x88 dimension absent
reference[][][]... Ox8A dimension index of the class
Examples

The examples are not normative. They are just an illustration of the above explanations.

A simple instance of the class mypackage. Myd ass: type = 0x2A, optional dimension =
0x00, class index = index of mypackage. Myd ass

Copyright 2000-2002, J Consortium, All Rights Reserved 10/48

A primitive type descriptor of a short : type = 0x01, optional dimension = 0x00, no class index

A simple array of integers (e.g. i nt [5]): type = 0x62, optional dimension = 0x01, no class
index

A simple array of class nypackage. Myd ass (e.g. Myd ass|[5]) : type = Ox6A, optional
dimension = 0x01, class index = index of mypackage. MyCl ass

A primitive type descriptor of a | ong: type = 0x13, optional dimension = 0x00, no class index

A 3-dimensional array of | ong (e.g. | ong[5] [4] []): type = 0xA3, dimension = 0x03, no
class index

A 4-dimensional array of class nypackage. MyCl ass (e.g. MyCl ass[5][4][]1][]): type =
OxAA, dimension = 0x04, class index = index of mnypackage. MyCl ass

A voi d return type (for a method): type = 0x00, no dimension, no class index
2.4.3 Offsets
There are two types of offset values used in the specification: VMOFFSET and VMDOFFSET.

A VMOFFSET is an unsigned 16-bit value located in a class area section (See 3.3.2). This
value is an offset in bytes from the beginning of the class header of the class area section.

A VMDOFFSET is an unsigned 32-bit value. This value is an offset in bytes from the
beginning of the file header.

Copyright 2000-2002, J Consortium, All Rights Reserved 11/48

3 File Structure

This chapter gives the complete structure of the JEFF file format.

3.1 Definitions

This part describes the definitions and rules used in the specification.

3.1.1 Fully Qualified Names

Fully qualified hames are string with the following definition:

The fully qualified name of a named package that is not a sub-package of a named
package is its simple name.

The fully qualified name of a named package that is a sub-package of another named
package consists of the fully qualified name of the containing package followed by the
character “U+ 002E, FULL STOP” followed by the simple (member) name of the sub-
package.

The fully qualified name of a class or interface that is declared in an unnamed
package is the simple name of the class or interface.

The fully qualified name of a class or interface that is declared in a named package
consists of the fully qualified name of the package followed by the character “U+
002E, FULL STOP” followed by the simple name of the class or interface.

3.1.2 Internal Classes and External Classes

A JEFF file contains the definition of one or several classes. For a given file, the classes
stored in the file are called internal classes. The classes referenced by the internal classes but
not included in the same file are called external classes.

The packages of the internal and external classes are ordered following the crescent
lexicographic order of their fully qualified names. This order defines an index value (of type
VMPINDEX) for each package. The package index range is 0 to number of packages — 1. If
an internal or an external class has no package, this class is defined in the default package, a
package with no name. In this case the default package must be counted in the number of
packages and its index is always 0.

The internal classes and the external classes are ordered and identified by an index value (of
type VMCINDEX). The class index range is:
0 to InternalClassCount —1 for the internal classes
InternalClassCount to TotalClassCount —1 for the external classes

The class index values follow the crescent lexicographic order of the classes fully qualified
names (separately for the internal classes and for the external classes)

The package index and the class index assignments are local to the file.

3.1.3 Fields and Methods

Field Symbolic Name
A field symbolic name is the concatenation of the field name, a character “U+ 0020, SPACE”
and the field descriptor string.

Copyright 2000-2002, J Consortium, All Rights Reserved 12/48

Method Symbolic Name
A method symbolic name is the concatenation of the method name, a character “U+ 0020,
SPACE” and the method descriptor string.

Algorithm

The field indexes are computed as follows:

Let n be the number of different symbolic names associated to the internal class fields

1 - The symbolic names of the internal class fields are indexed according to their crescent
lexicographic order, with index increment of 1, indexes ranging from zero up to n-1.

2 — The symbolic names of the external class fields that are not also symbolic names of
internal class fields are indexed according to their crescent lexicographic order, with index
increment of 1, starting at n.

Each entry in the table is identified by a zero-based index (a VMFINDEX value).

By definition of the field symbolic name and the construction of the table, the following
properties are deducted:
Two different field indexes identify two different symbolic names.
Two different fields, internal or external, share the same index if and only if they have
the same name and the same descriptor.

The same construction is used to define the method indexes (VMMINDEX).

By definition of the method symbolic name and the construction of the table, the following
properties are deducted:
Two different method indexes identify two different symbolic names.
Two different methods, internal or external, share the same index if and only if they
have the same name and the same descriptor.

The field index and the method index assignments are local to the file.

3.1.4 Field Position

JEFF includes some information about the position of the field in memory. These pre-
computed values are useful to speed up the download of classes and to allow a quick access
to the fields at runtime.

The computation must take into account the following constraints:
- Class fields and instance fields are stored in separate memory spaces.

The field data must be aligned in memory according to their sizes.
Most of the virtual machines store the field values contiguously for each class.
When a class A inherits from a class B, the way the instance fields of an instance of A
are stored depends on the virtual machine. Some virtual machines store the fields of A
first and then the fields of B, others use the opposite order and other stores them in
non-contiguous memory areas.
The binary compatibility requirement (see Overview) implies that the values computed
for a class are independent of the values computed for its super classes, whether or
not they are included in the same file.

The consequences of these constraints are the following:
- The pre-computed values are redundant with the field information. They are only
included to speedup the virtual machine.
Some virtual machines may not use these values.
The values are computed independently for each class.

Copyright 2000-2002, J Consortium, All Rights Reserved 13/48

The same construction process is applied separately for the class fields and the instance
fields. The fields of the super-class and the field of the sub-classes are not taken into account.
o0 The fields are ordered in a list. The order used follows the size of each field. The
longer fields are stored first (type long or double), the smaller fields are stored at the
end of the list (type byte). The order used between fields of the same size is
undefined. This ordering allows keeping the alignment between the data.

0 The position of a given field is the position of the preceding field in the list plus the
size of the preceding field. The first field position is zero.

o The total size of the field area is the sum of the size of each field in the list.

3.2 Conventions

The following conventions are use in this chapter.

3.2.1 Notations

The format is presented using pseudo-structures written in a C-like structure notation. Like the
members of a C structure, successive items are stored sequentially, with padding and
alignment.

This document contains notations to represent lists and arrays of elements. An array or a list is
the representation of a set of several consecutive structures. In an array, the structures are
identical with a fix size and there are no padding bytes between them. In a list, the structures
may be of variable length and some padding bytes may be added between them. When a list
is used, the comments precise the length of each structure and the presence of padding bytes.

3.2.2 Byte Order

All the values are stored using the byte order defined by a set of flags specified in the file
header. Floating-point numbers and integer values are treated differently.

3.2.3 Alignhment and Padding

If a platform requires alignment of the multi-byte values in memory, JEFF allows efficient
access to all its data without requiring byte-by-byte reading.

When a JEFF file is stored on the platform, the first byte of the file header must always be
aligned in memory on an 8-byte boundary.

Copyright 2000-2002, J Consortium, All Rights Reserved 14/48

All the items constituting the file are aligned in memory. The following table gives the memory

alignment:

Elements Element | Alignment on
size, in memory
bytes boundaries of

TU1, TS1, JBYTE, VMTYPE 1 1 byte

TU2, TS2, JSHORT, VMACCESS, 2 2 bytes

VMNCELL, VMOFFSET, VMCINDEX,

VMPINDEX

TU4, TS4, JINT, JFLOAT, VMDOFFSET, 4 4 bytes

VMMINDEX, VMFINDEX

JLONG, JDOUBLE 8 8 bytes

When aligning data, some extra bytes may be needed for padding. These bytes must be set to
null.

Structures are always aligned following the alignment of their first element.

Example:

VNSt ruct ure {
VMOFFSET of AnOF f set ;
TU1 <0- 2 byte pad>
TU4 nAnyVal ue;

}

The structure is aligned on a 2-byte boundary because VMOFFSET is a 2-byte type. The field
nAnyValue is aligned on a 4-byte boundary. A padding of 2 bytes may be inserted between
ofAnOffset and nAnyValue.

3.3 Definition of the File Structures

All the structures defined in this specification are stored in the JEFF file one after the other
without overlapping and without any intermediate data other than padding bytes required for
alignment. Every unspecified data may be stored in an optional attribute as defined in

the Attribute Section.

The file structure is composed of six sections ordered as follows:

Section Description
File Header File identification and directory
Class Section List of class areas
Attributes Section List of the attributes
Symbolic Data Section [The symbolic information used by the classes
Constant Data Pool Set of common constant data
Digital Signature Signature of the complete file
File Header

The file header contains the information used to identify the file and a directory to access to
the other sections' contents.

Copyright 2000-2002, J Consortium, All Rights Reserved 15/48

Class Section
The class section describes the content and the properties of each class.

Attributes Section
This optional section contains the attributes for the file, the classes, the methods and the
fields.

Symbolic Data Section
This section contains the symbolic information used to identify the classes, the methods and
the fields.

Constant Data Pool
The constant strings and the descriptors used by the Optional Attribute Section and the
Symbolic Data Section are stored in this structure.

Digital Signature
This part contains the digital signature of the complete file.

3.3.1 File Header

The file header is always located at the beginning of the file. In the file structure, some
sections have a variable length. The file header contains a directory providing a quick access
to these sections.

VMFi | eHeader {

TU1 nMagi cWor dil;

TU1 nMagi c\Wor d2;

TU1 nMagi c\Wor d3;

TU1 nMagi c\Wor d4;

TU1 nFor mat Ver si onMaj or ;
TU1 nFor mat Ver si onM nor ;
TU1 nByt eOr der ;

TU1 nOpti ons;

TU4 nFi | eLengt h;

TU2 nFi | eVer si on;

TU2 nTot al PackageCount ;
TU2 nl nt er nal d assCount ;
TU2 nTot al A assCount ;
TU4 nTot al Fi el dCount ;
TU4 nTot al Met hodCount ;

VVDOFFSET dof Attri but eSecti on;

VMDOFFSET dof Synbol i cDat a;

VNVDOFFSET dof Const ant Dat aPool ;

VMDOFFSET dof Fi | eSi gnat ur e;

VMDOFFSET dof O assHeader [nl nt er nal d assCount] ;

}

The items of the VMFileHeader structure are as follows:

nMagicWord1, nMagicWord2, nMagicWord3, nMagicWord4
The format magic word is nMagicWord1 = 0x4A, nMagicWord2 = 0x45, nMagicWord3 =
0x46 and nMagicWord4 = 0x46 ("JEFF"in ASCII).

nFormatVersionMajor, nFormatVersionMinor,

Version number of the file format. For this version (1.0), the values are nFormatVersionMajor
= 0x01 for the major version number and nFormatVersionMinor = 0x00 for the minor version
number.

Copyright 2000-2002, J Consortium, All Rights Reserved 16/48

nByteOrder

This 8-bit vector gives the byte order used by all the values stored in the file, except the magic
number. The following set of flags gives the byte order of integer values and the floating-point
values separately. In the definitions, the term “integer value” defines all the two-, four- and
eight-bytes long values, except the JFLOAT and JDOUBLE values.

VM_ORDER_INT_BIG 0x01
VM_ORDER_INT_64_INV 0x02
VM_ORDER_FLOAT BIG 0x04
VM_ORDER_FLOAT 64_IN 0x08

\%

nOptions

If this flag is set, integer values are stored using the
big-endian convention. Otherwise, they are stored
using the little-endian convention.

If this flag is set, the two 32-bit parts of the 64-bit
integer values are inverted.

If this flag is set, JFLOAT and JDOUBLE values
are stored using the big-endian convention.
Otherwise, they are stored using the little-endian
convention.

If this flag is set, the two 32-bit parts of the
JDOUBLE values are inverted.

A set of information describing some properties of the internal classes.

This item is an 8-bit vector with the following flag values:

VM_USE_LONG_TYPE 0x01
VM_USE_UCS_BMP 0x02
VM_USE_FLOAT_TYPE 0x04
VM_USE_STRICT_FLOAT 0x08
VM_USE_NATIVE_METHOD 0x10
VM_USE_FINALIZER 0x20
VM_USE_MONITOR 0x40

nFileLength

One of the classes uses the "long" type (in the
fields types, the methods signatures, the constant
values or the bytecode instructions).

All the characters encoded in the strings of this file
are in the “Basic Multilingual Plane” defined in [3],
[4], [5], therefore their encoding is in the range U+
0000 to U+ FFFF included.

One of the classes uses the "float" type and/or the
"double” type (in the fields types, the methods
signatures, the constant values or the bytecode
instructions).

One of the classes contains bytecodes with strict
floating-point computation (the "strictfp" keyword is
used in the source file).

One of the classes contains native methods.

One of the classes has an instance finalizer or a
class finalizer.

One of the classes uses the flag
ACC_SYNCHRONIZED or the bytecodes
jeff_monitorenter or jeff_monitorexit in one of its
methods.

Size in bytes of the file (all elements included).

nFileVersion

Version number of the file itself. The most significant byte carries the major version number.
The less significant byte carries the minor version number. This specification does not define
the interpretation of this field by a virtual machine.

Copyright 2000-2002, J Consortium, All Rights Reserved

17/48

nTotalPackageCount
The total number of unique packages referenced in the file (for the internal classes and the
external classes).

ninternalClassCount
The number of classes in the file (internal classes).

nTotalClassCount
The total number of the classes referenced in the file (internal classes and external classes).

nTotalFieldCount
The total number of field symbolic names used in the file.

nTotalMethodCount
The total number of method symbolic names used in the file.

dofAttributeSection
Offset of the Optional Attribute Section, a VMALttributeSection structure. This field is set to
null if no optional attributes are stored in the file.

dofSymbolicData
Offset of the symbolic data section, a VMSymbolicDataSection structure.

dofConstantDataPool
Offset of the constant data pool, a VMConstantDataPool structure.

dofFileSignature
Offset of the file sighature defined in a VMFileSignature structure. This value is set to null if
the file is not signed.

dofClassHeader
Offsets of the VMClassHeader structures for all internal classes. The entries of this table
follow the class index order and the class areas are stored in the same order.

3.3.2 Class Section

For each class included in the file, a class area contains the information specific to the class.
The Class Section contains these class areas stored consecutively in an ordered list following
the crescent order of the corresponding class indexes.

The first element of this area is the class header pointed to from the dofClassHeader array in
the file header. The other structures in the class area are stored one after the other without
overlapping and without any intermediate data other than padding bytes required for
alignment.

Copyright 2000-2002, J Consortium, All Rights Reserved 18/48

The ten sections of the class area must be ordered as follows:

Section

Description

Class Header

Class identification and directory

Interface Table

List of the interfaces implemented by the current class

Referenced Class Table

List of the classes referenced by the current class

Internal Field Table

List of the fields of the current class

Internal Method Table

List of the methods of the current class

Referenced Field Table

List of the fields of other classes used by the current class

Referenced Method Table

List of the methods of other classes used by the current class

Bytecode Area List

List of the bytecode areas for the methods of the current class

Exception Table List

List of the exception handler tables for the methods of the
current class

Constant Data Section

Set of constant data used by the current class

3.3.2.1 Class Header

The class header is always located at the beginning of the class representation. In the class
file structure, some sections have a variable length. The directory is used as a redirector to
have a quick access to these sections.

For the classes, the class area has the following structure:

VMOl assHeader {

VMOFFSET of Thi sd assl ndex;

VMPI NDEX pi dPackage;

VMACCESS aAccessFl ag;

TU2 nd assDat a;

VMOFFSET of Cl assConst ruct or;
VMOFFSET of InterfaceTabl e;
VMOFFSET of Fi el dTabl e;

VMOFFSET of Met hodTabl e;

VMOFFSET of Ref er encedFi el dTabl e;
VMOFFSET of Ref er encedMet hodTabl e;
VMOFFSET of Ref er encedC assTabl e;
VMOFFSET of Const ant Dat aSect i on;
VMOFFSET of Super d assl ndex;

TU2 nl nst anceDat a;

VMOFFSET of I nst anceConstructor;

For the interfaces, the class area has the following structure:

Copyright 2000-2002, J Consortium, All Rights Reserved

19/48

VMOl assHeader {
VMOFFSET of Thi sd assl ndex;
VMPI NDEX pi dPackage;
VMACCESS aAccessFl ag;
TU2 nd assDat a;
VMOFFSET of Cl assConst ruct or;

VMOFFSET of InterfaceTabl e;
VMOFFSET of Fi el dTabl e;

VMOFFSET of Met hodTabl e;

VMOFFSET of Ref er encedFi el dTabl e;
VMOFFSET of Ref er encedMet hodTabl e;
VMOFFSET of Ref er encedC assTabl e;
VMOFFSET of Const ant Dat aSect i on;

}

The items of the VMClassHeader structure are as follows:

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

pidPackage

The current class package index.

aAccessFlag

Class access flags. The possible bit values are the following:

ACC_PUBLIC Is public; may be accessed from outside its package.
ACC_FINAL Is final; no subclasses allowed.

ACC_SUPER Treat superclass methods specially in invokespecial.
ACC_INTERFACE Is an interface.

ACC_ABSTRACT Is abstract; may not be instantiated.

nClassData

This value is the total size, in bytes, of the class fields. The algorithm used to compute the
value is given in 3.1.4 Field Position. The size is null if there is no class field in the class.

ofClassConstructor
Offset of the class constructor "<clinit>". Offset of the corresponding VMMethodInfo
structure. Null if there is no class constructor.

ofinterfaceTable
Offset of the interface table, a VMInterfaceTable structure. This value is null if the current
class implements no interfaces.

ofFieldTable
Offset of the internal field table, a VMFieldInfoTable structure. This value is null if the current
class has no field.

ofMethodTable
Offset of the internal method table, a VMMethodInfoTable structure. This value is null if the
current class has no method.

Copyright 2000-2002, J Consortium, All Rights Reserved 20/48

3.3.2.2 |

ofReferencedFieldTable
Offset of the referenced field table, a VMReferencedFieldTable structure. This value is null if
the bytecode uses no field.

ofReferencedMethodTable
Offset of the referenced method table, a VMReferencedMethodTable structure. This value is
null if the bytecode uses no method.

ofReferencedClassTable
Offset of the referenced class table, a VMReferencedClassTable structure.

ofConstantDataSection
Offset of the constant data section, a VMConstantDataSection structure. This value is null if
the class does not contain any constants.

ofSuperClassindex

Offset of the super class index, a VMCINDEX value stored in the “referenced class table” of
the current class. If the current class is java.lang.Object, the offset value is zero. This value is
not present for an interface.

ninstanceData

This value is the total size, in bytes, of the instance fields. The algorithm used to compute the
value is given in 3.1.4 Field Position. The size is null if there is no instance field in the class.
This value is not present for an interface

ofInstanceConstructor

Offset of the default instance constructor "<init> ()V". Offset of the corresponding
VMMethodInfo structure. The value is null if there is no default instance constructor. This
value is not present for an interface.

nterface Table

This structure is the list of the interfaces implemented by this class or interface.

VM nt erfaceTabl e {
TU2 nl nter f aceCount ;
VMOFFSET of I nterfacel ndex [nlnterfaceCount];

}

The items of the VMInterfaceTable structure are as follows:

ninterfaceCount
The number of interfaces implemented.

ofinterfacelndex

Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. The corresponding class is a super interface implemented by the current class
or interface.

3.3.2.3 Referenced Class Table

Every class, internal or external, referenced by the current class is represented in the following
table:

Copyright 2000-2002, J Consortium, All Rights Reserved 21/48

VMRef er encedC assTabl e {
TU2 nRef erencedd assCount ;
VMCI NDEX ci dRef er encedd ass [nRef erencedd assCount];

}

The current class is also represented in this table.
The items of the VMReferenceClassTable structure are as follows:

nReferencedClassCount
The number of referenced classes.

cidReferencedClass
The class index (VMCINDEX value) of a class referenced by the current class.

3.3.2.4 Internal Field Table

Every field member of the defined class is described by a field information structure located in
a table:

VMFi el dI nf oTabl e {
TU2 nFi el dCount ;
TUl <0-2 byte pad>
{
VIVFI NDEX fi dFi el dl ndex;
VMOFFSET of Thi sd assl ndex;

VMI'YPE t Fi el dType;

TU1 nTypeDi nensi on;
VMACCESS aAccessFl ag;

TU2 nFi el dDat aCxf f set ;

} VMFieldlnfo [nFieldCount];
}

The instance fields are always stored first in the table. The class fields follow them. Instance
fields and class fields are stored following the crescent order of their index. The items of the
VMFieldinfoTable structure are as follows:

nFieldCount
The number of fields in the class.

fidFieldIndex
The field index.

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

tFieldType
The field type. By definition, the field type gives the size of the value stored by the field.

nTypeDimension
The array dimension associated with the type. This value is always present.

aAccessFlag
Field access flag. The possible values are:

ACC_PUBLIC Is public; may be accessed from outside its package.

Copyright 2000-2002, J Consortium, All Rights Reserved 22/48

ACC_PRIVATE Is private; usable only within the defined class.
ACC_PROTECTED s protected; may be accessed within subclasses.
ACC_STATIC Is static.

ACC_FINAL Is final; no further overriding or assignment after initialization.
ACC_VOLATILE Is volatile; cannot be cached.

ACC_TRANSIENT Is transient; not written or read by a persistent object manager.

nFieldDataOffset

This value is an offset, in bytes, of the field data in the class field value area or in the instance
value area. The algorithm used to compute the value is given in 3.1.4 Field Position. The total
size of the instance field data area is given by ninstanceData. The total size of the class field
data area is given by nClassData.

3.3.2.5 Internal Method Table

Every method of the defined class, including the special internal methods, <init> or <clinit>,
is described by a method information structure located in a table:

VMVet hodl nf oTabl e {
TU2 nMet hodCount ;
TUl <0-2 byte pad>

{
VMM NDEX m dMet hodl ndex;

VMOFFSET of Thi s assl ndex;
VMNCELL ncSt ackAr gunent ;
VMACCESS aAccessFl ag;
VMOFFSET of Code;

} VMMet hodl nf o [nMet hodCount] ;

TW nNati veReference[];
}

The instance methods are always stored first in the table. The class methods follow them.
Instance methods and class methods are stored following the crescent order of their index.
The items of the VMMethodInfoTable structure are as follows:

nMethodCount
The number of methods in the class.

midMethodIndex
The method index.

ofThisClassIndex
Offset of the current class index, a VMCINDEX value stored in the “referenced class table” of
the current class.

ncStackArgument

Size of the method arguments in the stack. The size includes the reference to the instance
used for calling an instance method. This size does not include the return value of the method.
The bytecode interpreter uses ncStackArgument to clean the stack after the method return.
The size, in cells, is computed during the class translation.

aAccessFlag
Method access flag. The possible values are:

ACC_PUBLIC Is public; may be accessed from outside its package.

Copyright 2000-2002, J Consortium, All Rights Reserved 23/48

ACC_PRIVATE Is private; usable only within the defined class.
ACC_PROTECTED Is protected; may be accessed within subclasses.

ACC_STATIC Is static.

ACC_FINAL Is final; no overriding is allowed.

ACC_SYNCHRONIZED Is synchronized; wrap use in monitor lock.

ACC_NATIVE Is native; implemented in a language other than the source language.
ACC_ABSTRACT Is abstract; no implementation is provided.

ACC_STRICT The VM is required to perform strict floating-point operations.
ofCode

For a non-native non-abstract method, this value is the offset of the bytecode block, a
VMBytecodeBlock structure. For an abstract method, the offset value is null. For a native
method, the value is the offset of one of the nNativeReference values. Each native method
must have a different ofCode value.

nNativeReference

This array of TU4 values contains as many elements as the class has native methods. To
each TU4 value corresponds one and only one native method of the class. The TU4 values
are stored following the order of storage of the corresponding VMMethodInfo structure. The
TU4 values are not specified and reserved for future use.

3.3.2.6 Referenced Field Table

The referenced field table describes the internal or external class fields that are not members
of the current class but are used by this class. If an instruction refers to such a field, the
bytecode gives the offset of the corresponding VMReferencedField structure.

VMRef er encedFi el dTabl e {
TU2 nFi el dCount ;
TUl <0-2 byte pad>

{
VMVFI NDEX fi dFi el dl ndex;

VMOFFSET of d assl ndex;
VMI'YPE t Fi el dType;
TU1 nTypeDi nensi on;

} VMRef erencedFi el d [nFi el dCount];

}

The items of the VMReferencedFieldTable structure are as follows:

nFieldCount
The number of fields in the table.

fidFieldIndex
The field index.

ofClassIindex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class containing the field.

tFieldType

The field type. By definition, the field type gives the size of the value stored by the field. This
information is used to retrieve in the operand stack the reference of the object instance (for an
instance field).

Copyright 2000-2002, J Consortium, All Rights Reserved 24/48

nTypeDimension
The array dimension associated with the type. This value is always present.

3.3.2.7 Referenced Method Table

The referenced method table describes the internal or external class methods that are not
members of the current class but are used by this class. If an instruction refers to such a
method, the bytecode gives the offset of the corresponding VMReferencedMethod structure.

VMRef er encedMet hodTabl e {
TU2 nMet hodCount ;
TUl <0-2 byte pad>

VWM NDEX m dMet hodl ndex;
VMOFFSET of d assl ndex;
VMNCELL ncSt ackAr gumnent ;

} VMRef erencedMet hod [nMet hodCount] ;

}

The items of the VMReferencedMethodTable structure are as follows:

nMethodCount
The number of methods in the table.

midMethodIndex
The method index.

ofClassIindex
Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class containing the method.

ncStackArgument

Size of the method arguments in the stack. The size includes the reference to the instance
used for calling an instance method. This size does not include the return value of the method.
The bytecode interpreter uses ncStackArgument to clean the stack after the method return.
The size, in cells, is computed during the class translation.

3.3.2.8 Bytecode Block Structure

This section is a list of consecutive bytecode block structures. To each bytecode block
structure corresponds one and only one non-native, non-abstract method of the internal
method table of this class area. The bytecode block structures are stored following the order of
storage of the corresponding methods in the internal method table.

Each bytecode block is represented by the following structure:

VMByt ecodeBl ock {
VIVNCEL L ncMax St ack;
VIVNCEL L ncMaxLocal s;
VMOFFSET of Excepti onCat chTabl e;
TU2 nByt eCodeSi ze;
TU1 byt ecode[nByt eCodeSi ze] ;

}

The items of the VMBYytecodeBlock structure are as follows:

Copyright 2000-2002, J Consortium, All Rights Reserved 25/48

ncMaxStack
The value of the ncMaxStack item gives the maximum number of cells on the operand stack
at any point during the execution of this method.

ncMaxLocals

The value of the ncMaxLocals item gives the number of local variables used by this method,
including the arguments passed to the method on invocation. The index of the first local
variable is 0. The greatest local variable index for a one-cell value is ncMaxLocals-1. The
greatest local variable index for a two-cell value is ncMaxLocals-2.

ofExceptionCatchTable
Offset of the caught exception table, a VMExceptionCatchTable structure. Null if no
exception is caught in this method.

nByteCodeSize
The size of the bytecode block in bytes. The value of nByteCodeSize must be greater than
zero; the code array must not be empty.

bytecode

The bytecode area contains the instructions for the method. All branching instructions included
in a bytecode area must specify offsets within the same bytecode area. All exception handlers
defined for a bytecode area must reference offsets within that bytecode area. The bytecode
area may only contain bytecodes defined in this specification, their operands and padding
bytes (if needed for alignment).

Note for the class initializer

Since the initialization values of the static fields are not included in JEFF, a piece of code
must be added at the beginning of the class initializer “<clinit>" to perform the initialization of
these fields (if needed).

3.3.2.9 Exception Table List

This section is a list of consecutive exception table structures. To each exception table
structure corresponds one and only one method of the internal method table of this class area.
Some methods have no corresponding exception table structure. The exception tables are
stored following the order of storage of the corresponding methods in the internal method
table.

An exception table gives the exception handling information for a method.

VMEXcept i onCat chTabl e {

TU2 nCat chCount ;

{
VMOFFSET of St art Pc;
VMOFFSET of EndPc;
VMOFFSET of Handl er Pc;
VMOFFSET of Excepti onl ndex;

} VMExceptionCatch [nCatchCount];

}

The items of the VMExceptionCatchTable structure are as follows:

nCatchCount
The value of the nCatchCount item indicates the number of elements in the table.

Copyright 2000-2002, J Consortium, All Rights Reserved 26/48

ofStartPc
Offset of the first byte of the first bytecode in the range where the exception handler is active.

ofEndPc
Offset of the first byte following the last byte of the last bytecode in the range where the
exception handler is active.

ofHandlerPc
Offset of the first byte of the first bytecode of the exception handler.

ofExceptionindex

Offset of a class index, a VMCINDEX value stored in the “referenced class table” of the
current class. This index identifies the class of the caught exception. The offset value is null if
the exception handler has to be called for any kind of exception.

3.3.2.10 Constant Data Section

This section contains the constant data values of the class. They are always referred through
offsets.

Single values of type JINT, JLONG, JFLOAT or JDOUBLE can be referred to by the
bytecodes ildc, lldc, fldc and dldc. The VMString structures are referred to by the sldc
bytecode.

The newconstarray bytecode refers contiguous set of values of type JDOUBLE, JLONG,
JFLOAT, JINT, JSHORT and JBYTE. This bytecode also uses the strings encoded in
VMString structures to create character arrays.

VMConst ant Dat aSecti on {

TU2 nConst Fl ags;
TU2 nDoubl eNurnber ;
TU2 nLongNunber ;
TU2 nFl oat Nunber ;
TU2 nl nt Nunber ;
TU2 nShort Nunber ;
TU2 nByt eNunber ;
TU2 nSt ri ngNunber ;

JDOUBLE nDoubl eVal ue[nDoubl eNunber] ;

JLONG nLongVal ue[nLongNumnber] ;

JFLOAT nFl oat Val ue[nFl oat Nunber] ;

JINT nl nt Val ue[nl nt Nunber];

JSHORT nShort Val ue[nShort Nunber] ;

JBYTE nByt eVal ue[nByt eNunber] ;

TUl <0-1 byte pad>

VMSt ring strConst String[nStringNunber];
}

The items of the VMConstantDataSection structure are as follows:

nConstFlags
The nConstFlags value is a set of flags giving the content of the section as follows:

VM_CONST_DOUBLE 0x0001 The section contains values of type double
VM_CONST_LONG 0x0002 The section contains values of type long
VM_CONST_FLOAT 0x0004 The section contains values of type float
VM_CONST_INT 0x0008 The section contains values of type int

Copyright 2000-2002, J Consortium, All Rights Reserved 27/48

VM_CONST_SHORT 0x0010 The section contains values of type short
VM_CONST_BYTE 0x0020 The section contains values of type byte
VM_CONST_STRING 0x0040 The section contains constant strings

nDoubleNumber
The number of JDOUBLE values. This non-null value is only present if the
VM_CONST_DOUBLE flag is set in nConstFlags.

nLongNumber
The number of JLONG values. This non-null value is only present if the VM_CONST_LONG
flag is set in nConstFlags.

nFloatNumber
The number of JFLOAT values. This non-null value is only present if the VM_CONST_FLOAT
flag is set in nConstFlags.

nintNumber
The number of JINT values. This non-null value is only present if the VM_CONST_INT flag is
set in nConstFlags.

nShortNumber
The number of JSHORT values. This non-null value is only present if the
VM_CONST_SHORT flag is set in nConstFlags.

nByteNumber
The number of JBYTE values. This non-null value is only present if the VM_CONST_BYTE
flag is set in nConstFlags.

nStringNumber
The number of VMString structures. This non-null value is only present if the
VM_CONST_STRING flag is set in nConstFlags.

nDoubleValue
A value of type double.

nLongValue
A value of type long.

nFloatValue
A value of type float.

nintValue
A value of type int.

nShortValue
A value of type short.

nByteValue
A value of type byte.

strConstString
A constant string value (See the definition of the VMString structure).

Copyright 2000-2002, J Consortium, All Rights Reserved 28/48

3.3.3 Attributes Section

This optional section contains the optional attributes for the file, the classes, the methods and
the fields. The format of the attributes will be included in an Annex of the JEFF specification.

VMAttri but eSection {
VVDOFFSET dof Fi | eAttri buteLi st;
VMDOFFSET dof O assAttri butes[nlnternal dassCount];
TU2 nAttri but eTypeCount;
TU2 nCl assAttri but eCount;
VMAttri but eType SAttributeType[nAttri buteTypeCount];
VMOl assAttributes sC assAttributes[nC assAttri but eCount]
TU2 nAttri but eTabl eCount;
VMAttri buteTabl e sAttributeTabl e[nAttri buteTabl eCount];

}

The ninternalClassCount value is defined in the file header.
The items of the VMAttributeSection structure are as follows:

dofFileAttributeList
This value is the offset of a VMAttributeTable structure. This structure defines the attribute
list of the file. The offset value is zero if and only if the JEFF file has no file attributes.

dofClassAttributes

The index in this table is the class index. Each entry value is the offset of a
VMClassAttributes structure. This structure defines the attributes for the internal class of
same index. The offset value is zero if and only if the corresponding class has no attributes.

nAttributeTypeCount
This value is the number of attribute types used in the file.

nClassAttributeCount
This value is the number of VMClassAttributes structures used in the file.

nAttributeTableCount
This value is the number of attribute lists (VMAttributeTable structures) used in the file.

3.3.3.1 Attribute Type

This structure defines an attribute type.

VMAtt ri but eType {
VMDOFFSET dof TypeNane;
TU2 nTypeFl ags;
TU2 nTypelLengt h;

}

The items of the VMALttributeType structure are as follows:

dofTypeName
Offset of a VMString structure stored in the constant data pool. The string value is the
attribute type name.

nTypeFlags
This value is a set of flags defining the attribute type. The flag values are the following:

Copyright 2000-2002, J Consortium, All Rights Reserved 29/48

VM_ATTR_INDEXES 0x0001 The attribute contains some index values of type
VMPINDEX, VMCINDEX, VMMINDEX or VMFINDEX.

VM_ATTR_VMOFFSETS 0x0002 The attribute contains some values of type
VMOFFSET.

VM_ATTR_VMDOFFSETS 0x0004 The attribute contains some values of type
VMDOFFSET.

VM_ATTR_BYTE_ORDER 0x0008 The elements stored in nData (See the
VMAttributeTable structure) contain byte ordered
values.

VM_ATTR_CST_LENGTH 0x0010 The length of the attribute is constant and given by
the nTypeLength item. This flag can only be used if
the length of the attribute structure is not subject to
variations caused by the type alignment and if the
length can be encoded with a TU2 variable.

The VM_ATTR_BYTE_ORDER flag must be set if the VM_ATTR_INDEXES,
VM_ATTR_VMOFFSETS, or VM_ATTR_VMDOFFSETS flags are specified.

nTypelLength

This value is the fixed length of the attribute in bytes, not including the type index (See the
VMAttributeTable structure). This value is null if the VM_ATTR_CST_LENGTH flag is not set
in nTypeFlags.

3.3.3.2 Class Attributes

The attributes used by a class such as the class attributes, the method attribute and the field
attributes are defined in this structure.

VMOl assAttri butes {
VVDOFFSET dof Cl assAttri buteLi st;
VMDOFFSET dof Fi el dAttri but eLi st[nFi el dCount];
VMDOFFSET dof Met hodAt t ri but eLi st [nMet hodCount | ;

}
The items of the VMClassAttribute structure are as follows:

dofClassAttributeList
This value is the offset of a VMAttributeTable structure. This structure defines the attribute
list of the class.

dofFieldAttributeList

This item defines the attribute list of a field. The value is the offset of a VMAttributeTable
structure. The position of the offset in the list is equal to the position of the field in the internal
field list of the corresponding class. The value of the offset is null if the field has no attributes.
The value of nFieldCount is given by the internal field table structure of the corresponding
class.

dofMethodAttributeList

This item defines the attribute list of a method. The value is the offset of a VMAttributeTable
structure. The position of the offset in the list is equal to the position of the method in the
internal method list of the corresponding class. The value of the offset is null if the method has
no attributes. The value of nMethodCount is given by the internal method table structure of
the corresponding class.

Copyright 2000-2002, J Consortium, All Rights Reserved 30/48

3.3.3.3 Attribute Table

This structure is used to store each attribute list.

VMAttri but eTabl e {
TU2 nAttri but eCount;

{
TU2 nAttributeType;

TUl <0-2 byte pad>
TU4 nTypelLengt h;
TUl nDat a][nTypeLengt h];
} VMAttribute[nAttributeCount]

}

The items of the VMAttributeTable structure are as follows:

nAttributeType
This value is the index of a VMAttributeType structure in the attribute type table. The
structure defines the type of the attribute.

nTypelLength

This value is the length, in bytes, of the nData array. This value is only present if the
VM_ATTR_CST_LENGTH flag is not set in nTypeFlags item of the VMAttributeType
structure pointed to by dofAttributeType. The value must take in account variations of length
due to type alignment in the structure of the attribute.

nData

The structure presented is a generic structure that all the attributes must follow. The nData
byte array stands for the true attribute data. These data must follow all the alignment and
padding constraints given in section 3.2.3

3.3.4 Symbolic Data Section

This section contains the symbolic information used to identify the elements of the internal and
external classes. The reflection feature also uses this section.

VMSynbol i cDat aSecti on {
VMPI NDEX pi dExt Cl assPackage[nTot al O assCount - nl nt er nal C assCount] ;
TU1 <0- 2 byte pad>
VMDOFFSET dof PackageNamne[nTot al PackageCount] ;
VMDOFFSET dof O assNane[nTot al C assCount] ;

{
VMDOFFSET dof Fi el dNane;

VMDOFFSET dof Fi el dDescri ptor;
} VMFi el dSynbol i cl nfo[nTot al Fi el dCount]

VMDOFFSET dof Met hodNanre;
VMDOFFSET dof Met hodDescr i pt or;
} VMvet hodSynbol i cl nf o[nTot al Met hodCount]

}

The nTotalPackageCount, nTotalClassCount, ninternalClassCount, nTotalFieldCount
and nTotalMethodCount values are defined in the file header.

The items of the VMSymbolicDataSection structure are as follows:

Copyright 2000-2002, J Consortium, All Rights Reserved 31/48

pidExtClassPackage

This table gives the package of the corresponding external class. If n is a zero-based index in
this table, the corresponding entry pidExtClassPackage[n], gives the package index for the
external class with a class index value of n + ninternalClassCount.

dofPackageName

Offset of a VMString structure stored in the constant data pool. The string value is the
package fully qualified name. The index used in this table is the package index (a VMPINDEX
value). If the JEFF file references the “default package”, a package with no name, the
corresponding dofPackageName value is the offset of a VMString structure with a null length.

dofClassName
Offset of a VMString structure stored in the constant data pool. The string value is the simple
class name. The index of an entry in this table is the class index (a VMCINDEX value).

VMFieldSymboliclnfo
Table of field symbolic information. The index of an entry in this table is the field index (a
VMFINDEX value).

dofFieldName
Offset of a VMString structure stored in the constant data pool. The string value is the simple
field name.

dofFieldDescriptor
Offset of a VMDescriptor structure stored in the constant data pool. The descriptor value
gives the field type.

VMMethodSymboliclnfo
Table of method symbolic information. The index of an entry in this table is the method index
(a VMMINDEX value).

dofMethodName

The value is an offset of a VMString structure stored in the constant data pool representing
either one of the special internal method names, either <init> or <clinit>, or a method name,
stored as a simple name.

dofMethodDescriptor
Offset of a VMMethodDescriptor structure stored in the constant data pool. The descriptor
gives the type of the method arguments and the type of return value.

3.3.5 Constant Data Pool

This structure stores the constant strings and the descriptors used by the Optional Attribute
Section and the Symbolic Data Section.

Copyright 2000-2002, J Consortium, All Rights Reserved 32/48

3.3.5.1 Constant Data Pool Structure
VMConst ant Dat aPool {

TU4 nSt ri ngCount ;
TU4 nDescr i pt or Count ;
TU4 nMet hodDescr i pt or Count ;

VMString strConstantString[nStringCount];
VMDescri pt or sDescri ptor[nDescriptorCount];
VMvet hodDescri pt or sMet hodDescri pt or [nMet hodDescr i pt or Count] ;

}

The items of the VMConstantDataPool structure are as follows:

nStringCount
The number of constant strings stored in the structure.

nDescriptorCount
The number of individual descriptors stored in the structure. This number does not take the
descriptors included in the method descriptors into account.

nMethodDescriptorCount
The number of method descriptors stored in the structure.

strConstantString
A constant string value (See the definition of the VMString structure).

sDescriptor
A descriptor value as defined below.

sMethodDescriptor
A method descriptor value as defined below.

3.3.5.2 Descriptor

VMDescr i pt or
VMI'YPE t Dat aType,;
TU1 nDat aTypeDi nmensi on;
TU1 <0-1 byte pad>

VMCI NDEX ci dDat aTypel ndex;
}

The items of the VMDescriptor structure are as follows:

tDataType
The data type. It must be associated to the nDataTypeDimension and cidDataTypelndex
items to have the full field descriptor.

nDataTypeDimension
The array dimension associated with the type. This value is only present if the type is an n-
dimensional array, where n >= 2.

cidDataTypelndex
The class index associated with the data type. This item is present only if the tDataType is not
a primitive type or an array of primitive types.

Copyright 2000-2002, J Consortium, All Rights Reserved 33/48

3.3.5.3 Method Descriptor

VMvet hodDescri pt or {
TU2 nArgCount;
VMDescri pt or sArgunent Type[nArgCount] ;
VMDescri pt or sReturnType;

}

The items of the VMMethodDescriptor structure are as follows:

nArgCount
The number of arguments, which for a method without any arguments is zero.

sArgumentType
The descriptor of an argument type.

sReturnType
The descriptor of the type returned by the method.

3.3.6 Digital Signature

The JEFF specification does not impose any algorithm or any scheme for the signature a
JEFF file. The digital signature of the JEFF file is stored in a VMFileSignature structure
defined as follows:

VMFi | eSi gnature {
TUl nSignature[];

}

Where the byte array nSignature contains the signature data. The length of the array can be
deduced from the position of the VMFileSignature structure and the total size of the JEFF.

Copyright 2000-2002, J Consortium, All Rights Reserved 34/48

4 Bytecodes

This chapter describes the instruction set used in JEFF. The operational semantics of the
instruction is not provided, as it does not impact the structural description of the JEFF format.

An instruction is an opcode followed by its operands. An opcode itself is coded on one byte. A
<n>-bytes instruction is an instruction of which operands take <n-1> bytes. A one-byte
instruction is an instruction without operand. A two-bytes instruction is an instruction with one
operand coded on one byte.

4.1 Principles

The section 4.2 describes only the differences between the class file bytecodes and the JEFF
bytecodes. The two instruction sets are equivalent in term of functionality. The main purpose
of the bytecode translation is to create an efficient instruction set adapted to the structure of
the file.

Translation Rules

Several operations are applied to the bytecode:
- The replacement. A bytecode is replaced by another bytecode with the same behavior

but using another syntax for its operands.
The bytecode splitting. A single bytecode with a wide set of functionalities is replaced
by several bytecodes implementing a part of the original behavior. The choice of the
new bytecode depends on the context.
The bytecode grouping. A group of bytecodes frequently used is replaced by a new
single bytecode performing the same task.

If an instruction is not described in section 4.2, its syntax shall be unchanged with respect to
the one assigned to the instruction of same opcode value in class file bytecode (the mnemonic
of the opcode is then the mnemonic of the original opcode as found in class file bytecode
prefixed by "j eff_").

The instructions of JEFF bytecode that result from a particular translation are completely
defined in section 4.2.

All the instructions not described in section 4.2 are one-byte or two-bytes instructions and are
defined in section 4.3.

Section 4.4 provides the complete set of opcodes with their mnemonics used in JEFF
bytecode.
Alignment and Padding

The bytecodes and their operands follow the rules of alignment and padding defined in 3.2.3
Alignment and Padding.

4.2 Translations

This chapter defines all the instructions of JEFF bytecode that are not exactly the same than
those found in the class file format bytecode. This chapter describes also all the translation
operations from which these JEFF instructions result, but this description is not necessary for

Copyright 2000-2002, J Consortium, All Rights Reserved 35/48

the intrinsic definition of the JEFF instructions and the references to the instruction set of class

file format are here provided only for information purpose.

4.2.1 The tableswitch Opcode

If the original structure of class file bytecode contains the following sequence:

TUL tabl eswitch

TUl <0-3 byte pad>

TS4 nDef aul t

TS4 nLowval ue

TS4 nHi ghVval ue

TS4 nOf fset [nH ghVal ue - nLowal ue + 1]

Where immediately after the padding follow a series of signed 32-bit values: nDefault,
nLowValue, nHighValue and then nHighValue - nLowValue + 1 further signed 32-bit

offsets.

The translated structure shall be the following sequence:

If the nLowValue and nHighValue values can be converted in 16-bit signed values, the

translated structure is:

TU1 jeff_stableswitch
TU1 <0-1 byte pad>
VMOFFSET of Def aul t

TS2 nLowval ue

TS2 nH ghVal ue

VMOFFSET of Junp [nHi ghVal ue - nLowal ue + 1]

Otherwise, the translated structure is:

TU1 jeff_tablesw tch
TU1 <0-1 byte pad>
VMOFFSET of Def aul t

TU1 <0- 2 byte pad>
TS4 nLowval ue

TS4 nH ghVal ue

VMOFFSET of Junp [nHi ghVal ue - nLowal ue + 1]

The ofDefault and ofJump values are the jump addresses in the current bytecode block
(offsets in bytes from the beginning of the class header structure).

4.2.2 The lookupswitch Opcode

If the original instruction in class file format is:

TUL | ookupswi tch
TUl <0-3 byte pad>
TS4 nDef aul t
TW nPairs
mat ch-of fset pairs...
TS4 nhat ch
TS4 nO f set

Copyright 2000-2002, J Consortium, All Rights Reserved

36/48

Where immediately after the padding follow a signed 32-bit values: nDefault, an unsigned 32-
bit values: nPairs, and then nPairs pairs of signed 32-bit values. Each of the nPairs pairs
consists of an int nMatch and a signed 32-bit nOffset.

The translated structure shall be the following sequence:

If all of the nMatch values can be converted in 16-bit signed value, the translated structure is:

TU1 j ef f _sl ookupswi tch
TU1 <0-1 byte pad>
VMOFFSET of Def aul t

TU2 nPairs

TS2 nhat ch [nPai r s]

VMOFFSET of Junp [nPai r s]

Otherwise, the translated structure is:

TU1 jeff_I ookupswitch
TU1 <0-1 byte pad>
VMOFFSET of Def aul t

TU2 nPairs

TU1 <0- 2 byte pad>
TS4 nhat ch [nPai r s]

VMOFFSET of Junp [nPai r s]

The ofDefault and ofJump values are the jump addresses in the current bytecode block
(offsets in bytes from the beginning of the class header structure).

4.2.3 The new Opcode

If the original instruction in class file format is:

TUL new
TU2 nl ndex

Where the nindex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Class.

The translated structure shall be the following sequence:
TU1 jeff_new

TU1 <0-1 byte pad>
VMOFFSET of d assl ndex

Where the ofClassIindex value is the offset of the class index, a VMCINDEX value stored in
the “referenced class table” of the current class.

4.2.4 Opcodes With a Class Operand

If the original instruction in class file format is:

TUl <opcode>
TU2 nl ndex

Copyright 2000-2002, J Consortium, All Rights Reserved 37/48

Where <opcode> is anewarray, checkcast or instanceof. The nindex value is an index into
the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Class.

The translated structure shall be a variable-length instruction:

TU1 <j eff _opcode>

VMIYPE tDescri ptor

TU1 nDi mensi on (optional)
TU1 <0-1 byte pad>

VMOFFSET of Ol assl ndex (optional)
The opcode translation array is:

classfile opcode JEFF opcode

anewar r ay j ef f _newarray
checkcast j ef f _checkcast
i nst anceof j ef f _i nst anceof

The tDescriptor value reflects the CONSTANT_Class information. The descriptor associated
with the jeff_newarray bytecode has an array dimension equal to the array dimension of
CONSTANT_Class structure plus one. The nDimension value is the array dimension
associated with the descriptor. This value is only present if the VM_TYPE_MULTI is set in the
tDescriptor value. The ofClassindex value is only present if tDescriptor describes a class or
an array of a class. It's the offset of the class index, a VMCINDEX value stored in the
“referenced class table” of the current class.

4.2.5 The newarray Opcode

If the original instruction in class file format is:

TUL newarray
TUL nType

Where the nType is a code that indicates the type of array to create.

The translated structure shall be the following sequence:

TU1 j ef f _newarray
VMI'YPE t Descri pt or

The tDescriptor value reflects the nType information. The VM_TYPE_MONO flag is always
set in this value.

4.2.6 The multianewarray Opcode

If the original instruction in class file format is:

TUL mul ti anewarray
TU2 nl ndex
TULl nD nensi ons

Where the nindex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Class. The nDimensions value represents the
number of dimensions of the array to be created.

Copyright 2000-2002, J Consortium, All Rights Reserved 38/48

The translated structure shall be a variable-length instruction:

TU1 jeff_multianewarray
TUL nDi nensi ons

VMIYPE tDescriptor

TU1 nArrayDi mensi on

TU1 <0-1 byte pad>

VMOFFSET of Cl assl ndex (optional)

The tDescriptor value reflects the CONSTANT_Class information. The nArrayDimension
value is the array dimension associated with the descriptor. This value is only present if the
VM_TYPE_MULTI is set in the tDescriptor value. The ofClassindex value is only present if
tDescriptor describes a class or an array of a class. It's the offset of the class index, a
VMCINDEX value stored in the “referenced class table” of the current class.

4.2.7 Field Opcodes

If the original instruction in class file format is:

TUl <opcode>
TU2 nl ndex

Where <opcode> is getfield, getstatic, putfield or putstatic. The nindex value is an index
into the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Fieldref.

The translated structure shall be the following sequence:
TU1 <JEFF opcode>

TU1 <0-1 byte pad>
VMOFFSET of Fi el dl nfo

The opcode translation array is:

classfile opcode JEFF opcode

getfield jeff_getfield
getstatic jeff_getstatic
putfield jeff_putfield
putstatic jeff_putstatic

If the instruction points to a field of the current class, the ofFieldInfo value is the offset of a
VMFieldInfo structure in the field list of the current class. If the field belongs to another class,
the value of ofFieldInfo is the offset of a VMReferencedField structure in the “referenced
field table” of the current class.

4.2.8 Method Opcodes

If the original instruction in class file format is:

TUl <opcode>
TU2 nl ndex

Where <opcode> is invokespecial, invokevirtual, or invokestatic. The nindex value is an
index into the constant pool of the local class. The constant pool entry at this index is a
CONSTANT_Methodref structure.

Copyright 2000-2002, J Consortium, All Rights Reserved 39/48

or

TUL i nvokei nterface
TU2 nl ndex

TULl nArgs

TUL O

Where the nindex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT _InterfaceMethodref structure. The nArgs value is
the size in words of the method's arguments in the stack.

The translated structure shall be the following sequence:
TU1 <JEFF opcode>

TU1 <0-1 byte pad>
VMOFESET of Met hodl nf o

The opcode translation array is:

classfile opcode JEFF opcode

i nvokespeci al j eff _i nvokespeci al
i nvokevi rtual jeff_invokevirtual
i nvokestatic jeff_invokestatic

i nvokei nterface jeff_invokeinterface

If the instruction points to a method of the current class, the ofMethodInfo value is the offset
of a VMMethodInfo structure in the method list of the current class. If the method belongs to
another class, the value of ofMethodInfo is the offset of a VMReferencedMethod structure in
the “referenced method table” of the current class.

4.2.9 The Idc Opcodes

If the original instruction in class file format is:

TULl | dc
TUL nl ndex

or

TUL | dc_w
TU2 nl ndex

Where the nindex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT _Integer, a CONSTANT _Float, or a
CONSTANT_String.

or

TUL I dc2_ w
TU2 nl ndex

Where the nindex value is an index into the constant pool of the local class. The constant
pool entry at this index is a CONSTANT_Long, or a CONSTANT_Double.

The translated structure shall be the following sequence:

Copyright 2000-2002, J Consortium, All Rights Reserved 40/48

TU1 <JEFF opcode>
TU1 <0-1 byte pad>
VMOFFSET of Const ant

Where <JEFF opcode> depends of the constant type. The ofConstant value is the offset of a
data value stored in the constant data section. The type of the value depends of the constant

type.

classfile opcode JEFF opcode type of the value pointed to by ofConstant
CONSTANT_String jeff_sldc VNSt ri ng

CONSTANT _Integer jeff_ildc JI NT

CONSTANT_FI oat jeff_fldc JFLQOAT

CONSTANT _Long jeff_lldc JLONG

CONSTANT_Doubl e jeff_dl dc JDOUBLE

4.2.10 The wide <opcode> Opcodes

If the original instruction in class file format is:
TUL wi de

TUl <opcode>
TU2 nl ndex

Where <opcode> is aload, astore, dload, dstore, fload, fstore, iload, istore, lload, Istore,
or ret. The nindex value is an index to a local variable in the current frame.

The translated structure shall be the following sequence:
TUl <JEFF opcode>

TUl <0-1 byte pad>
TU2 nl ndex

Where nindex is unchanged and the opcode translation array is:

classfile opcode JEFF opcode

wi de al oad jeff_al oad_w
w de astore jeff_astore_w
wi de dl oad jeff_dl oad_w
w de dstore jeff_dstore_w
wi de fl oad jeff_fload_ w
w de fstore jeff_fstore_w
wi de il oad jeff_iload_w
w de istore jeff_istore_w
wi de || oad jeff_Iload_w
w de | store jeff_Istore_w
w de ret jeff_ret_w

4.2.11 The wide iinc Opcode

If the original instruction in class file format is:

TUL wi de

TUL iinc

TU2 nl ndex
TS2 nConst ant

Copyright 2000-2002, J Consortium, All Rights Reserved 41/48

Where the nindex value is an index to a local variable in the current frame. The nConstant
value is a signed 16-bit constant.

The translated structure shall be the following sequence:

TUL jeff_iinc_w
TUl <0-1 byte pad>

TU2 nl ndex

TS2 nConst ant

Where nindex and nConstant are unchanged.

4.2.12 Jump Opcodes

If the original instruction in class file format is:

TUl <opcode>

TS2 nO f set

Where <opcode> is goto, if_acmpeq, if_acmpne, if_icmpeq, if_icmpne, if_icmplt,
if_icmpge, if_icmpgt, if_icmple, ifeq, ifne, iflt, ifge, ifgt, ifle, ifnonnull, ifnull or jsr.

Execution proceeds at the offset nOffset from the address of the opcode of this instruction.

The translated structure shall be the following sequence:

TU1 <JEFF opcode>
TU1 <0-1 byte pad>
VMOFFSET of Junmp

Where the opcode translation array is:

classfile opcode
goto

i f _acnpeq
i f_acnpne
i f_icnpeq
i f_icnpne
if_icnplt
i f_icnpge
i f_icnpgt
if_icnple
ifeq

i fne

iflt

i fge

i fgt

ifle

i fnonnul |
i fnull

jsr

JEFF opcode
jeff_goto
jeff_if_acnpeq
jeff_if_acnpne
jeff_if_icnpeq
jeff_if_icnpne
jeff_if_icnplt
jeff_if_icnpge
jeff_if_icnpgt
jeff_if_icnple

jeff_ifeq
jeff_ifne
jeff_iflt
jeff_ifge
jeff_ifgt
jeff_ifle
jeff_ifnonnull
jeff_ifnull
jeff_jsr

The ofJump value is the address of the jump in the current bytecode block. It's an offset (in

bytes) from the beginning of the class header structure.

4.2.13 Long Jump Opcodes

If the original instruction in class file format is:

Copyright 2000-2002, J Consortium, All Rights Reserved

42/48

TUl <opcode>
TS4 nOF f set

Where <opcode> is goto_w or jsr_w. Execution proceeds at the offset nOffset from the
address of the opcode of this instruction.

The translated structure shall be the following sequence:
TU1 <JEFF opcode>

TU1 <0-1 byte pad>
VMOFFSET of Junmp

Where the opcode translation array is:

classfile opcode JEFF opcode
goto_w jeff_goto
jsr_w jeff_jsr

The ofJump value is the address of the jump in the current bytecode block. It's an offset (in
bytes) from the beginning of the class header structure.

4.2.14 The sipush Opcode

If the original instruction in class file format is:

TULl si push
TS1 nBytel
TUl nByte2

The translated structure shall be the following sequence:
TULl jeff_sipush

TUl <0-1 byte pad>
TS2 nVal ue

Where nValue is a TS2 with the value (nBytel << 8) | nByte2.

4.2.15 The newconstarray Opcode

This bytecode creates a new array with the initial values specified in the constant pool. This
instruction replaces a sequence of bytecodes creating an empty array and filling it cell by cell.

TU1 j ef f _newconst array
VMIYPE tArrayType

TU1 <0-1 byte pad>

TU2 nLengt h

VMOFFSET of Const Dat a
The tArrayType is a code that indicates the type of array to create. It must take one of the
following values: char[], byte[], short[], boolean(], int[], long(], float[] or double[]. The
VM_TYPE_MONO and VM_TYPE_REF flags are always set in this value.

The nLength value is the length, in elements, of the new array. This value cannot be zero.

The ofConstData value is the offset of an array of values in the constant data section. The
type of the array depends on the tArrayType value.

Copyright 2000-2002, J Consortium, All Rights Reserved 43/48

Type of tArrayType Structure pointed to by ofConstData

Array Value

short[] 0x61 An array of nLength JSHORT values.

int[] 0x62 An array of nLength JINT values.

l'ong[] 0x63 An array of nLength JLONG values.

bytel[] 0x64 An array of nLength JBYTE values.

char[] 0x65 The first byte of a string of nLength characters encoded in
a VMString structure.

float[] 0x66 An array of nLength JFLOAT values.

double[] ~ Ox67 An array of nLength JDOUBLE values.

bool ean[] 0x68 An array of nLength JBYTE values. Where a zero value

means false and a non-zero value means true.

A new mono-dimensional array of nLength elements is allocated from the garbage-collected
heap. All of the elements of the new array are initialized with the values stored in the constant
structure. A reference to this new array object is pushed into the operand stack.

4.3 Unchanged Instructions

This section defines all the other instruction of JEFF bytecode not previously described in
section 4.2. As already noticed, these instructions are kept unchanged in the translation from
class file bytecode. In order for this document to be self-contained, they are defined here.

4.3.1 One-Byte Instructions

These instructions have no operand. Here is their list (the mnemonic name of the opcode is
preceded here by its value):

(0x00) jeff_nop (0x26) jeff_dload_ O
(0x01) jeff_aconst_null (0x27) jeff_dload_1
(0x02) jeff_iconst_m (0x28) jeff_dload_2
(0x03) jeff_iconst_0O (0x29) jeff_dload_3
(0x04) jeff_iconst_1 (Ox2a) jeff_aload O
(0x05) jeff_iconst_2 (0x2b) jeff_aload_1
(0x06) jeff_iconst_3 (0x2c) jeff_al oad_2
(0x07) jeff_iconst_4 (0x2d) jeff_aload_3
(0x08) jeff_iconst_5 (0x2e) jeff_ial oad
(0x09) jeff_lconst_0O (O0x2f) jeff_lal oad
(Ox0a) jeff_lconst_1 (0x30) jeff_fal oad
(Ox0b) jeff _fconst_0O (0x31) jeff_dal oad
(0x0c) jeff _fconst_1 (0x32) jeff_aal oad
(0x0d) jeff_fconst_2 (0x33) jeff_bal oad
(0x0e) jeff_dconst_0 (0x34) jeff_cal oad
(OxO0f) jeff_dconst_1 (0x35) jeff_sal oad
(Oxla) jeff_iload_ O (0x3b) jeff_istore_ O
(Ox1b) jeff_iload_1 (0x3c) jeff_istore_1
(Ox1c) jeff_iload_2 (0x3d) jeff_istore_2
(0x1d) jeff_iload_3 (0x3e) jeff_istore_3
(Oxle) jeff _lload O (Ox3f) jeff _Istore_ 0O
(Ox1f) jeff _lload_1 (0x40) jeff _lIstore_1
(0x20) jeff_Iload_2 (0x41) jeff _lstore_2
(0x21) jeff _Iload_3 (0x42) jeff _lstore_3
(0x22) jeff _fload_ O (0x43) jeff _fstore_ O
(0x23) jeff _fload_ 1 (0x44) jeff _fstore_1
(0x24) jeff _fload_ 2 (0x45) jeff _fstore_2
(0x25) jeff _fload_3 (0x46) jeff _fstore_3

Copyright 2000-2002, J Consortium, All Rights Reserved 44/48

(0x47) jeff_dstore_ 0O
(0x48) jeff_dstore_1
(0x49) jeff_dstore_2
(Ox4a) jeff_dstore_3
(Ox4b) jeff_astore_ O
(Ox4c) jeff_astore_1
(0Ox4d) jeff_astore_2
(Ox4e) jeff_astore_3
(Ox4f) jeff_iastore
(0x50) jeff_lastore
(0x51) jeff _fastore
(0x52) jeff_dastore
(0x53) jeff_aastore
(0x54) jeff_bastore
(0x55) jeff_castore
(0x56) jeff_sastore
(0x57) jeff_pop
(0x58) jeff_pop2
(0x59) jeff_dup
(Ox5a) jeff_dup_x1
(Ox5b) jeff_dup_x2
(0x5c) jeff_dup2
(0x5d) jeff_dup2_x1
(Ox5e) jeff_dup2_x2
(Ox5f) jeff_swap
(0x60) jeff_iadd
(0x61) jeff_ladd
(0x62) jeff_fadd
(0x63) jeff_dadd
(0x64) jeff_isub
(0x65) jeff_lsub
(0x66) jeff_fsub
(0x67) jeff_dsub
(0x68) jeff_imuil
(0x69) jeff_Imuil
(Ox6a) jeff fnul
(0x6b) jeff_dmul
(Ox6c) jeff_idiv
(Ox6d) jeff_ldiv
(Ox6e) jeff_fdiv
(Ox6f) jeff_ddiv
(0x70) jeff_irem
(0x71) jeff_lrem
(0x72) jeff _frem
(0x73) jeff_drem
(0x74) jeff_ineg

4.3.2 Two-bytes Instructions

(0x75)
(0x76)
(0x77)
(0x78)
(0x79)
(0x7a)
(0x7b)
(0x7c)
(0x7d)
(0x7e)
(0x7f)
(0x80)
(0x81)
(0x82)
(0x83)
(0x85)
(0x86)
(0x87)
(0x88)
(0x89)
(0x8a)
(0x8b)
(0x8c)
(0x8d)
(0x8e)
(0x8f)
(0x90)
(0x91)
(0x92)
(0x93)
(0x94)
(0x95)
(0x96)
(0x97)
(0x98)
(Oxac)
(Oxad)
(Oxae)
(Oxaf)
(0xb0)
(0xb1)
(0xbe)
(0xbf)
(0xc2)
(0xc3)
(Oxca)

jeff_Ineg
jeff_fneg
jeff_dneg
jeff_ishl
jeff_lshl
jeff_ishr
jeff_Ishr
jeff_iushr
jeff_lushr
jeff_iand
jeff_land
jeff_ior
jeff_lor
jeff_ixor
jeff_Ixor
jeff_i2l
jeff_i2f
jeff_iad
jeff_12i
jeff_I2f
jeff_lad
jeff_f2i
jeff_f2l
jeff_fad
jeff_d2i
jeff_d2l
jeff_d2f
jeff_i2b
jeff_i2c
jeff_i2s
jeff_lcnp
jeff_fcnpl
jeff_fcnpg
jeff_dcnpl
j ef f_dcnpg

jeff _ireturn
jeff _lreturn
jeff _freturn
jeff _dreturn
jeff_areturn
jeff _return
jeff_arraylength
jeff_athrow
jeff_nonitorenter
jeff_nmonitorexit
j ef f _breakpoi nt

These instructions have a one byte operand. Here is their list (the mnemonic name of the

opcode is preceded here by its value):

(0x10) jeff_bipush
(0x15) jeff_iload
(0x16) jeff _Iload
(0x17) jeff_fload
(0x18) jeff_dload
(0x19) jeff_al oad

(0x36)
(0x37)
(0x38)
(0x39)
(0x3a)
(0xa9)

jeff _istore
jeff _Istore
jeff _fstore
jeff_dstore
jeff_astore
jeff _ret

Copyright 2000-2002, J Consortium, All Rights Reserved

45/48

4.4 Complete Opcode Mnemonics by Opcode

This section is the list of all the mnemonics values used in JEFF.

(0x00)
(0x01)
(0x02)
(0x03)
(0x04)
(0x05)
(0x06)
(0x07)
(0x08)
(0x09)
(0x0a)
(0x0b)
(0x0c)
(0x0d)
(0x0e)
(0x0f)
(0x10)
(0x11)
(0x12)
(0x13)
(0x14)
(0x15)
(0x16)
(0x17)
(0x18)
(0x19)
(Ox1a)
(0x1b)
(0x1c)
(0x1d)
(Ox1le)
(0x1f)
(0x20)
(0x21)
(0x22)
(0x23)
(0x24)
(0x25)
(0x26)
(0x27)
(0x28)
(0x29)
(0x2a)
(0x2b)
(0x2c)
(0x2d)
(0x2e)
(0x2f)
(0x30)
(0x31)
(0x32)
(0x33)
(0x34)
(0x35)

jeff_nop

j ef f _aconst _nul
jeff_iconst_nil
jeff_iconst_0O
jeff_iconst_1
jeff_iconst_2
jeff_iconst_3
jeff_iconst_4
jeff_iconst_5
jeff_lconst_O
jeff_lconst_1

jeff_fconst_0O
jeff_fconst_1
jeff_fconst_2
jeff_dconst_0O
jeff_dconst _1
j ef f_bi push

jeff_sipush

jeff_unused_0x12
jeff_unused_0x13
jeff_unused_0x14

jeff i
jeff |

| oad
| oad

jeff_fload
j ef f_dl oad
jeff_al oad

jeff i
jeff i
jeff i
jeff i
jeff |
jeff |
jeff |
jeff |

load O
| oad 1
| oad_2
| oad_3
load O
|l oad 1
| oad_2
| oad_3

jeff_fload_O
jeff_fload_1
jeff_fload_2
jeff_fload_3
jeff_dl oad_0O
jeff_dload_1
jeff_dload_2
jeff_dl oad_3
jeff_aload_0
jeff_aload_1
jeff_aload_2
jeff_al oad_3

jeff i
jeff |

al oad
al oad

jeff_fal oad
j ef f _dal oad
j ef f _aal oad
j ef f _bal oad
j eff _cal oad
j ef f _sal oad

(0x36)
(0x37)
(0x38)
(0x39)
(0x3a)
(0x3b)
(0x3c)
(0x3d)
(0x3e)
(0x3f)
(0x40)
(0x41)
(0x42)
(0x43)
(0x44)
(0x45)
(0x46)
(0x47)
(0x48)
(0x49)
(Ox4a)
(0x4b)
(0x4c)
(0x4d)
(Ox4e)
(Ox4f)
(0x50)
(0x51)
(0x52)
(0x53)
(0x54)
(0x55)
(0x56)
(0x57)
(0x58)
(0x59)
(0x5a)
(0x5b)
(0x5c)
(0x5d)
(0x5e)
(0x5f)
(0x60)
(0x61)
(0x62)
(0x63)
(0x64)
(0x65)
(0x66)
(0x67)
(0x68)
(0x69)
(Ox6a)
(0x6b)

jeff_istore
jeff_Istore
jeff_fstore
jeff_dstore
jeff_astore
jeff_istore_O
jeff_istore_1
jeff_istore_2
jeff_istore_3
jeff_Istore_O
jeff_Istore_1
jeff_Istore_2
jeff_Istore_3
jeff_fstore_ O
jeff_fstore_1
jeff_fstore_2
jeff_fstore_3
jeff_dstore_ O
jeff_dstore_1
jeff_dstore_2
jeff_dstore_3
jeff_astore_O
jeff_astore_1
jeff_astore_2
jeff_astore_3
jeff_iastore
jeff_lastore
jeff_fastore
jeff_dastore
jeff_aastore
jeff_bastore
jeff_castore
jeff_sastore
jeff_pop
jeff_pop2
jeff_dup
jeff_dup_x1
jeff_dup_x2
jeff_dup2
jeff_dup2_x1
jeff_dup2_x2
jeff_swap
jeff_iadd
jeff_ladd
jeff_fadd

j ef f _dadd
jeff_isub
jeff_Isub
jeff_fsub
jeff_dsub
jeff_imul
jeff_Imul
jeff_fmul
jeff_dmul

Copyright 2000-2002, J Consortium, All Rights Reserved

46/48

(Ox6c) jeff_idiv
(Ox6d) jeff_ldiv
(Ox6e) jeff_fdiv
(Ox6f) jeff_ddiv
(0x70) jeff_irem
(0x71) jeff_lrem
(0x72) jeff _frem
(0x73) jeff_drem
(0x74) jeff_ineg
(0x75) jeff_lneg
(0x76) jeff_fneg
(0x77) jeff_dneg
(0x78) jeff_ishl
(0x79) jeff_Ishl
(Ox7a) jeff_ishr
(0x7b) jeff_lshr
(O0x7c) jeff_iushr
(0x7d) jeff_lushr
(Ox7e) jeff_iand
(0x7f) jeff_land
(0x80) jeff_ior
(0x81) jeff_lor
(0x82) jeff_ixor
(0x83) jeff_Ixor
(0x84) jeff_iinc
(0x85) jeff_i2l
(0x86) jeff_i2f
(0x87) jeff_i2d
(0x88) jeff_I2i
(0x89) jeff_l2f
(0x8a) jeff_l2d
(0x8b) jeff_f2i
(0x8c) jeff_f2l
(0x8d) jeff_f2ad
(0x8e) jeff_d2i
(0x8f) jeff_d2l
(0x90) jeff_d2f
(0x91) jeff_i2b
(0x92) jeff_i2c
(0x93) jeff_i2s
(0x94) jeff_lcnp
(0x95) jeff _fcnpl
(0x96) jeff _fcnpg
(0x97) jeff_dcnpl
(0x98) jeff_dcnpg
(0x99) jeff_ifeq
(0x9a) jeff_ifne
(0x9b) jeff_iflt
(0x9c) jeff_ifge
(0x9d) jeff_ifgt
(0x9e) jeff_ifle
(Ox9f) jeff_if_icnpeq
(Oxa0) jeff_if_icnpne
(Oxal) jeff_if_icnplt
(Oxa2) jeff_if_icnpge
(Oxa3) jeff_if_icnpgt
(Oxa4) jeff_if_icnple
(Oxab) jeff_if_acnpeq

(O0xab)
(0xa7)
(0xa8)
(0xa9)
(Oxaa)
(Oxab)
(Oxac)
(Oxad)
(Oxae)
(Oxaf)
(0xb0)
(0xb1)
(0xb2)
(0xb3)
(0xb4)
(0xb5)
(0xb6)
(0xb7)
(0xb8)
(0xb9)
(0xba)
(0xbb)
(0xbc)
(0xbd)
(0xbe)
(0xbf)
(0xcO0)
(0xc1)
(0xc?2)
(0xc3)
(0xc4)
(0xcbH)
(0xc6)
(0xc7)
(0xc8)
(0xc9)
(Oxca)
(0xch)
(0Oxcc)
(Oxcd)
(Oxce)
(Oxcf)
(0xd0)
(0xd1)
(0xd2)
(0xd3)
(0xd4)
(0xd5)
(0xd6)
(0xd7)
(0xd8)
(0xd9)
(Oxda)
(Oxdb)
(Oxdc)
(Oxdd)
(Oxde)

jeff_if_acnpne
jeff_goto
jeff_jsr

jeff_ret
jeff_tablesw tch
jeff_I ookupswitch
jeff_ireturn
jeff_Ireturn
jeff_freturn
jeff_dreturn
jeff_areturn
jeff_return
jeff_getstatic
jeff_putstatic
jeff_getfield
jeff_putfield
jeff_invokevirtua
j eff _i nvokespeci al
jeff_invokestatic

jeff_invokeinterface

j ef f _unused_Oxba
jeff_new

j ef f _newarray

j ef f _unused_Oxbd
jeff_arrayl ength
jeff_athrow

j ef f _checkcast

j ef f _i nst anceof
jeff_nonitorenter
jeff_nonitorexit
j ef f _unused_Oxc4

jeff_multianewarray

jeff_ifnull
jeff_ifnonnul
jeff_unused_Oxc8
j eff _unused_0Oxc9
j ef f _breakpoi nt

j ef f _newconst array
j ef f _sl ookupswi tch

jeff_stabl esw tch
jeff _ret_w
jeff_iinc_w
jeff_sldc
jeff_ildc
jeff_lldc
jeff_fldc
jeff_dldc
jeff_dl oad_w
jeff_dstore_w
jeff_fload_w
jeff _fstore_w
jeff_iload_w
jeff _istore_w
jeff_Iload_w
jeff _Istore_w
jeff_al oad_w
jeff_astore_w

Copyright 2000-2002, J Consortium, All Rights Reserved

47/48

5 Restrictions

The only restriction of JEFF when compared with class file format is the maximum size of a
class area. Within a file, the size of a class area cannot exceed 65536 bytes. A class area is
the block of data included between the VMClassHeader structure and the last data specific to
the class. The JEFF syntax is very compact and the class area does not include any symbolic
information. This means that the corresponding class file can be much bigger than 65536
bytes.

Otherwise, the following limits apply:
. The total size of a file cannot exceed 2* bytes.
The number of classes stored in a file cannot exceed 65,535.
The number of packages stored in a file cannot exceed 65,534.
The number of fields in a file cannot exceed 2%%- 1.
The number of methods in a file cannot exceed 2% - 1.

Copyright 2000-2002, J Consortium, All Rights Reserved 48/48

