
http://www.itron.gr.jp/

Introduction to
the ITRON Specifications
Open Real-Time Operating System Standards for Embedded Systems

The ITRON specifications are the standards for real-time operating systems and related specifications for
embedded systems. Since the project started, we have published a series of ITRON real-time kernel specifications.
Of these, the µITRON real-time kernel specification, which was designed for consumer products and other small-
scale embedded systems, has been implemented for numerous 8-bit, 16-bit and 32-bit MCUs (Microcontroller
Units) and adopted in countless end products, making it an industry standard in this field. Based on these
achievements, we have broadened the scope of our standardization efforts beyond the kernel specifications to
related aspects, working to expand the ITRON specifications as well as embedded system design technologies.

ITRON pf/lettersize/2002/2 02.2.13 11:02 AM ページ6

The Status and Features of Embedded
Systems

Advances in microprocessor technology continue to open up
new application fields for embedded systems. Originally they were
used mainly for factory production line control and other industrial
applications. Their use spread to communications and office
equipment, then on to automotive systems, audio and video
products, TVs, cellular phones, synthesizers, game machines, and
household appliances such as washing machines, airconditioners
and lighting systems. Today nearly all the electrical and electronic
products around us are controlled by embedded systems.

In parallel with this trend, the equipment controlled by embedded
systems has become more sophisticated, often incorporating many
functions in one product. Embedded systems have grown in scale
and complexity as a result. Moreover, as products increasingly adopt
digital technology, advanced microprocessors have enabled more of
the processing to be implemented in software, making embedded
systems all the more important.

As a general rule, the small-scale embedded systems typical of
consumer products are produced in much greater number and more
cheaply than the large-scale systems used mostly in industrial
applications. The emphasis in large-scale systems is therefore on
reducing development cost, while in the case of small-scale
systems the emphasis tends to fall on lowering the cost of
producing the end product. In the consumer products field,
especially, there is a strong need to shorten system development
time in order to keep up with the fierce competition for new
products; and once a product has been put on sale, its software is
almost never modified. In other words, the system development
life cycle is extremely short.

In the field of small-scale embedded systems, wide use is made of
a single-chip MCU (Micro Controller Unit) incorporating the
processor core, ROM, RAM, general I/O devices and application-
specific devices. Developing software for an MCU is made difficult
by the hardware resource constraints resulting from the need to keep
down the end product cost. Memory, in particular, is likely to be

severely limited. On a typical 16-bit MCU there might be 64 KB of
ROM and around 1 KB of RAM available, or perhaps 128 KB and 4
KB on a slightly larger system. Another notable feature is the
extremely large number of processor cores in use, since the MCU is
often optimized to a particular application for the sake of cost
performance.

Even in the small-scale embedded system field, the growing
scale and complexity of software and the need for fast development
turnaround time have made improving software productivity a
pressing need. The use of C and other high-level languages, along
with the use of a µITRON-specification OS or other real-time OS,
have become increasingly common for this reason.

Requirements of a Real-time OS for Use in
Embedded Systems

As microprocessors continue to advance in performance, their
application to consumer goods and other mass-produced items is
growing. The demand for improved cost performance in embedded
systems is thus as strong as ever. Moreover, the expanding
application of embedded systems means that an increasing number
of software engineers are coming into contact with a real-time OS,
making it highly important to train system designers and
programmers in the requisite skills.

Evidence of these trends is seen in the results of TRON
Association survey in Japan, Nov. 2000. As shown in Figure 1, a
large number of respondents, when asked about problems with
using a real-time OS in embedded systems, pointed to such issues
as the lack of trained engineers and the large differences in
specifications from one OS to another. These relate to training and
standardization.

Against this backdrop, we undertook the TRON Project based on
the recognized need for standardization of real-time OS specifications
for common use across a wide range of embedded systems. The
emphasis in this standardization is first of all on consistency of
concepts and terminology, in order to make training easier.

The most difficult problem faced in attempting to standardize
real-time OS specifications for embedded systems is how to
resolve the tradeoff between the need to optimize systems to
hardware and the need for improved software productivity. In an
MCU-based system with its severe resource constraints, a
precondition for adopting a real-time OS is that maximum
advantage can be derived from the available hardware. On the
other hand, the main incentive for using a real-time OS is to
improve software productivity. Yet, when it is attempted to raise
the level of abstraction of the services provided by the OS, and to
achieve full portability at the source code level across different
hardware architectures, the gap between the OS-provided services
and the hardware architecture creates a runtime overhead, making
it difficult to derive the maximum performance from the hardware.

The optimum tradeoff between these two needs depends largely
on the nature of the embedded system. In the case of a small-scale
system, it makes little sense to sacrifice runtime performance for
the sake of portability, given the need to keep down the cost of the
end product. On the other hand, if existing software components

What is the TRON Project?

TRON (The Real-time Operating system Nucleus) is a

project started by Dr. Ken Sakamura of the University of

Tokyo in 1984. The project aims to create an ideal

computer architecture with a view toward the future

computerized society. In the computerized society, all the

objects making up our living environment will come to have

computer chips embedded in them. These objects,

moreover, will be capable of interacting with each other via

world-wide computer networks. The long-term goal of the

TRON Project is to develop highly functionally distributed

system (HFDS), in which each of these computerized

objects is able to work in cooperation with other objects.

These computer-embedded networked objects are called

intelligent objects.

ITRON pf/lettersize/2002/2 02.2.13 11:02 AM ページ1

are to be used, or if a system is being developed on a scale that
requires reuse of software, achieving software portability is a very
important need. Also, the proper balance between the two needs
changes as microprocessor technology advances.

There is likewise a big difference in the functions demanded of
small-scale and large-scale embedded systems. An OS equipped
with advanced functions that are of little use in a small-scale
embedded system will only increase the size of the system and
lower its performance. A large-scale system, however, can benefit
from an OS with advanced functions in the form of improved
software productivity.

The demands of a real-time OS, in other words, can vary
greatly depending on the scale and nature of the embedded system
in which it is used. It would be possible to define separate real-
time OS specifications for different system scales and types; but
from the standpoints of software engineer training ease, portability
of software components, and availability of development support
tools, it is preferable to define a real-time OS specification with
the scalability to enable common application across a wide range
of embedded systems.

The above requirements of a real-time OS specification for
embedded system use can be summarized briefly along the
following lines.

・Being able to derive maximum performance from hardware.
・Contributing to improved software productivity.
・Being scalable across a range of systems.

In addition to these technical requirements, it is important that
the specifications be open in the true sense. Considering that
embedded systems are used in all kinds of electrical and electronic
equipment around us, the specifications need to be offered in the
public domain so that anyone can obtain them, and anyone should
be able to implement them freely in commercial products, without
paying royalties to the specification developers.

ITRON Specification Design Policy
The ITRON OS specifications were designed according to the

following principles in order to meet the requirements discussed
above.

・ Allow for adaptation to hardware, avoiding excessive
hardware virtualization

In order for an OS to take maximum advantage of the
performance built into the MCU or other hardware and deliver
excellent real-time response, the specifications must avoid
excessive virtualization of hardware features. Adaptation to
hardware means changing the real-time OS specifications and
internal implementation methods as necessary based on the
kind of hardware and its performance needs, raising the overall
system performance.
Specifically, the ITRON specifications make a clear distinction
between aspects that should be standardized across hardware
architectures and matters that should be decided optimally
based on the nature of the hardware and its performance.
Among the aspects that are standardized are task scheduling
rules, system call names and functions, parameter names, order
and meaning, and error code names and meanings. In other
areas, standardization and virtualization are avoided because
they might lower runtime performance. These include
parameter bit size and interrupt handler starting methods, which
are decided separately for each implementation.

・ Allow for adaptation to the application

Adaptation to the application means changing the kernel
specifications and internal implementation methods based on
the kernel functions and performance required by the
application, in order to raise the overall system performance. In
the case of an embedded system, the OS object code is
generated separately for each application, so adaptation to the
application works especially well. (See Figure 2.)
In designing the ITRON specifications, this adaptation has been
accomplished by making the functions provided by the kernel
as independent of each other as possible, allowing a selection of
just the functions required by each application. In practice, most
µITRON-specification kernels are supplied with the kernel
itself in library format. The selection of kernel functions is
made simply by linking to the application program, at which
time only the required functions are incorporated in the system.
In addition, each system call provides a single function, making
it easy to incorporate only the necessary functions.

・ Emphasize software engineer training ease

The ITRON specifications employ standardization as a way of
making it easier for software developers to acquire the
necessary skills. Consistency in use of terminology, system call
naming and the like help ensure that once something is learned,
it will have wide applicability thereafter. Another way training
is emphasized is by making available educational text materials.

・Specification series organization and division into levels

To enable adaptation to a wide diversity of hardware, the
specifications are organized into a series and divided into
levels. Of the real-time kernel specifications developed to date,
the µITRON specification (Ver. 2.0) was designed chiefly for
use with small-scale systems using an 8- or 16-bit MCU, while
the ITRON2 specification was intended for 32-bit processors.

32.3%

10.0%

9.0%

6.3%

6.3%

5.6%

10.0%

Other (0.7%)

Major differences in
OS specifications,
making it hard to
switch.

Performance and
functions do not meet

user need.

OS size or resources
used are too large.

Lack of development
environment and tools.

Cost is too high.
(Initial / Maintenance)

Inadequate vendor support.
(2.7%)

An absence or shortage
of staff familiar with
the real time OS
technology.

Lack of software components.
　　　　　　　　　　(4.6%)

Cost is too high. (License)

Hard to get source code.
　　　　　　　　　　(5.3%)

Low reliability (0.5%)

No outstanding disadvantages (6.8%)

Figure 1: Problems with a real-time OS
(TRON Association survey in Japan, Nov. 2000)

ITRON pf/lettersize/2002/2 02.2.13 11:02 AM ページ2

Each specification is further divided into levels based on the
degree of need for each function. When the kernel is
implemented, the level can be chosen based on the kinds of
applications aimed for and their required functions. (See Figure
2.) The µITRON3.0 specification divides the system calls into
levels, enabling this one specification to cover the range from
small-scale to large-scale processors.
Specifications for distributed systems connected to networks
and for multiprocessor systems are also being standardized
within the ITRON specification series.

・Provide a wealth of functions

The primitives that the kernel provides are not limited to a
small number but cover a wide range of different functions. By
making use of the primitives that match the type of application
and hardware, system implementers should be able to achieve
high runtime performance and write programs more easily.

A theme common to several of these design principles is "loose
standardization." This refers to the approach of leaving room for
hardware-specific and application-specific features rather than
trying to apply blanket standards to the extent that runtime
performance would be harmed. Loose standardization makes it
possible to derive the maximum performance benefits from a
diversity of hardware.

ITRON-specification OS Status
Since this project started in 1984, we have studied standard

real-time OS specifications for embedded systems, and have
developed and made available the series of ITRON real-time
kernel specifications as a result. The reason for putting the
emphasis on the kernel specifications in this standardization work
is that many small-scale embedded systems use only the kernel
specifications.

The first ITRON specification was issued in 1987 as the
ITRON1 specification. A number of real-time kernels were
developed on this specification and applied to systems, mainly by
way of proving the applicability of the specification. Thereafter the
µITRON specification (Ver. 2.0) was developed with a smaller set

of functions geared to 8- and 16-bit MCUs, as well as the ITRON2
specification for 32-bit processors. Both were released in 1989. Of
these, the µITRON specification was able to function practically
on an MCU with severely limited processing power and memory.
It found ready application to a large number of systems running on
many different types of MCUs. In fact, µITRON-specification
kernels have been developed for the MCUs of nearly all of Japan's
computer and chip manufacturers.

During the course of the µITRON application to a wide range of
fields, we were able to get a better idea of the need for each
function and the performance demands. Also, the expanding use of
MCUs in different applications resulted in the µITRON
specification being implemented for 32-bit processors, which was
not anticipated when the specification was designed. We therefore
decided to revise the specification approach by drawing up a
scalable specification, able to be used with MCUs across the range
from 8-bit to 32-bit processors. The result of this work was issued
in 1993 as the µITRON3.0 specification. The English version of
this specification can be downloaded from the ITRON Web site.
The main functions of the µITRON3.0 specification are
summarized in Table 3.

The ITRON-specification real-time kernels registered with the
TRON Association as of March 1, 2002 are listed in Table 4. They
consist of more than 60 products implemented for around 40
different processors. U.S. Software vendors also have µITRON-
specification kernel products. Moreover, because the µITRON-
specification kernel is small in size and relatively easy to

implementation-
dependent function

task managament semaphore eventflag mailbox memory pool other...

Functions defined in the µITRON Specification.

Adaptation for processor architecture
Adaptation to application field

task managament

µITRON adapted for processor X

mailbox other
implementation-
dependent function

Adaptation for application requirements

implementation-
dependent function

task
managament

semaphore mailbox

µITRON adapted to application A

semaphore memory pool

Figure 2: Adaptation in the μITRON specification

Table3: Functions supported in µITRON3.0-specification kernel

1. Task management

・ Direct manipulation and referencing of task status.

2. Task-dependent synchronization

・ Task synchronization function in the task itself.

3. Synchronization and communication

・ Three synchronization and communication functions independent of
tasks, namely, semaphore, eventflag and mailbox functions.

4. Extended synchronization and communication

・ Two advanced task-independent synchronization and communication
functions, namely, message buffer and rendezvous.

5. Interrupt management

・ Function for defining a handler for external interrupts.

・ Function for disabling and enabling external interrupts.

6. Memory pool management

・ Functions for software management of memory pools and memory

block allocation.

7. Time management

・ Functions for system clock setting and reference.

・ Task delay function.

・ Timer handler functions, for time-triggered starting.

8. System management

・ Functions for setting and referencing the system environment as a
whole.

9. Network support

・ Management and support functions for a loosely coupled network.

ITRON pf/lettersize/2002/2 02.2.13 11:02 AM ページ3

implement, many companies have built kernels for their own in-
house use in addition to the products listed here. There are also
various µITRON-specification kernels available as free software.

Obviously, with so many ITRON-specification kernels having
been implemented, they are being used in many different application
fields. Table 5 gives some examples of the huge number of
applications making use of an ITRON-specification kernel. As the
earlier mentioned survey by the TRON Association also shows, the
ITRON specifications are in especially wide use in consumer
products fields, where they are a de facto industry standard (see
Figure 6). Among the cases where an ITRON-specification kernel is
used, very many of these use an in-house implementation of the
kernel, attesting to the true openness of this standard specification.

Recent Results and Current Activities
As noted earlier, the TRON Project up to now has concentrated

on standardizing real-time kernel specifications. As embedded
systems grow large and more complex, however, the need has
increased for standardization efforts that take into account software
components (or middleware), development tools and other aspects
of the larger real-time kernel environment. In the TRON Project
today we are first of all putting an emphasis on software component-
related standardization. To this end we are working to bring together
the conditions promoting the development and porting of software
components, and to draw up standard software component interfaces
in specific fields.

The studies aimed at bringing together the conditions for
promoting software component development and porting are
focused primarily on the following two themes. The first is to
resolve the issue that porting of software components up to now
has been difficult due to the large difference in specifications
among ITRON-specification kernel implementations. This requires
that the level of standardization of the kernel specifications be
raised while retaining the benefits of loose standardization. The
second theme is supporting software components with hard real-
time characteristics. Software components include many that
demand real-time response. What is needed is a framework that
allows coexistence of software components with applications
while satisfying their real-time constraints, and enabling use of
multiple software components each with their own real-time
needs. As the result of these studies, we published the µITRON4.0
specification, in June, 1999. The µITRON4.0 specification defines
the standard profile which strictly defines the kernel functions for
raising software portability. At the same time, the µITRON4.0
specification follows the loose standardization policy as a whole.
Namely, a subset of the standard profile is permitted for small-
scale systems. Also, many extended functions that are not
included in the standard profile are defined in the specification.

The standardization of software component interfaces in
specific fields has being taking place for the API (application
program interface) of the TCP/IP protocol stack and the Java
runtime environment.

The TCP/IP protocol stack has taken on increasing significance
in the field of embedded systems, recently. Though the socket

interface is in wide use today as a TCP/IP API, it is not appropriate
for embedded systems (particularly small-scale ones) because of
such problems as its large overhead and the necessity of dynamic
memory management within the protocol stack. The ITRON
TCP/IP API Specification, which is a standard TCP/IP API for
embedded systems, has been designed to solve these problems of
the socket interface and to enable a compact and efficient
implementation of the TCP/IP protocol stack. The ITRON TCP/IP
API Specification has been published on May, 1998.

Java technology is also drawing interest these days. A practical
approach for applying Java technology to embedded real-time
systems is to implement the Java runtime environment on an
ITRON-specification kernel, then build an application system
whereby the parts for which Java is best suited are implemented as
Java programs, and the parts taking advantage of the ITRON-
specification kernel strengths are implemented as ITRON tasks. A
key issue here is the standardization of the communication interface
between Java programs and ITRON tasks. The JTRON2.1

V20

V33A

V25

V55PI

SH2, VR4100/VR4300,

TMS470R1x, SR320

Vr 4300, SH-3, ARM7TDMI

ARM7TDMI Series

Strong ARM

F2MC-16LX/16L/16/16H/16F Family

F2MC-8L Family

FR Family

SPARClite Series

MPC68K, PPC860, ARM7

V850e, SH3 SH4

H8/300

H8/500

H8/300H

SH

H8S

SH-1, SH-2 Series

SH2-DSP Series

SH3 Series

M32 Family

7700 Family

M16 Family

38000 Series

M16C/60 Series

M32R/D

7900 Family

8086

H8/300H

Z80

SH1, SH2

H8/500

68000, 68010, CPU32

MC68020

MC68000

8086 Series

78K/III Series

78K/II Series

78K/0 Series

78K/IV Series

RX850

RX850 Pro

RX4000

RX4000 v4

SPC900

8086 Series

TLCS-90

TLCS-900

TX19 Series

8086 Series

68000 Series

TLCS-R3900 Family

Pentium, i486

Z80

Z80

eSOL Co., Ltd.

Firmware Systems Inc.

FUJITSU LIMITED

GRAPE SYSTEMS INC. /

Hitachi, Ltd.

Mitsubishi Electric Semiconductor Application
Engineering Corporation

MiSPO Co., Ltd.

Morson Japan

NEC Corporation

Sony Corp.

Three Ace Computer Corp.

TOSHIBA CORP.

Toshiba Information Systems (Japan) Corporation

Masayuki Kawakami

ITRON1

µITRON2.0

µITRON4.0

µITRON3.0

µITRON2.0

µITRON3.0

µITRON4.0

µITRON2.0

µITRON3.0

µITRON2.0

µITRON3.0

µITRON2.0

µITRON2.0

µITRON2.0

µITRON3.0

µITRON4.0

µITRON3.0

µITRON2.0

µITRON2.0

µITRON3.0

µITRON2.0

µITRON3.0

µITRON3.0

µITRON4.0

Company Processor Specification

* Products not supported outside of Japan are included.

ACCESS CO., LTD.

ELMIC SYSTEMS, INC.

SH Family, ARM7TDMI, L7200

SH Family, Strong ARM

µITRON3.0

µITRON4.0

µITRON3.0SH3

Accelerated Technology Incorporated

A.I. Corporation / US SOFTWARE TRON Task! 4.0 µITRON4.0

Table 4: ITRON-specification kernel implementations
(Products registered with the TRON Association as of March. 1, 2002)

ITRON pf/lettersize/2002/2 02.2.13 11:02 AM ページ4

Specification has been designed to define this interface standard and
published on Nov., 2000.

Besides software component-related work, another area of field-
specific research and standardization which has been undertaken is
application of the ITRON-specification kernel to the automotive
field. The result has been reflected to the µITRON4.0 Specification.

Other current activities include the definition of the ITRON
debugging interface, the interface specification between ITRON-
specification kernels and debugging environments, the device
driver design guidelines, and the application design guidelines.
We are also conducting a project that is to implement some
software components running on ITRON-specification kernels and
make them free. Other themes we would like to undertake over
the course of the coming months and years include standards for
C++/EC++ language binding of the ITRON-specification kernel.

Promotional Activities
Even though the ITRON specifications have come to be called an

industry standard, the activity of the TRON Project is not so well
known, prompting us to step up our promotional work further. At the
same time we are making efforts to promote the global acceptance of
the ITRON specifications.

Among the specific activities, we have established an ITRON
Web site on the Internet. We also take part in trade shows and
seminars in the embedded systems field, actively promoting
awareness and acceptance of the TRON Project.

As global promotional activities. We promotioned TRON
project at the Embedded Systems Conference, the world's largest
trade show in the embedded systems field. Base on these activities,
we plan to establish the North American Chapter of the TRON
Association.

Conclusion
The ITRON-specification kernel has been adopted by many

Japanese manufacturers including the leading semiconductor
venders, has been implemented for a wide range of different
processors and applied in a large number of products in a diversity of
fields. The µITRON-specification kernel, in particular, continues to
find application to single-chip MCUs that previously could not use a
real-time OS due to the memory and execution speed constraints. In
the process, it is assuming a position as the world's first standard
kernel specification in this field.

Based on these achievements, we are broadening our
standardization focus from kernel specifications to related areas such

as software components and the development environment. At the
same time we are going ahead with surveys and standardization work
in specific application fields. As a future direction we are moving
toward realization of the HFDS (highly functionally distributed
system) that is the goal of the TRON Project as a whole.

0%

20%

40%

60%

80%

100%

ITRON-specification OS API

Not ITRON-specification OS API

OS not used

P
er

so
na

li
nf

o.
ap

pl
ia

nc
e

C
om

m
un

ic
at

io
n

(t
er

m
in

al
)

O
th

er

A
ud

io
/v

is
ua

l
eq

ui
pm

en
t

E
le

ct
ric

eq
ui

pm
en

t

C
om

m
un

ic
at

io
n

(n
et

w
or

k)

H
om

e
ap

pl
ia

nc
e

E
nt

er
ta

in
m

en
t,

ed
uc

at
io

n

P
C

pe
rip

he
ra

l,
of

fic
e

eq
ui

pm
en

t

In
du

st
ria

lc
on

tr
ol

,
FA

M
ed

ic
al

eq
ui

pm
en

t

O
th

er
co

m
m

er
ci

al
eq

ui
pm

en
t

O
th

er
m

ea
su

rin
g

in
st

ru
m

en
t

Tr
an

sp
or

ta
tio

n

TRON Association
Katsuta Building 5F, 3-39, Mita 1-chome, Minato-ku, Tokyo 108-0073, Japan

TEL: +81-3-3454-3191 FAX: +81-3-3454-3224

TRON is an abbreviation of "The Real-time Operating system Nucleus." ITRON is an abbreviation of "Industrial TRON." TRON and ITRON are names of concepts and projects aimed
at developing a new computer system and environment; they do not refer to any specific product or products. Product names mentioned in this brochure are trademarks or registered
trademarks of their respective holders.

Table 5: Typical ITRON-specification kernel applications

Audio/Visual Equipment, Home Appliance

TVs, VCRs, digital cameras, settop box, audio components, microwave
ovens, rice cookers, air-conditioners, washing machines

Personal Information Appliance, Entertainment/Education

PDAs (Personal Digital Assistants), personal organizers, car navigation
systems, game gear, electronic musical instruments

PC Peripheral, Office Equipment

printers, scanners, disk drives, CD-ROM drives, copiers, FAX, word
processors

Communication Equipment

answer phones, ISDN telephones, cellular phones, PCS terminals, ATM
switches, broadcasting equipment, wireless systems, satellites

Transportation, Industrial Control, and Others

automobiles, plant control, industrial robots, elevators, vending
machines, medical equipment

Figure 6. Real-time OS use in embedded systems
(TRON Association survey in Japan, Nov. 2000)

ITRON pf/lettersize/2002/2 02.2.13 11:02 AM ページ5

