TRON Association

JTRON2.0
SPECIFICATION

September 14, 1999
Ver2.00.00

Java(tm) Technology
on ITRON-specification OS Technical Committee
ITRON Committe, TRON ASSOCATION

Copyright (C) 1999 by ITRON Committe, TRON ASSOCATION, JAPAN

Editor: Yukikazu Nakamoto
Assistant Editor: Kazutoshi Usui
Page Layout Design: Kazutoshi Usui
Special thanks to
Wendy Fong
Natsuko Noda
Yoshiharu Asakura

Preface

An embedded system, in which a real-time OS(RTOS) has been used, is one of a strongly potential field
for the application of Java technologies. Especially in Japan, the ITRON specification RTOS has been
standardized to be used in many of the embedded systems. In applying Java technology to embedded systems,
a hybrid approach is very promising;Java runtime environment is implemented on a real-time OS; parts of
the application requiring real-time properties and parts of application requiring GUI features, extension of
features, and replaced programs for new features should be implemented on Java runtime environment. In this
case, the standardization of interfaces between the real-time task and Java program to encourage distribution
of the programs are indispensable, from the view of the system development and the portability and reusability
of real-time programs and Java programs. This specification provides for the interface specification between
the real-time programs and the Java programs.

ITRON special committee
Java Technology on ITRON-specification OS technical committee
September 14, 1999

e

Note

The copyright of this document belongs to the TRON Association.

The authorization of the TRON Association is required in use of or copying part of the content of this
document.

The content of this specification may change without notice due to the future improvement.
e This document is based on Java Development Kit Version 1.1, not Java 2 platform.
e For the questions about this specification, ask:

Tron Association
Katsuta Building 5F, 1-3-39 Mita, Minato-ku, Tokyo 108-0073
e-mail:jtron-question@itron.gr.jp

Remarks

e All the trademarks and logotypes of Java are trademarks of Sun Microsystems, Inc. in U.S.A. and other
countries.

e Sun and Sun Microsystems are the trademarks of Sun Microsystems, Inc. in U.S.A. and the other
countries.

e ITRON is the abbreviation of the “Industrial TRON”, in which TRON is the abbreviation of the “The
Real Operating System Nucleus”.

Java Technology on ITRON-specification OS technical committee
Nobutaka Amano (formerly from Tron Association)
Katsuhiko Ishida (Hitachi, Ltd.)

Shoji Ueda (Metrowerks)

Kazutoshi Usui (NEC Corp.)

Tetsuo Oe (Oki Electric Industry Co., Ltd.)
Kenji Okazaki (Mentor Graphics Japan)
Masaya Kato (Toshiba Corp.)

Tomihisa Kamata (Access Corp.)

Tatsuya Kamei (Mitsubishi Electric Corp.)
Kenji Kudo (Fujitsu Device Inc.)

Yasuhiro Kobayashi (Fujitsu Ltd.)

Tetsu Shibashita (Mentor Graphics Japan)
Hiroyuki Suzuki (Access Corp.)

Tatsuya Koretsu (formerly from The University of Tokyo)
Hiroaki Takada (Toyohashi University of Technology)
Shuji Takanashi (Toshiba Corp.)

Toru Takeuchi (Tron Association)

Yukio Tada (Yamaha Corp.)

Noriaki Tanaka (Denso Create Inc.)

Kiichiro Tamaru (Toshiba Corp.)

Kenichi Nakamura (Nihon Cygnus Solutions)
Yukikazu Nakamoto (NEC Corp.; Manager)
Takeshi Narita (Toshiba Information Systems)

Shoichi Hachiya (Applix Coropration)

iii

Seiji Hayashida (Toshiba Corp.)

Makoto Hirayama (Hewlett-Packard Company)

Tetsuo Miyauchi (NEC Microcomputer Technology, Ltd.)

Hiroyuki Muraki (Mitsubishi Electric Semiconductor Systems Corp.)
Takahiro Muranaka (Mitsubishi Electric Corp.)

Akihiro Yoshida (Applix Coropration)

Hiroyuki Watanabe (Seiko Instruments Inc.)

iv

Contents

1 OVERVIEW 1
1.1 General e e e e e 1
1.2 Overall Rules (ITRON Kernels) it ii 3

1.2.1 Namingrules L e e e 3
1.2.2 Static APT and dynamic API 3
1.2.3 Return values and error codesof APT 0. 3
1.2.4 Waiting status and time-out oL Lo o 4
1.2.5 Relation between APT and tasks 5
1.3 Common Definition L e e e e 5
1.3.1 Header files L 5
1.3.2 Data structure / Data type e 5
1.3.3 Constants L e e 6
1.4 Overall Rules (Java) o i e e e 7
1.4.1 JTRON standard Java package structure 7
1.4.2 JTRON standard Java class structure L oL, 7
1.4.3 Java system property L e e e e e e e e e e e 7
1.5 Operating Rules o e 9

2 MAPPING OF JAVA THREAD AND REAL-TIME TASKS 11
2.1 General e e e e 11
2.2 ITRON API. e e e e s e e e e e 12

Jtiset_hpr Sets the highest priority of the real-time task implementing the JRE 13

Jti_get_hpr Gets the real-time task priority from the Java thread priority 14

jtiget lpr Finds the lowest priority of the real-time task implementing the JRE 15

2.3 Java APL e e e e e e 16
2.3.1 Packagestructure. 16

2.3.2 Class jp.gr.itronjtron.JtiSystem L L oo 16

3 ATTACH CLASS 19

CONTENTS

4 SHARED OBJECT INTERFACE 21
4.1 General e e e e e 21
4.2 ITRON API. e e e e e 25

4.2.1 ITRON API for accessing shared objects 25
Jti_get_obj Finds the shared object identification number by using names 26
Jti_get_mem Returns the head pointer of the specified shared object (Whose class

name is Sharable) Lo 27
jti_loc_obj Locks the specified Javaobject 28
Jti_unl_obj Unlocks the specified shared object 29
jti_funl obj Unlocks the specified shared object by force 30

4.2.2 ITRON API for operating the Java thread 31
Jti_get_thr Gets the thread identification number by using names 32
Jtiisa_thr Calls the isAlive method in the Java Thread class 33
jtiint_thr Calls the interrupt method in the Java Thread class 34
Jti_isi_thr Calls the isInterrupted method in the Java Thread class 35
jtisus_thr Calls the suspend method in the Java Thread class 36
jti_rsm_thr Calls the resume method in the Java Thread class 37
Jti_sta_thr Calls the start method in the Java Thread class 38
jti_thr_stp Calls the stop method in the Java Thread class 39
Jti_get_jpr Calls the getPriority method in the Java Thread class 40
Jti_set jpr Calls the setPriority method in the Java Thread class 41
jti_des_thr Calls the destroy method in the Java Thread class 42

4.2.3 ITRON API for operating Java thread groups, 43
Jtiget_tgr Gets the Java thread group identification number by using names . 44
jtides_tgr Calls the destroy method in the Java ThreadGroup class 45
Jtisus_tgr Calls the suspend method in the Java ThreadGroup class 46
Jtirsm _tgr Calls the resume method in the Java ThreadGroup class. 47
jtistp_tgr Calls the stop method in the Java ThreadGroup class 48

4.3 Java AP e e e e 49

4.3.1 Packagestructure. e 49

4.3.2 Interface jp.gr.itron.jtron.shared.Sharable 0000, 51

4.3.3 class jp.gr.itron jtron.shared.SharedObjecto L. 53

4.3.4 Class jp.gr.itron.jtron.shared.SharedObjectManager 55

4.3.5 Class jp.gr.itron.jtron.shared.ShmException 57

4.3.6 Class jp.gr.itron.jtron.shared.ShmlllegalStateException 58

4.3.7 Class jp.gr.itron.jtron.shared.ShmTimeoutException 60

5 STREAM INTERFACE 61

5.1 General e e e e 61
5.1.1 What i1s stream interface e 61
5.1.2 Stream and channel statuso 62

52 ITRON APL. e e e e e e e e s e e 65

vi

5.3

5.2.1 Creating / Deleting streams
jticre stm, JTI.CRE_STM Creates streams
jti_del_stm Deletes streams

5.2.2 Sending/Receiving data and ending the sending
Jti_wri_stm Sendsdata,
Jti_rea_stm Receivesdata
jtisht_stm Ends the data sending

5.2.3 Refers to the stream status 00000,
Jti_ref stm Refers to the stream status

Java APT o e

5.3.1 Packagestructure. L L oo oo

5.3.2 Class jp.gr.itron.jtron.stream.JtiDataStream

5.3.3 Class jp.gr.itron.jtron.stream.JtiDataStreamImpl

5.3.4 Class jp.gr.itron.jtron.stream.JtiDataStreamException

A APPENDIX

A.1 Attach Classes
A .2 Shared Object Interface
A.2.1 Definition examples 0.0 e e e e e e

A.3 Stream Interface

Index

A.2.2 Communication examples by real-time task and Java program

A.3.1 Communication examples by real-time task and Java program

CONTENTS

vii

List of Figures

List of Figures

1.1

4.1
4.2
4.3

5.1
5.2
5.3
5.4

Cooperation of Java program and real-time program 2
Shared object L e e e e 21
Expected operation orders L Lo e e e e e e e e e 24
Shared package class structure Lo 50
Streams L oL e e e e e 61
Channel status transition from real-time task to Java program 63
Channel status transition from Java program to real-time task 64
Stream package class structure L. oL 0oL oL 77

viii

List of Tables

List of Tables
1.1 JTRON standard Java package names e 7

4.1 Shared object lock status transition.o L 23

ix

Reference

Reference

[1] Tron Project, JTRON Specification, Dec. 1997.
[2] pkITRONS3.0 Standard Handbook ” edited and published by Tron Association, Personal Media, 1997.

]

]
[3] JavaSoft, “Java Native Interface Specification Release 1.1”7, May,1997.
[4] J.Gosling, B. Joy and G. Steele, “The Java Language Specification”, Addison-Wesley, 1996.
]

[5] Erich Gamma, Richard Helm, Ralph E. Johnson, John M. Vlissides, translated by Shinichi Honida, ”Design
Patterns: Abstraction and Reuse of Object-Oriented Design”, Softbank, 1995.

[6] Toyokazu Tomatsu, ”Java Program Design”, Softbank, 1997.

Chapter 1

OVERVIEW

1.1 General

An embedded system, in which a real-time OS(RTOS) has been used, is one of a strongly potential field
for the application of Java technologies. Especially in Japan, the ITRON specification RTOS has been
standardized to be used in many of the embedded systems. In applying Java technology to embedded systems,
a hybrid approach is very promising; Java runtime environment is implemented on a real-time OS; parts of
the application requiring real-time properties, for instance handling multi-media stream, are implemented
on the real-time OS; and parts of application requiring GUI features, extension of features, and eplaced
programs for new features should be implemented on Java runtime environment. For example, device drivers
and interrupt handlers should be written in C/C++ and executed on the real-time OS. In this case, the
standardization of interface between the real-time task and Java program to encourage distribution of the
programs are indispensable from the view of the system development and the portability and reusability of
real-time programs and Java programs. This specification provides for the interface specification between the
real-time programs and the Java programs.
The following are two interfaces between a real-time task and the Java program:

(1) Definition of the relation between a Java thread and a real-time task.
The Java thread is mapped to a real-time task in a one-to-one way. This mapping rule is provided.

(2) Definition of the cooperative computation for the Java program and the real-time taskEN:COOP

The following types are considered for the above:

Type 1 : Attach class
Allows use of the ITRON kernel system call in the Java program (corresponds with the
JTRON specification [1]).

Type 2 : Shared object interface
The Java program and the real-time task communicate through shared objects.

Chapter OVERVIEW

Real-time program Java program

Attach class

Shared object interface

Stream interface

Real-time Task embedded in Java

(Java Native Interface)

Real-time program world Java program world

Figure 1.1: Cooperation of Java program and real-time program

1.2. Overall Rules (ITRON Kernels)

Type 3 : Stream interface
The Java program and the real-time task communicate through streams.

Type 1 and 2 are regarded as tightly-coupled multi-processor system and Type 3 as loosely-coupled multi-
processor system. The following approach is also available:

Type 4 Brings the Java programming in the real-time task.
This is done by calling the Java API from the real-time program using the JNI (Java Native
method Interface[3]).

The contents defined in this specification are applicable not only among ITRON specification RTOS but
also in a real-time OS provided from other vendors.

1.2 Overall Rules (ITRON Kernels)

1.2.1 Naming rules

In general, naming rules follow the naming rules in the ITRON specification. JTT (JTron Interface) is added
as a prefix.

Macro name : JTI_ZZZ
Type name : T_JTI. XXX
Function name : jti. XXX _YYY: XXX indicates an operation, and the YYY indicates the target object of the ope

1.2.2 Static API and dynamic API

For each API which creates objects, APIs(called static API) described in the configuration file are sent to a
target system to create an object based on the configuration information when initializing the system. The
static APIs can be distict from normal APIs(called dynamic API) by describing the API names in capital
letters.

1.2.3 Return values and error codes of API

A return value of each API follows the ITRON specification conventions. The return value will be a negative
value error code, in case of an error, and will be 0 or a positive value when executed normally. The meaning
of the return value when executed normally is defined for each API.

Error codes consist of main error code, sub error code,and implementation-dependent error code. Main
error codes, sub error codes, and implementation-dependent error codes are all negative values, and the error
codes which combined some of these error codes are also negative. In JTRON2.0 specification, both of the
main error codes and sub error codes are 8 bits and implementation-dependent error codes are 0 bit or bigger.

The following macros are provided to hide the implementation of the error codes.

JTI_ MAINERCD(ercd) Main error codes
JTI_SUBERCD (ercd) Sub error codes
JTI.IMPLERCD(ercd) Implementation-dependent error codes

Chapter OVERVIEW

Note: The above macro names will be replaced when the specification for overall ITRON speci-
fication is defined.

The mnemonics, values, and meanings of the main error codes must be standardized to be the same as the
error codes in the ITRON kernel specification. However, the error code (E_CLS)which is not defined in the
ITRON kernel specification must be defined additionally.

Sub error codes are expected to be used in the following way: If an exception occurs when executing the
API which accesses the Java object from the real-time task, the main error code of the ITRON API error
code is E_OBJ and a Java exception code is assigned to the sub error code. The Sub error codes are expected
to be used to return useful information for debugging.

The implementation-dependent error code is defined according to the vendor implementation of JTRON
specification 2.0.

In this specification, only the main error codes are defined as error codes each API returns.

The error codes below are not described for each API, but all the APIs may return those error codes. Some
APIs may return the error code in the following: (but which API returns which error is implementation-
dependent.)

E_SYS System error
E_NOMEM Not enough memory
E_NOSPT Function not supported
E_MACV Memory access violation

1.2.4 Waiting status and time-out

When the execution of the program is waiting until a certain event takes place in the real-time task, the status
1s called ”waiting” or ”entering the waiting status”, and in the Java thread, it is called ”blocked”.

ITRON APIs that may enter waiting status provides a timeout functionality.

THe time-out functionality is to return from the API by canceling the process when the process is not
complete after a certain period of time (in this case, an E_.TMOUT error is returned from the API). For this
reason, the status of the object does not change by calling the API in case of the time-out. The exception is
when the object status cannot be returned to a status before calling the APIs in canceling the process due to
the function of the API.

Polling is the time-out process which sets the time-out time to 0.

When a program calling an API enters a waiting status, the process by the API is said to be pending.

In the API description in this specification, the behavior without time-out (permanent waiting) is described.
Even if ”waiting status” is found in the APT function explanation, the waiting status is released after a specified
time and the status returns from API with E TMOUT as the return value if the time-out has been specified.

The time-out value indicates the time-out time (millisecond is recommended), for positive values, a polling
for

TMO_POL (= 0) and permanent waiting for TMO _FEVR(= -1).

4

1.3. Common Definition

1.2.5 Relation between API and tasks

The APIs in this specification act in the same way even if called from a different task, if the parameters are
the same, which means there is no resource to be assigned to the task by the APIs in this specification.

When the task A calls the APT in this specification and enters in the waiting status, and another task B
wakes up the task A by issuing rel wai system call, an E_RLWATI error is returned from the API from the task
A. If a ter_tsk was issued in the same situation, the behavior is implementation-dependent.

1.3 Common Definition
1.3.1 Header files
Header files are described as :”jt1_ XXX.h”

Header file used for the type 1 : ”jti_attach.h”
Header file used for the type 2 : ”jti_shared.h”
Header file used for the type 3 : ”jti_stream.h”

1.3.2 Data structure / Data type

(1) For shared object interface
JNO Integer type, length is implementation-dependent
ER Integer type, 16 bits or bigger for JTRON

(2) For stream interface

typedef struct t_jti_cstm {

VP exinf; /* Extension information */

ATR stmatr; /* Stream attribute */

VP wbuf; /* Head of the sending buffer */
INT wbufsz; /* Size of the sending buffer */
VP rbuf; /* Head of the receiving buffer */
INT rbufsz; /* Size of the receiving buffer */

/* Other implementation-dependent fields can also be added. */
} T_JTI_CSTM;

typedef struct t_jti_rstm {

VP exinf; /* Extension information */
INT wrisz; /* Data length which can be sent without waiting */
INT reasz; /* Data length which can be received without waiting */

/* Other implementation-dependent fields can also be added. */
} T_JTI_RSTM;

Chapter OVERVIEW

1.3.3 Constants

(1) General
NADR -1 Invalid address

(2) API function codes
(Omission)

(3) Main error codes

E_OK 0 Normal termination

E_SYS —5 System error

E_NOMEM -10 Not enough memory
E_NOSPT —17 Function not supported

E RSATR —24 Reserved attribute

E_PAR —33 Parameter error

E_ID —35 Illegal ID number
E_NOEXS —52 Object not created

E _OBJ —63 Object status error

E MACV —65 Memory access violation
E_DLT —81 Deletion of the waiting status
E_RLWAI —86 Cancellation of the process, compulsory cancellation of the waiting status
E_CLS —87 Disconnected

(4) BOOL values
TRUE 1 True
FALSE 0 False

(5) Time-out specification
TMO_POL 0 Polling
TMO_FEVR -1 Permanent waiting

(6) Java thread / Real-time task priority specification
JTI_DFL_HPR Default highest priority value for real-time task implementing JRE. The value is implementatio

(7) For stream interface

JTI_.MAIN_STREAM 1 Main stream ID
TA_WRITE 0x01 Stream attribute. Enables sending.
TA_READ 0x02 Stream attribute. Enables receiving.

(8) Error-obtaining macros
JTI MAINERCD(ercd) Main error code
JTI_SUBERCD (ercd) Sub error code
JTI.IMPLERCD(ercd) Implementation-dependent error code

1.4. Overall Rules (Java)

1.4 Overall Rules (Java)

1.4.1 JTRON standard Java package structure

The Java class package names which provide JTRON2.0 specification should be unique if the package spec-
ification is the same. Following the Java language specification, the package name starts with the Internet
domain name (XXX) followed by a name (YYY) used for the identification for management (Tablel.1).

Table 1.1: JTRON standard Java package names

| Type H Package name format | JTRON standard Java package name

Package used for type 1: || XXX jtron.attach.YYY | jp.gr.itron.jtron.attach.YYY
Package used for type 2: | XXX jtron.shared.YYY | jp.gr.itron.jtron.shared. YYY
Package used for type 3: || XXX jtron.stream.YYY | jp.gr.itron.jtron.stream.YYY

When a vendor expands functionality of the package, the vendor must add a name according to the JTRON
standard Java package names, which means the domain name of the vendor comes after XXX. Therefore, the
package structure can remain same for convenience of programmer. Vendors are not allowed to give the same
name for the different functions. If the functions are different, the vendor must change the name or create an

unique package name for the vendor.

1.4.2 JTRON standard Java class structure

In the class definition, method names or variable names which are shown to programmers are public and those

which depend on vendors are not public.
In this specification, the overriding methods among the methods defined in the super class are not described.

Vendors must appropriately set the overriding as required.

Examples e Object#toString()
e Throwable#getMessage()

1.4.3 Java system property

The following system properties are provided as standard.

jtron.version :
The version number of the JTRON specification provided (complies with the convention for the JITRON

version number).

Chapter OVERVIEW

jtron.type :
Type number expressed by the combination of more than one of the following alphanumeric characters.
0: Attach class
1: Shared object interface
2: Stream interface
3-9,A-7: Reserved for future use

jtron.vendor :
Vendor name (can be set to vendor’s convenience).

These property values can be obtained through the getProperty method in the jp.gr.itron.jtron.JtiSystem
class.

1.5. Operating Rules

1.5 Operating Rules

(1)

Maintenance

The specification must be reviewed in the first half of the year 1999 when companies are likely to
implement the specification and evaluate it. The consistency with the pITRON4.0 specification must
be considered at the same time.

Compliance

Those which implement any of the specification for Type 1, Type 2, or Type 3 (excluding the extended
specification) are allowed to be announced as ”JTRON2.0-compliant”. A label ”Standard” in API
specification stands for a mandatory API, ”Extension” for an optional API.

Registration and approval system
We employ the registration system to certify the products which comply with the specification. However,
we do not give any official approval for whether or not the product complies with the specification.

Chapter OVERVIEW

10

Chapter 2

MAPPING OF JAVA THREAD
AND REAL-TIME TASKS

2.1 General

In JTRONZ2.0 specification, one Java thread is mapped to one real-time task in one-to-one way. The following
mapping rules are provided:

(1) Defines the relationship of the priority between the Java thread and the real-time task. This

means that the highest priority among all the priorities of the real-time task which implements
JRE (Java Run-time Environment) can be defined.

[Rationale]

The following rules were also considered in providing the priority mapping between the Java thread and the
real-time task.

e Defines an API which can set and refer to the priority mapping table for the Java thread and
the real-time task.

e Defines an API which can define the highest priority and the lowest priority of the real time
task implementing the JTRON2.0 interface(or the highest priority and the lowest priority of
the real-time task, which can be used in the real-time programs because the JRE use real-time
task priorities, so that priorities, which can be used in the real-time programs are limited).

These methods were not employed due to the reasons below:

e The real-time task concerns only the highest priority of the JTRON2.0 interface implementation and
not the lowest priority.

e The priority available in the real-time task should be obtainable statically.

11

Chapter MAPPING OF JAVA THREAD AND REAL-TIME TASKS

2.2 ITRON API

| API Name | Function | Type |
jti_set_hpr | Sets the highest priority of the real-time task implementing the | Standard
JRE
jti_get_hpr | Gets the real-time task priority from the Java thread priority Standard
jti_get_Ilpr | Gets the lowest priority of the real-time task implementing the | Standard
JRE

12

2.2. ITRON API

Standard

jti_set_hpr
Sets the highest priority of the real-time task implementing the JRE

[C language API]

void jti_set_hpr(hijpr);

[Static API]
JTI_SET_HPR(hijpr)

[Parameters]

PRI hiypr Real-time task priority

[[Return value]

None

[API function]

Sets a value of the highest priority of the real-time task implementing the JRE to hygpr. JTI. DFL_HPR has
been set as an initial value in case that this API is not executed.

[Note]

Even if the value of the highest priority is changed dynamically, the priority of the Java thread already in
execution will not change.

13

Chapter MAPPING OF JAVA THREAD AND REAL-TIME TASKS

Standard
jti_get_hpr
Gets the real-time task priority from the Java thread priority

[C language API]

PRI pri = jti_get_hpr(hijpr, jpr);

[Static API]

PRI pri = JTI_GET_HPR(hijpr, jpr);

[Parameters]
PRI hypr the highest priority of the real-time task implementing the JRE
INT jpr Java thread priority

[Return value]

PRI pri Real-time task priority

[API function]

Gets a priority of the Java thread jpr in the ITRON kernel based on the highest priority value hijpr of the real-
time task implementing the Java thread, and returns the priority. The static API is implementation-dependent
including if the API is provided or not.

14

2.2. ITRON API

Standard
jti_get_lpr
Finds the lowest priority of the real-time task implementing the JRE

[C language API]
PRI pri = jti_get_lpr(hijpr);

[Static API]

PRI pri = JTI_GET_HPR(hijpr);

[Parameters]

PRI hiypr the highest priority of the real-time task implementing the JRE

[Return value]

PRI pri The lowest priority of the real-time task implementing the JRE

[API function)]

Retrieves the lowest priority value of real-time task implementing the JRE based on the highest priority
value hiyjpr of the real-time task implementing the Java thread, and returns the priority. The static APT is
implementation-dependent including if the API is provided or not.

15

Chapter MAPPING OF JAVA THREAD AND REAL-TIME TASKS

2.3 Java API

2.3.1 Package structure

The classes which manage and control the overall JTRON system are collected in the jp.gr.itron.jtron pack-
age.This package consists of the following class.

Class: JtiSystem

2.3.2 Class jp.gr.itron.jtron.JtiSystem

java.lang.0bject

I
+-—— jp.gr.itron.jtron.JtiSystem

public JtiSystem

Manages the information such as property concerning the JTRON interface specification.

O Constructor

protected JtiSystem()

O Methods

public static JtiSystem getJtiSystem()
Obtains an object of the JtiSystem class. By calling this method, the JTRON mechanism on the Java side
(mechanism in which the ITRON real-time task controls the Java resource) is available.

public String getProperty(String key)
Obtains the JTRON system property indicated by the specified key.

public String getProperty(String key, String default)
Obtains the JTRON system property indicated by the specified key. Returns the default if the property
specified by the key cannot be found.

public Properties getProperties()
Obtains the JTRON system property. The following properties are defined as standard:

jtron.version :
A version number of the JTRON specification provided (complies with the convention for the
uITRON version number)

16

2.3. Java API

jtron.type :
Type number expressed by the combination of more than one of the following alphanumeric
characters.
0: Attach class
1: Shared object interface
2: Stream interface
3-9,A-7: Reserved for future usage
jtron.vendor :
Vendor name (can be set to vendor’s convenience)

17

Chapter MAPPING OF JAVA THREAD AND REAL-TIME TASKS

18

Chapter 3

ATTACH CLASS

Plese refer to the JTRON specification found in the reference [1] JTRONT1 specification. For attach classes,
the JTRONT1 specification is applicable to up to pITRON3.0[2]of the real-time OS specification. The attach
class specification will be updated corressponding to the pITRON4.0 specification.

19

Chapter ATTACH CLASS

20

Chapter 4

SHARED OBJECT INTERFACE

4.1 General

The shared object interface provides a communication means by exchanging data between Java threads and
real-time tasks (Figure 4.1).

In the Java thread, an object for sharing is registered in the shared object manager which controls the
exchange with the real-time task. In the real-time task, a head address of the registered shared object is
obtained. Data is exchanged between the Java thread and the real-time task by using this shared object. A
lock mechanism is provided to keep the consistency of the shared object.

Real-time Task JavaThread
lock () lock
shared object
unlock unlock
. J
\ \

Figure 4.1: Shared object

SharedObjectManager class is provided as a class for exchanging with the real-time task. All the other

21

Chapter SHARED OBJECT INTERFACE

classes exchange data with the real-time task through the SharedObjectManager. By inheriting the Share-
dObject class provided as a Java class library or by implementing the Sharable interface, a Java object shared
with the real-time task side is created. When creating this shared object, a name is given to register in the
SharedObjectManager. When accessing the shared object, locking or unlocking (lock method and unlock
method of the SharedObject in the Java program and loc_shm and unl shm API in the ITRON task)
must be performed for the mutual exclusion. From the real-time task, a shared object is locked first and a
head address of the shared object will be taken out to access the shared object. The unlocking will be done
after completing the access. The address of the shared object after being unlocked is not guaranteed since the
sharing may be finished.

Among the Thread classes and ThreadGroup classes of the Java, execution control methods which
involves the status transition can be called from the real-time tasks an extension specification. This is because
the control of the Java thread from the real-time task is required when communicating with the shared object.

Semantics of lock

Shown below is the status transition of the shared object when the Java thread or the real-time task executed
a locking or an unlocking in the shared status, which also can be divided into locked status and not locked
status, and in the unshared status.

“Same lock owner” stands for the case in which a real-time task or a Java thread, that previously executed
the lock operation and the thread or the real-time task, that is to execute the current operation are identical.
“Different lock owner (Java thread)” stands for the case in which the thread which previously executed the
lock operation and the thread or the real-time task, that is to execute the current operation are different.
“Different lock owner (Real-time task)” stands for the case in which the task which previously executed the
lock operation and the thread or the real-time task which is to execute the current operation are different.
These are shown in the table 4.1.

If a ThreadDeath exception takes place through the stop method by another thread B after the Java thread
A executed the lock method, the thread A executes the unlock method in the finally sentence which processes
this exception to unlock the object.

The waiting order of the shared object in locked status is implementation-dependent.

Relation with the garbage collection (GC)

(1) The shared objects after an share method was issued (sharemethod is normally issued in the construc-
tor) are not the target of the GC.

(2) The shared objects after an unshare method was issued are the target of the GC and the sharable
objects do not automatically disappear. You have to pay attention since the shared objects cannot be
the target of the GC unless you clearly execute the unshare method.

22

4.1. General

Table 4.1: Shared object lock status transition

lock unlock
not locked locked
operation Same lock Different lock owner Different lock owner
owner (Java thread) (Real-time task)
Java lock OK OK Blocked Blocked Exception
method (lock) (no effect)
unlock OK OK Exception Exception Exception
(no effect) (Unlock)
forceUnlock | OK OK OK OK Exception
*1 (no effect) (Unlock) (Unlock) (no effect)
unshare OK *3 *q *4 Exception
*2
ITRON | jtiloc_obj OK OK Waiting status Waiting status E_OBJ
API (lock) (no effect) error
jti_unl_obj OK OK E_OBJ error E_OBJ error E_OBJ
(no effect) (Unlock) error
jti_funl_obj OK OK OK OK E_OBJ
*5 (no effect) (Unlock) (Unlock) (Unlock) error

*1 The forceUnlock method unlocks an arbitrary Java thread by force. This method does not unlock a lock
of the real-time task. This method is provided because another Java thread can perform the unlocking by
force in case that the Java thread which locked the shared data is dead.

*2 This method ends the sharing of the shared object and only Java thread can end the sharing. In the
unshare method, in order to finish the sharing the shared object is locked first and then performs to finish
the sharing, and at last unlocks the object. Therefore, if the object to be ended the sharing has been
already locked by the Java thread or the real-time task, the thread which issued the unshare method will
be blocked until the object is unlocked. This is to safely end the sharing after the access of the real-time
task and the Java thread since the unsharemethod is executed asynchronously.

*3 Ends the sharing of the object after unlocking.

*4 Enters the waiting status until other threads or tasks unlock the object.

*5 If the real-time task intends to unlock the shared object locked by the real-time task or the Java thread

by force (jti_funl obj), the object will be unlocked.

23

Chapter SHARED OBJECT INTERFACE

[Supplementary explanation]

¢ Expected execution orders

The execution is expected to be done in the order shown in the figure 4.2.

Real-time task Java program
1: Registers the ShareObject by giving a

name

2: The jti_get_obj obtains the shared object
identification number by using the name

3: The jti_loc_obj locks the shared object

4: The jti_get_mem obtains an address of
the shared object

5: Make an access by using the address
6: The jti_unl_obj unlocks the shared object

7: Notifys the end of accessing the shared ob-
ject to the Java thread

8: Executes the lock method for the Share-
dObject

9: Executes the unlock method for the
SharedObject

Figure 4.2: Expected operation orders

e Assumptions for the shared Java objects

The memory location in the Java object (Endian, alignment, padding, etc.) is found in C structures by
the use of tools such as javah command. This assumption must be reviewed as soon as possible, since
existence of a function to obtain the memory location information other than JNI is not assured yet.

Any system call can be executed between the execution of jti_loc_obj and jti_unl obj, therefore, the
task will enter in any status. It is preferred that the task being locked must remain in the run/ready
status.

A try_lock function (locks the object when the object can be locked and issues an error or an exception
when the object cannot be locked) can be realized by specifying 0 to the waiting time when being locked.

24

4.2. ITRON API

4.2 ITRON API
4.2.1 ITRON API for accessing shared objects

| API Name | Function | Type |

jti_get obj Finds the shared object identification number by using names Standard
jti_get_mem | Returns a head address in the memory region corresponding the | Standard
specified shared object (Whose class name is Sharable)

jti_loc_obj Locks the specified Java object Standard
jti_unl obj Unlocks the specified shared object Standard
jti_funl obj | Unlocks the specified shared object by force Standard

25

Chapter SHARED OBJECT INTERFACE

jti_get_obj

Standard

Finds the shared object identification number by using names

[C language API]
ER ercd = jti_get_obj(char *objnm, JNO *p_objno);

[Parameters]

char *objnm Shared object name

JNO *p_objno Shared object identification number
[Return value]

ER ercd Error code

[Error code]

E OK Normal termination
E_OBJ No shared object corresponding the obknm exists
E_PAR Wrong parameter (objnm is a NULL pointer)

[API function]

Returns the Java shared object identification number corresponding the objnm to the region p_objno specifies.
The API regards the objnm character string as an UTF-8 character string and returns the identification
number of the Java object which has the identical name. If no Java object corresponding the objnm is found,
an E_OBJ is returned. If the objnm is a NULL pointer, an E_PAR is returned. The implementation may

limit the objnm to the ASCII character strings.

26

4.2. ITRON API

Standard

jti_get_mem
Returns the head pointer of the specified shared object (Whose class name is
Sharable)

[C language API]
ER ercd = jti_get_mem(JNO objno, VP* p_addr);

[Parameters]

JNO objno Shared object identification number
VP* p.addr The pointer for the region to store the head address of the shared object

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E PAR Wrong parameter
E_OBJ No object exists

[API function)]

Returns a head address of the shared object specified by 0bj to the region specified by the p_addr. A pro-
grammer has to access the address stored in the region specified by the p_addr by casting the type definition
corresponding the Java object. Refer to the JNI specification [3] for type correspondence between Java pro-
gramming language and C language.

27

Chapter SHARED OBJECT INTERFACE

Standard

jti_loc_obj
Locks the specified Java object

[C language API]
ER ercd = jti_loc_obj(JNO objno, TMO tmout);

[Parameters]

JNO objno Shared object identification number
TMO tmout Time-out time

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E PAR Wrong parameter
E_OBJ No shared object exists

E_ TMOUT Time-out takes place
E_RLWAI Waiting status released by force
E_DLT Sharing released

[API function]

Locks the shared object specified with the objno. The following are cases where the object has been previously
locked.

(1) The object has been locked by the lock method of the class SharedObject on the Java
thread.

(2) The object has been locked by the loc_obj on the different real-time task .

If the object has been previouly locked, the task enter will enter in the waiting status. In this waiting status,
the object will be unlocked by the unlock method of the class SharedObject in the Java program or the
unl obj of the real-time task. If the object has been locked by the same real-time task, the API terminates
normally without taking any action.

28

4.2. ITRON API

Standard

jti_unl_obj
Unlocks the specified shared object

[C language API]
ER ercd = jti_unl_obj(JNO objno);

[Parameters]

JNO objno Shared object identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal objno)
E_OBJ No object exists, or intended to unlock the object locked by a different task

[API function)]

Unlocks the shared object locked by the same real-time task specified by the objno. If the shared object
specified by the objno has been locked by a different real-time task or the Java thread, an E_OBJ error is

returned.

29

Chapter SHARED OBJECT INTERFACE

Standard
jti_funl_obj
Unlocks the specified shared object by force

[C language API]
ER ercd = jti_funl_obj(JNO objno);

[Parameters]

JNO objno Shared object identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal objno)
E_OBJ No object exists

[API function)]

Unlocks the shared object specified by the objno by force regardless of the Java thread or the real-time task
which locked the object.

30

4.2. ITRON API

4.2.2 ITRON API for operating the Java thread

For the methods of Java Thread classes which appear in the following API explanation, refer to [4].

| API Name | Function | Type |
jtiget _thr | Gets the thread identification number by using names Extension
jti_isa_thr | Calls the isAlive method in the Java Thread class Extension
jtisint_thr | Calls the interrupt method in the Java Thread class Extension
jtiisi_thr Calls the isInterrupted method in the Java Thread class Extension
jti_sus_thr | Calls the suspend method in the Java Thread class Extension
jtirsm _thr | Calls the resume method in the Java Thread class Extension
jti_sta_thr | Calls the start method in the Java Thread class Extension
jti_thr stp | Calls the stop method in the Java Thread class Extension
jti_get_jpr | Calls the getPriority method in the Java Thread class Extension
jti_set_jpr | Calls the setPriority method in the Java Thread class Extension
jti_des_thr | Calls the destroy method in the Java Thread class Extension

31

Chapter SHARED OBJECT INTERFACE

Extension

jti_get_thr

Gets the thread identification number by using names

[C language API]
ER ercd = jti_get_thr(char *thrnm, JNO *p_thrno);

[Parameters]

char *thrnm Java thread name
JNO *p_thrno Java thread identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_OBJ No thread exists
E_PAR Wrong parameter (thrnm is a NULL pointer)

[API function]

Returns the Java thread identification number corresponding the thrnm to the region p_thrno specifies. The
API regards the thrnm character string as an UTF-8 character string and returns the identification number
of the Java thread which has the identical name. If no Java object corresponding the thrnm is found, an
E_OBJ is returned. If the thrnm is a NULL pointer, an E_PAR is returned. The implementation may limit
the thrnm to the ASCII character strings.

32

4.2. ITRON API

jti_isa_thr

Extension

Calls the isAlive method in the Java Thread class

[C language API]
ER_BOOL ercd = jti_isa_thr(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER_BOOL ercd Return value of the method or an error code

[Error codes]

TRUE True
FALSE False
E_PAR Wrong parameter (Illegal thrno)

[API function)]

Calls the isAlive method in the Thread class for the Java thread specified by the thrno and returns the result.

33

Chapter SHARED OBJECT INTERFACE

Extension
jti_int_thr
Calls the interrupt method in the Java Thread class

[C language API]

ER ercd = jti_int_thr(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal thrno)

[API function)]
Calls the interrupt method in the Thread class for the Java thread specified by the thrno.

34

4.2. ITRON API

jti_isi_thr

Extension

Calls the isInterrupted method in the Java Thread class

[C language API]
ER_BOOL ercd = jti_isi_thr(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER_BOOL ercd Return value of the method or an error code

[Error codes]

TRUE True
FALSE False
E_PAR Wrong parameter (Illegal thrno)

[API function)]

Calls the isInterrupted method in the Thread class for the Java thread specified by the thrno and returns

the result.

35

Chapter SHARED OBJECT INTERFACE

Extension
jti_sus_thr
Calls the suspend method in the Java Thread class

[C language API]

ER ercd = jti_sus_thr(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal thrno)
E_OBJ A security exception took place while executing the Java method

[API function)]

Calls the suspend method in the Thread class for the Java thread specified by the thrno. The condition in
which the security exception took place depends on the implementation of the security manager.

36

4.2. ITRON API

Extension

jti_rsm_thr
Calls the resume method in the Java Thread class

[C language API]
ER ercd = jti_rsm_thr(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal thrno)
E_OBJ A security exception took place while executing the Java method

[API function)]

Calls the resume method in the Thread class for the Java thread specified by the thrno. The condition in
which the security exception took place depends on the implementation of the security manager.

37

Chapter SHARED OBJECT INTERFACE

Extension
jti_sta_thr
Calls the start method in the Java Thread class

[C language API]

ER ercd = jti_sta_thr(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal thrno)
E_OBJ A status violation took place while executing the Java method

[API function)]

Calls the start method in the Thread class for the Java thread specified by the thrno.

38

4.2. ITRON API

Extension

jti_thr_stp
Calls the stop method in the Java Thread class

[C language API]
ER ercd = jti_thr_stp(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination

E_PAR Wrong parameter (Illegal thrno)

E_OBJ A security exception or a NULL pointer exception took place while executing the Java
method

[API function)]

Calls the stop method in the Thread class for the Java thread specified by the thrno. The condition in which
the security exception took place depends on the implementation of the security manager.

[Supplementary explanation]

Since the overriding method stop(Throwable thrno) is considered to be used infrequently, the method is
excluded from the methods available to be called from the real-time task.

39

Chapter SHARED OBJECT INTERFACE

Extension

jti_get_jpr
Calls the getPriority method in the Java Thread class

[C language API]
ER ercd = jti_get_jpr(JNO thrno, INT *p_rslt);

[Parameters]
JNO thrno Java thread identification number
INT *p_rsit Java thread priority

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal thrno)

[API function)]

Calls the getPriority method in the Thread class for the Java thread specified by the thrno and returns the
result to the p_rsit.

[Note]

The priorities which can be obtained in this API are the priorities in the Java thread, not real-time task.

40

4.2. ITRON API

Extension
jti_set_jpr
Calls the setPriority method in the Java Thread class

[C language API]

ER ercd = jti_set_jpr(JNO thrno, INT newpri);

[Parameters]
JNO thrno Java thread identification number
INT newpri Java thread priority

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal thrno)
E_OBJ A security exception or a wrong argument exception took place while executing the Java
method
[API function)]

Calls the setPriority method in the Thread class for the Java thread specified by the thrno. The condition
in which the security exception took place depends on the implementation of the security manager.

[Note]

The priorities which can be obtained in this API are the priorities in the Java thread, not real-time task.

41

Chapter SHARED OBJECT INTERFACE

Extension

jti_des_thr
Calls the destroy method in the Java Thread class

[C language API]
ER ercd = jti_des_thr(JNO thrno);

[Parameters]

JNO thrno Java thread identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal thrno)
E_OBJ A security exception took place while executing the Java method

[API function)]

Calls the destory method in the Thread class for the Java thread specified by the thrno. The condition in
which the security exception took place depends on the implementation of the security manager.

42

4.2. ITRON API

4.2.3 ITRON API for operating Java thread groups
For the methods of the Java ThreadGroup class in the following API explanation, refer to [4].

| API Name | Function | Type |
jtiget_tgr | Gets the Java thread group identification number by using names | Extension
jti_des_tgr | Calls the destroy method in the Java ThreadGroup class Extension
jtisus_tgr | Calls the suspend method in the Java ThreadGroup class Extension
jtirsm tgr | Calls the resume method in the Java ThreadGroup class Extension
jtistp_tgr | Calls the stop method in the Java ThreadGroup class Extension

43

Chapter SHARED OBJECT INTERFACE

Extension
jti_get_tgr

Gets the Java thread group identification number by using names

[C language API]
ER ercd = jti_get_tgr(char *tgranm, JNO *p_tgrno);

[Parameters]

char *tgrnm Java thread group name
JNO *p_tgrno Java thread group identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_OBJ No thread group exists
E_PAR Wrong parameter (tgrnm is a NULL pointer)

[API function]

Returns the Java thread group identification number corresponding the tgrnm to the region p_tgrno specifies.
The API regards the tgrnm character string as an UTF-8 character string and returns the identification
number of the Java thread group which has the identical name. If no Java object corresponding the tgrnm is
found, an E_OBJ is returned. If the tgrnm is a NULL pointer, an E_PAR is returned. The implementation
may limit the tgrnm to the ASCII character strings.

44

4.2. ITRON API

Extension

jti_des_tgr
Calls the destroy method in the Java ThreadGroup class

[C language API]
ER ercd = jti_des_tgr(JNO tgrno);

[Parameters]

JNO tgrno Java thread group identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal tgrno)

E_OBJ A security exception or a status violation took place while executing the Java method

[API function)]

Calls the destroy method in the ThreadGroup class for the Java thread group specified by the tgrno. The
condition in which the security exception took place depends on the implementation of the security manager.

45

Chapter SHARED OBJECT INTERFACE

Extension
jti_sus_tgr
Calls the suspend method in the Java ThreadGroup class

[C language API]

ER ercd = jti_sus_tgr(JNO tgrno);

[Parameters]

JNO tgrno Java thread group identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal tgrno)
E_OBJ A security exception took place while executing the Java method

[API function)]

Calls the suspend method in the ThreadGroup class for the Java thread group specified by the tgrno. The
condition in which the security exception took place depends on the implementation of the security manager.

46

4.2. ITRON API

Extension

jtirsm _tgr
Calls the resume method in the Java ThreadGroup class

[C language API]

ER ercd = jti_rsm_tgr(JNO tgrno);

[Parameters]

JNO tgrno Java thread group identification number

[Return value]
ER ercd
Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal tgrno)
E_OBJ A security exception took place while executing the Java method

[API function]

Calls the resume method in the ThreadGroup class for the Java thread group specified by the tgrno. The
condition in which the security exception took place depends on the implementation of the security manager.

47

Chapter SHARED OBJECT INTERFACE

Extension
jti_stp_tgr
Calls the stop method in the Java ThreadGroup class

[C language API]

ER ercd = jti_stp_tgr(JNO tgrno);

[Parameters]

JNO tgrno Java thread group identification number

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination
E_PAR Wrong parameter (Illegal tgrno)
E_OBJ A security exception took place while executing the Java method

[API function)]

Calls the stop method in the ThreadGroup class for the Java thread group specified by the tgrno. The
condition in which the security exception took place depends on the implementation of the security manager.

48

4.3. Java API

4.3 Java API

4.3.1 Package structure

The classes providing the shared objects are collected in the jp.gr.itron.jtron.shared package. The package
consists of the following interface, classes, and exception classes.

Interface: Sharable
Class: SharedObject,SharedObjectManager

Exception class : ShmEzxception,ShmlllegalStateException,ShmTimeoutException

49

Chapter SHARED OBJECT INTERFACE

javalang.Exception

A

ShmException

I

Shmlllegal StateException

ShmTimeoutException

<<implements>>

SharedObject [~~~ """ ——— " <<interface>>
Sharable
<<uses>>
——————————— —>]
1 SharedObjectM anager
{abstract}

AAA jtron.shared.
SharedObjectManagerimpl

Vendor defined class

Ficure 4.3:
=]

Shared pnrl{ngn class structure

50

4.3. Java API

4.3.2 Interface jp.gr.itron.jtron.shared.Sharable

public interface Sharable

Provides the interface for the shared objects. The class of the object which is to be used as a shared object
must implement this interface.

O Methods

public abstract void lock()

Locks the object. No action takes place if the object has been locked by the same thread. If the object
has been locked by a different thread or the real-time task, the method will be blocked until the object is
unlocked.

public abstract void lock(int timeout) throws ShimTimeoutException

Locks the object. No action takes place if the object has been locked by the same thread. If the object has
been locked by a different thread or the real-time task, the method will be blocked for the timeout (unit ms),
timeout time, until the object is unlocked. If the time-out time has elapsed, a ShmTimeoutException will
be thrown.

public abstract void unlock() throws ShmlIllegalStateException
Unlocks the object locked by the same thread. No action takes place if the object has been unlocked.
Throws a ShmlIllegalStateException for the object which has been locked by a different thread or the
real-time task.

public abstract void forceUnlock()
Unlocks the object which has been locked by a thread by force. No action takes place for the object being
locked by the real-time task.

public abstract void unshare() throws ShmlllegalStateException

Terminates the object sharing with the real-time task. If the object has been locked by a thread or the
real-time task, the method is blocked until the object is unlocked and terminates the sharing after the object
1s unlocked. If the sharing has been terminated, a ShmlllegalStateException will be thrown.

public abstract void unshare(int timeout) throws ShmTimeoutException, ShmIllegalStateEx-
ception

Terminates the object sharing with the real-time task. If the object has been locked by a different thread or
the real-time task, the method is blocked for the timeout (unit ms), time-out time, until the object is unlocked.
If the time-out time has elapsed, a ShmmTimeoutException will be thrown. The method terminates the
sharing after the object is unlocked. If the sharing has been terminated, a ShmlIllegalStateException will
be thrown.

51

Chapter SHARED OBJECT INTERFACE

public abstract Object getContent()
Returns the shared object. The SharedObjectManager actually obtains the shared object by using this
method.

52

4.3. Java API

4.3.3 class jp.gr.itron.jtron.shared.SharedObject

java.lang.0Object

I
+-—— jp.gr.itron.jtron.shared.SharedObject

public class SharedObject
extends Object
implements Sharable

A shared object class. Programmers can easily create a shared object class by defining a subclass which
inherits this class.

O Variables

protected Sharable shm
has the object specified by the shm, the argument of a constructor. If a constructor which does not specify
shm is called, this will be set.

O Constructor

public SharedObject(String name) throws ShmlIllegalStateException

Creates a shared object with name. The shared object is registered in the shared object manager when
being created and the access to the object from the real-time task will be enabled. If the registration fails, a
ShmlllegalStateException will be thrown.

public SharedObject(Sharable shm, String name) throws ShmlllegalStateException

Sets the shm, the object of the class implementing Sharable, as shared objects with name. The object will
be registered in the manager when being created and the object can be referred to from the real-time task. If
the registration fails, a ShiIllegalStateException will be thrown.

0O Methods

public void lock()
Locks the object. No action takes place if the object has been locked by the same thread. If the object has
been locked by a different thread or the real-time task, the method is blocked until the object is unlocked.

public void lock(int timeout) throws ShmTimeoutException

Locks the object. No action takes place if the object has been locked by the same thread. If the object
has been locked by a different thread or the real-time task, the method is blocked for the timeout (unit ms),
time-out time, until the object is unlocked. If the time-out time has elapsed, a ShmTimeoutException will
be thrown.

53

Chapter SHARED OBJECT INTERFACE

public vpid unlock() throws ShmIllegalStateException

Unlocks the object locked by the same thread. No action takes place if the object has been unlocked. Throws
a ShmlllegalStateException for the object which has been locked by a different thread or the real-time
task.

public void forceUnlock()
Unlocks the object which has been locked by a thread by force. No action takes place for the object being
locked by the real-time task.

public void unshare() throws ShmlIllegalStateException

Terminates the object sharing with the real-time task side. If the object has been locked by a thread or the
real-time task, the method is blocked until the object is unlocked and terminates the sharing after the object
is unlocked. If the sharing has been terminated, a ShmIllegalStateException will be thrown.

public void unshare(int timeout) throws ShmTimeoutException, ShmlIllegalStateException
Terminates the object sharing with the real-time task. If the object has been locked by a different thread or
the real-time task, the method blocked for the timeout (unit ms), until the object is unlocked. If the time-out
time has elapsed, a ShmTimeoutException will be thrown. The method terminates the sharing after the
object is unlocked. If the sharing has been terminated, a ShmIllegalStateException will be thrown.

public Object getContent()

Returns the shared object. The SharedObjectManager actually obtains the shared object by using this
method. In the SharedObject, this method returns the Sharable object specified by the argument of a
constructor (the implementation returns the instance variable shm).

A programmer can override this method if the programmer would like to have another object (such as array)
as the sharing target in the SharedObject sub class. The below shows an example.

public class SharedData extends SharedObject {
protected int datal];
public SharedData(String name) {
super(name) ;
data = new int[10];
}

public Object getContent() {
return data;

54

4.3. Java API

4.3.4 Class jp.gr.itron.jtron.shared.SharedObject Manager

java.lang.0Object
I
+--- jp.gr.itron.jtron.shared.SharedObjectManager

public abstract class SharedObjectManager

The class to manage the shared objects. This class is in charge of the interface with the real-time task. This
class is an abstract class and vendors provide subclasses which inherit this class.

O Constructor

protected SharedObjectManager()
Creates the shared object manager.

O Methods

public static SharedObjectManager getSharedObjectManager() throws ShimlIllegalStateExcep-
tion

Returns the manager object of the default shared object. If the manager cannot be provided or is illegal, a
ShmlllegalStateException will be thrown.

public abstract void share(Sharable obj, String name) throws ShmlIllegalStateException
Registers the obj under the name of name. If it has been registered or the name is illegal, a ShmIllegal-
StateException will be thrown.

public abstract void unshare(String name) throws ShmlIllegalStateException
Deletes the object corresponding the name. If the object does not exist, a ShmIllegalStateException
will be thrown.

public abstract void unshare(String name, int timeout) throws ShmlIllegalStateException, Shm-
TimeoutException

Deletes the object corresponding the name. If the object does not exist, a ShmlIllegalStateException
will be thrown.

public abstract void lock(Sharable obj)
Locks the object. No action takes place if the object has been locked by the same thread. If the object has
been locked by a different thread or the real-time task, the method is blocked until the object is unlocked.

55

Chapter SHARED OBJECT INTERFACE

public abstract void lock(Sharable obj, int timeout) throws ShmTimeoutException

Locks the object. No action takes place if the object has been locked by the same thread. If the object has
been locked by a different thread or the real-time task, the method is blocked until the object is unlocked.
Time-out time (unit: ms) can be specified and the method is blocked for the timeout time until the object is
unlocked. If the timeout time has elapsed, a ShmTimeoutException will be thrown.

public abstract void unlock(Sharable obj) throws ShmlIllegalStateException

Unlocks the object locked by the same thread. No action takes place if the object has been unlocked. Throws
a ShmlllegalStateException for the object which has been locked by a different thread or the real-time
task.

public absract void forceUnlock(Sharable obj)

Unlocks the object locked regardless of which thread locked the object. No action takes place if the object
has been unlocked. The method is to be used when the thread which locked the object died without unlocking
the object.

56

4.3. Java API

4.3.5 Class jp.gr.itron.jtron.shared.ShmException

java.lang.0Object
I

+-——- java.lang.Throwable
I
+---- java.lang.Exception
I
+---- jp.gr.itron.jtron.shared.ShmException

public class ShmException
extends Exception

Reports the occurrence of the exception related to shared objects. This class is a superclass of all the
exception classes in this package.

O Comnstructor

public ShmException()
Creates a ShmException without any detailed message.

public ShmException(String msg)
Creates a ShmException which has a specified detailed message, msg.

57

Chapter SHARED OBJECT INTERFACE

4.3.6 Class jp.gr.itron.jtron.shared.ShmlllegalStateException

java.lang.0Object
I

+-—— java.lang.Throwable
1——— java.lang.Exception
l———— jp.gr.itron.jtron.shared.ShmException
1———— jp.gr.itron.jtron.shared.ShmIllegalStateException

pubic class ShmIllegalStateException
extends ShmException

1s thrown when a method is issued but the object is in illegal status disabling the execution of the method.

O Variables

public static final int ILLEGAL MANAGER =1
Illegal shared object manager, or no manager exists.

public static final int OBJECT _IN _USE = 2
The object has been already registered.

public static final int OBJECT _NOEXIST = 3
The object does not exist anymore (already deleted).

public static final int ILLEGAL NAME = 4
An illegal name.

public static final int OBJECT UNSHARED =5
The object has not been shared.

public static final int OBJECT _LOCKED = 6
The object has been locked by another thread or the task.

O Constructor

public ShmlIllegalStateException(int cause)
Creates the exception object for the specified cause. Gives the detailed cause of the exception to the
parameter cause.

58

4.3. Java API

public ShmIllegalStateException(int cause, String msg)

Creates the exception object which has the detailed message of the specified cause. Normally, the detailed
cause of the exception is specified to the cause and the object name is specified to the msg.

O Methods

public int getCause()
Returns the detailed cause of the exception.

59

Chapter SHARED OBJECT INTERFACE

4.3.7 Class jp.gr.itron.jtron.shared.ShmTimeoutException

java.lang.0Object
I

+-—— java.lang.Throwable
I
+--- java.lang.Exception
I
+--- jp.gr.itron.jtron.shared.ShmException
I
+-——- jp.gr.itron.jtron.shared.ShmnTimeoutException

public class ShimTimeoutException
extends ShmException

Reports that the time-out time has elapsed.

O Constructor

public ShmException()
Creates a ShimTimeoutException without any detailed message.

public ShmTimeoutException(String msg)
Creates a ShmTimeoutException which has a specified detailed message, msg. Normally, the object
name is specified to the msg.

60

Chapter 5

STREAM INTERFACE

5.1 General

5.1.1 What is stream interface

The stream interface provides the communication between the real-time task and the Java thread by using
the InputStream and OutputStream classes which are the standard input/output interfaces in Java APIs.
In the Java program, the stream which communicates with the real-time task is provided as implementation
of the abstract class InputStream and OutputStream. This is similar to the abstract class implementation
of the InputStream and OutputStream classes from the Socket class.
On the ITRON task, the mechanism which performs the stream communication with the Java program is

provided as parts of the RTOS.

it

it

I
-

— stream
Real-time Task Java Thread

Figure 5.1: Streams

61

Chapter STREAM INTERFACE

5.1.2 Stream and channel status

The streams are identified by the identification numbers.

The resource management, such as a buffer for stream communication, is performed on the RTOS. The
creation and the deletion of streams are done from the real-time task (jti_cre_stm/jti_del stm).

A stream consists of two channels; a channel to send data from the real-time task to the Java program and
a channel to send data from the Java program to the real-time task. By specifying a parameter in the creation
of the stream, a stream which has only one of the channels can be also created.

The created stream is in the UNCONNECTED status. For the streams in the UNCONNECTED status,
the programmer can open the stream in the Java program (JtiDataStream) with the stream identification
number.

When a stream is opened, both of the channels are connected (in case of one-channel stream, only that
channel will be connected. The other channel is considered to have been disconnected.).

When the sending program of the channel closes the channel normally (close for the outputStream from
the Java program and jti_sht_stm from the real-time task), the channel will be in the CLOSED status.
After the receiving program of the channel takes the data from the buffer and detects the normal closing
(the normal closing is detected by the return of —1 from the inputStream.read in the Java program, and 0
from the jti_rea_stm in the real-time task), the channel will be disconnected at the point when the closing
is confirmed (confirmed by the close of the inputStream in the Java program, and by the return of 0 from
the jti_rea_stm in the real-time task). When both of the channels are disconnected, the stream goes back to
the UNCONNECTED status.

The channel used for receiving as inputStream and the channel used for sending as outputStream in
the Java program . If the Java program closes the channel of the receiving side by force (close of the
inputStream), the channel will be in the FORCED DISCONNECTED status. When the real-time task, the
sending side of the channel, detects and confirms the closing (real-time task regards the return of E_CLS
from the jti_wri_stm or jti_sht_stm as the detection and confirmation of the enforced closing), the channel
will be disconnected. The real-time task cannot force to close the channel of which the task is the receiving
side(no API in the real-time kernel provided for the enforced closing).

The close of the JtiDataStream is equivalent to the close of both of the outputStream and the input-
Stream.

[Supplementary explanation]

When the jti_rea_stm returns 0 (or jti_wri_stm or jti_sht_stm returns the E_CLS), it is regarded that the
real-time task confirmed the normal closing (or enforced closing) and the channel status changes. Since 0 (or
E_CLS) will not be returned even if the real-time task call the jti_rea_stm (or jti_sht_stm or jti_wri_stm)
again, a programmer should pay attention.

The stream status takes a status of “NON-EXISTENT” or “UNCONNECTED?” or one of the other 11 status
depending on the status of both channels. In detail, there are 3 status, “CONNECTED”, “CLOSED”, and
“CONNECTED?” in the channels from Java program to the real-time task, and 4 status, “CONNECTED”,
“CLOSED” ,“FORCED DISCONNECTED”, and “CONNECTED?” in the channels from the real-time task to
the Java program. In addition, the stream goes back to the UNCONNECTED status when both channels are

62

5.1. General

disconnected. Therefore, in total, stream can take one of 13 status (=243 x 4 —1).

,
. NON-EXISTENT !
\

jti_cre_stm 1 T jti_del_stm

=[UNCONNECTED]

JtiDataStream()

[CONNECTED]
inputStream. closy \il sht_stm
FORCED
[DISCONNECTED] [CLOSED]
jti_wri_stm or \ /nputStream close()

jti_sht_stm []
DISCONNECTED
returns E_CLS

disconnect another channel

Figure 5.2: Channel status transition from real-time task to Java program

63

Chapter STREAM INTERFACE

\
NONEXISTENT |

’

jti_cre_stm 1 T jti_del_stm

=[UNCONNECTED J

JtiDataStream()

\ 4

[CONNECTED J

outputStream.close()

[CLOSED]
A_rea_stm returns O
[DISCONNECTED J

disconnect another chanel

Figure 5.3: Channel status transition from Java program to real-time task

64

5.2. ITRON API

5.2 ITRON API

5.2.1 Creating / Deleting streams

| API Name | Function | Type |
jticre stm, JTI. CRE STM | Creates streams Standard
jti_del stm Deletes streams Standard

65

Chapter STREAM INTERFACE

Standard

jticre_stm, JTI_CRE_STM

Creates streams

[C language API]

ER ercd = jti_cre_stm(ID stmid, T_JTI_CSTM #*pk_cstm);

[Static API]

JTI_CRE_STM(ID stmid,
{ VP exinf, ATR stmpatr, VP wbuf,
INT wbufsz, VP rbuf, INT rbufsz });

[Parameters]

ID stmad Stream identifier
T ITI.CSTM *pk_cstm Stream creation information

Contents of pk_cstm

VP exinf Extension information

ATR stmatr Stream attribute

VP whuf Head of the sending buffer

INT wbufsz Sending buffer size

VP rbuf Head of the receiving buffer

INT rbufsz Receiving buffer size

(Other implementation-dependent parameters are also acceptable)

[Return value]

ER ercd Error code

[Error codes]

E OK Normal termination

E_ID Illegal ID number

E_RSATR Reserved attribute

E PAR Parameter error (Illegal pk_cstm address, wbuf, wbufsz, rbuf, rbufsz, stream attribute)
E_OBJ Object status error (The stream with the specified identifier already being created)

66

5.2. ITRON API

[API function)]

Creates the stream with the specified identifier. By using the stream attribute, the stream can be exclusive
for sending or receiving. Specifying the (TA_WRITE|TA _READ) to the stream attribute enables the
bilateral communication and specifying TA_WRITE and TA_READ make the stream exclusive for sending
and for receiving, respectively. If a programmer specifies the stream attribute other than TA_WRITE or
TA READ, an E_ RSATR will be returned. If the programmer does not specify either of TA_WRITE and
TA _READ, an E_PAR error will be returned.

When the stream is exclusive for sending, rbuf and rbufsz will be ignored. If the stream is exclusive for
receiving, wbuf and wbufsz will be ignored. If the sending/receiving buffer size is negative, an E_PAR error
will be returned (asynchronous communication in case of the buffer size 0).

In the implementation where the buffer is allocated inside, NADR(= —1) should be specified as a head
address of the buffer(wbuf, rbuy). In this case, specifying the buffer size is valid. It is also allowed to have the
implementation which allocates the buffer inside in case of specifying NADR and uses the given buffer in the
other cases.

67

Chapter STREAM INTERFACE

Standard
jti_del_stm

Deletes streams

[C language API]
ER ercd = jti_del_stm(ID stmid);

[Parameters]

ID stmid Stream identifier

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination

E_ID Illegal ID number

E_NOEXS Object not created

E_OBJ Object status error (The specified stream is not in the UNCONNECTED status)

[API function)]

Deletes the specified stream. If the program tried to delete the stream other than in the UNCONNECTED
status, an E_OBJ error will be returned. Tasks in the waiting status after issuing the jti_rea_stm or
jti_wri_stm will be activated and return the ECDE_DLT.

68

5.2. ITRON API

5.2.2 Sending/Receiving data and ending the sending

| API Name | Function | Type |
jti_wri_stm | Sends data Standard
jtirea stm | Received data Standard
jtisht stm | Ends the data sending Standard

69

Chapter STREAM INTERFACE

Standard
jti_wri_stm
Sends data
[C language API]
ER ercd = jti_wri_stm(ID stmid, VP data, INT len, TMO tmout);
[Parameters]
ID stmid Stream identifier
VP data Head address of the data to be sent
INT len Length of the data to be sent
TMO tmout Time-out time
[Return value]
ER ercd Length of the data in the buffer / Error code
[Error codes]
Positive value Normal termination (Length of the data in the sending buffer)
E_ID Illegal ID number
E_NOEXS Object not created
E_PAR Parameter error (illegal data,len,tmout)
E_OBJ Object status error (The specified stream is exclusive for receiving, jti_wri_stm is pend-

ing), the stream waiting in the UNCONNECTED status was deleted
E_TMOUT Polling failure or time-out
E_RLWAI Compulsory release of the waiting status
E_CLS The channel for sending was disconnected by force

[API function]

Sends data to the specified stream and returns from this API when the data is entered to the sending buffer.
If the sending buffer length is shorter than a length(len) of the data to be sent, the data is entered in the
sending buffer until the sending buffer becomes full and the length of the data entered in the sending buffer
1s returned. If there is no space in the sending buffer, the API will be in the waiting status until the buffer is
available.

The data sending to the stream is accepted only when the channel for sending is in the connected sta-

tus. If the channel is in the FORCED DISCONNECTED status, jti_wri_stm returns an E_CLS error and

70

5.2. ITRON API

the channel transfers to the DISCONNECTED status. In any other status (DISCONNECTED, UNCON-
NECTED), the task which called the jti_wri_stm will be in the waiting status until the channel changes to
the CONNECTED status.

If a jti_wri_stm is issued while the jti_wri_stm for the same stream is pending, an E_OBJ error will be
returned.

71

Chapter STREAM INTERFACE

Standard
jtirea_stm
Receives data

[C language API]

ER ercd = jti_rea_stm(ID stmid, VP data, INT len, TMO tmout);

ID stmid Stream identifier

vP data Head address of the region to put the data received
INT len Length of the data to be received

TMO tmout Time-out specification

[Return value]

ER ercd Length of the data received / Error code

[Error codes]

Positive value Normal termination (length of the data taken out)

0 End of data (connection was normally disconnected)

E_ID Illegal ID number

E NOEXS Object not created

E_PAR Parameter error (illegal data, len, tmout)

E_OBJ Object status error (The specified stream is exclusive for sending, jti_rea_stm is pend-

ing), the stream waiting in the UNCONNECTED status was deleted
E.TMOUT Polling failure or time-out
E_RLWAI Compulsory release of the waiting status

[API function)]

Receives data from the specified stream and returns from this API when the data put in the receiving buffer
was read. If the data length in the receiving buffer is shorter than the specified data length(len) to be received,
the data will be read until the receiving buffer becomes empty and the length of the data read will be returned.
If the receiving buffer is empty, the API will be in the waiting status until any data arrives. When the Java
program closes the receiving channel and no data is left in the receiving buffer, 0 will return from the APL

The data receiving from the stream is accepted only when the channel for receiving is in the CONNECTED
status. If the channel is in the other status (DISCONNECTED, UNCONNECTED), the task which called
the jti_rea_stm will be in the waiting status until the channel changes to the CONNECTED status.

If a jti_rea_stm is issued while the jti_rea_stm for the same stream is pending, an E_OBJ error will be
returned.

72

5.2. ITRON API

Standard

jti_sht_stm
Ends the data sending

[C language API]
ER ercd = jti_sht_stm(ID stmid);

[Parameters]

ID stmid Stream identifier

[Return value]

ER ercd Error code

[Error codes]

E_OK Normal termination

E_ID Illegal ID number

E_NOEXS Object not created

E_OBJ Object status error (The specified stream is exclusive for receiving, the channel for
sending is in the DISCONNECTED status or UNCONNECTED status, jti_wri_stm is
pending)

E_CLS The channel for sending was disconnected by force

[API function)]

Ends the data sending to the specified stream and transfers the sending channel to CLOSED status.

The data sending to the stream is accepted only when the channel for sending is in the CONNECTED
status. If the channel is in the FORCED DISCONNECTED status, jti_sht_stm returns an E_CLS error and
the channel transfers to the DISCONNECTED status. In any other status (DISCONNECTED, UNCON-
NECTED), an E_OBJ error will be returned.

If a jti_sht_stm is returned while the jti_wri_stm for the same stream is pending, an E_OBJ error will
be returned.

73

Chapter STREAM INTERFACE

5.2.3 Refers to the stream status

| API Name | Function ‘ Type |

| jtiref_stm | Refers to the stream status ‘ Standard |

74

5.2. ITRON API

Standard

jti_ref stm
Refers to the stream status

[C language API]
ER ercd = jti_ref_stm(ID stmid, T_JTI_RSTM *pk_rstm);

[Parameters]

ID stmad Stream identifier

T JTI_RSTM *pk_rstm Address of the packet to return the stream status
[Return value]

ER ercd Error code

Contents of pk_rstm

VP exinf Extension information

INT wrisz Data length which can be sent without waiting (Number of bytes)
INT reasz Data length which can be received without waiting (Number of bytes)
(Other implementation-dependent parameters can also be added)

[Error codes]

E_OK Normal termination

E_ID Illegal ID number

E_NOEXS Object not created

E_PAR Parameter error (illegal pk_rstm address)

[API function)]

Refers to the specified stream status and returns the status to the pk_rstm.

The extension information specified in the jti_cre_stm will return to ezinf. The data length which can be
sent without waiting (number of bytes) will return to wrisz. The data length which can be received without
waiting (number of bytes) will return to reasz. If the specified stream is exclusive for sending, —1 will be
returned.

75

Chapter STREAM INTERFACE

5.3 Java API

5.3.1 Package structure

The classes providing the streams are put together in the jp.gr.itron.jtron.stream package. This package
consists of the following class and exception class.

Class: JtiDataStream
Exception class: JtiDataStreamException

The stream package class structure is shown in the figure 5.4. The JtiDataStream and its implementation,
JtiDataStreamImpl, are separated by using a design pattern called bridge [5][6] in implementing the Jti-
DataStream. This realizes to exchange easily the different stream implementation by vendors. The bridge
is also used in the java.io.Socket.

76

5.3. Java API

JiDataStreamImpl

java.io.lOException —> java.io.lnputStream java.io.OutputStream]
T R
|
JiDataStreamException : AAA jtron.stream. AAA jtron.stream. 1
| Jtil nputStream JtiOutputStream :
|
I |
| |
1 | 1
: 1
|
""""""""" : I
- |
; JiDataStreamImpl I
JtiDataStream { abara:t} H :
| 1
H !
l I
1 1
: 1
|m———————f———————— 1 :
|
AAA jtron.stream. :
|
|
|
|
|
|

vendor dependent

The relation between the JtiDataStreamImpl and the stream classes is implementation-
dependent. The relation shown above is one of the implementation example. There may
be a relation between the JtiDataStreamImpl subclass (

AAA jtron.stream.JtiDataStreamImpl in the above figure) and the stream classes in a
certain implementation.

Figure 5.4: Stream package class structure

77

Chapter STREAM INTERFACE

5.3.2 Class jp.gr.itron.jtron.stream.JtiDataStream

java.lang.0Object
I

+--- jp.gr.itron.jtron.stream.JtiDataStream

public class JtiDataStream

The class to communicate with the real-time task by using streams.

O Variables

public static final int MAIN_STREAM =1
A standard stream identifier used between the real-time task and the Java program.

O Constructor

public JtiDataStream(int stmid)throws JtiDataStreamException

Opens the stream with the specified identifier. This sets both channels into the CONNECTED status (if the
stream has only one channel, only that channel will be connected). If the specified identifier is already in use, a
JtiDataStreamException will be thrown.

public JtiDataStream(int stmid, int timeout)throws IOException,InterruptedException

Opens the stream with the specified identifier and timeout time. The unit of the timeout time is millisecond.
If the specified identifier is already in use, a JtiDataStreamException will be thrown. When the timeout
time has elapsed, an InterruptedException will be thrown.

protected JtiDataStream(JtiDataStreamImpl impl, int stmid, int timeout) throws IOException,
InterruptedException

Opens the stream with the specified identifier with the timeout time by using the user-defined implemen-
tation. The unit of the tsmeout time is millisecond. If the specified identifier is already in use, a JtiDataS-
treamException will be thrown. When the timeout time has elapsed, an InterruptedException will be
thrown.

O Methods

public synchronized InputStream getInputStream() throws IOException
Obtains the receiving stream.

public synchronized OutputStream getOutputStream() throws IOException
Obtains the sending stream.

78

5.3. Java API

public synchronized void setIDSTimeOut(int timeout) throws IOException

Sets the timeout time for the case the read method for the InputStream is executed. The unit of the
timeout time is millisecond and the timeout must be 0 or bigger. If 0 has been specified for the timeout, 1t will
cause the permanent waiting. When the timeout time has elapsed, a java.io.InterruptedException will be
thrown. However, if the write method was executed for the QutputStream, specifying the time-out will
not be available just as the cases for the other stream operations.

public synchronized int getIDSTimeOut() throws IOException
Obtains the time-out time for the case the read method for the InputStream is executed. The unit of
timeout time is millisecond. Return of 0 means the permanent waiting.

public synchronized void close() throws IOException

Closes the stream. If the sending channel has been connected, the method normally closes the stream to
change the status to CLOSED status, and if the receiving channel has been connected, this method closes the
stream by force to change the status to the FORCED DISCONNECTED status. This method also puts the
status to the DISCONNECTED status if the receiving channel is in the CLOSED status

79

Chapter STREAM INTERFACE

5.3.3 Class jp.gr.itron.jtron.stream.JtiDataStreamImpl

java.lang.0Object
I

+-—— jp.gr.itron.jtron.stream.JtiDataStreamImpl

public abstract class JtiDataStreamImpl

An abstract class to define classes which have a stream interface implementation. This class is provided to
separate the specification and the implementation.

O Constructor

public JtiDataStreamImpl() throws JtiDataStreamException

O Methods

Those without explanation have the same specification as the corresponding methods
in the jp.gr. itron.jtron.stream.JtiDataStream.

public abstract void setTimeout(int timeout)
Sets the time-out time.

public abstract void setStreamId(int stmid)
Sets the identifier.

public abstract int getTimeout(int timeout)
Obtains the time-out time.

public abstract int getStreamId(int stmid)
Obtains the identifier.

public abstract InputStream getInputStream() throws IOException
public abstract OutputStream getOutputStream() throws IOException
public abstract void setIDSTimeOut(int timeout) throws IOException
public abstract int getIDSTimeOut() throws IOException

public abstract void close() throws IOException

80

5.3. Java API

5.3.4 Class jp.gr.itron.jtron.stream.JtiDataStreamException

java.lang.0Object
I

+-—— java.lang.Throwable
I
+--- java.lang.Exception
[
+--- java.io.IOException
I
+--— jp.gr.itron.jtron.stream.JtiDataStreamException

public class JtiDataStreamException extends IOException

Reports the occurrence of the exception related to the stream communication.

O Constructor

public JtiDataStreamException(int cause)
Creates the JtiDataStreamException without any detailed message. Gives the detailed cause of the
exception to the parameter cause.

public JtiDataStreamException(int cause, String msg)
Creates the JtiDataStreamException with has the specified detailed message, msg. Gives the detailed
cause of the exception to the parameter cause.

O Methods

public int getCause()
Returns the detailed cause of the exception.

O Variables

public static final int STREAM _NOT_FOUND =1
No stream with the specified identifier exists (not created).

public static final int STREAM _IN _USE = 2
The stream with the specified identifier is already in use.

public static final int STREAM_CLOSED = 3
The stream with the specified identifier has been already closed.

public static final int STREAM _ILLEGAL_ ARGUMENT = 4
The specified argument is illegal.

81

Chapter STREAM INTERFACE

82

Appendix A

APPENDIX

A.1 Attach Classes

TBD

83

Appendix APPENDIX

A.2 Shared Object Interface

A.2.1 Definition examples
(1) When inheriting

If it is not a subclass of other classes, it is recommended to inherit the SharedObject class.

e Example 1

public class MyObject extends SharedObject {
private int x;
private int y;
private int z;

public MyObject(String name) {
super (name) ;

}
e Example 2

public class SharedData extends SharedObject {
int datal];

public SharedData(String name) {
super (name) ;
data = new int[10];

}
public Object getContent() {
return data;

}

84

A.2. Shared Object Interface

(2) When using Sharable interface

Have the SharedObject class as a member.

public class FooObject implements Sharable {
private SharedObject shm;
int x;
int y;
int z;

public FooObject(String name) {
shm = new SharedObject(this, name);

}

public void lock() {
shm.lock();

¥

public void lock(int timeout) {
shm.locj(timeout);

¥

public void unlock() {
shm.unlock();

¥

public void forceUnlock() {
stm.forceUnlock();

¥

public void unshare() {
shm.unshare();

¥

public void unshare(int timeout) {
shm.unshare(timeout);

¥

public void getContent() {

return this;

}

85

Appendix APPENDIX

A.2.2 Communication examples by real-time task and Java program

Java side(JtiSharedSample.java)

List A.1 JtiSharedSample.java

1 /%%

2 * Shared Object sample

3 */

4 import jp.gr.itron.jtron.shared.*;

5

6 class SharedData extends SharedObject {

7 private int data;

8

9 SharedData(String name) throws ShmIllegalStateException {
10 super (name) ;

11 data = 0;

12 }

13

14 public int getData() {

15 return data;

16 }

17 3

18

19 public

20 class JtiSharedSample {

21 private SharedData data = null;

22 private int sum;

23

24 JtiSharedSample() {

25 sum = 0;

26 try {

27 data = new SharedData(''Shared");

28 } catch (ShmIllegalStateException ex) {
29 System.out.println("error: code =" + ex.getCause());
30 System.exit(1);

31 } catch (ShmException ex) {

32 System.out.println("error:" + ex);
33 System.exit(1);

34 3

35 }

36

37 public void dispose() {

38 try {

39 data.unshare(); // Executes unshare

86

40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

A.2. Shared Object Interface

} catch (ShmIllegalStateException ex) {
System.out.println("error: already unshared.");

}
}
public void startSharedSample() {
int c;
try {
while (true) {
c = 0;
try {
data.lock(10); // Waits the data from the real-time task
¢ = data.getData(); // Obtains the data
data.unlock();
if (¢ == -1) { // Ends when -1 was sent.
break;
}
sum += c; // Processes the data
} catch (ShmTimeoutException ex) {
/* Process for the timeout: Sleeps for 10ms here */
try {
Thread.sleep(10);
} catch (InterruptedException e) {
/* nop */
}
}
}
System.out.println("sum =" + sum);

} catch (ShmIllegalStateException ex) {
System.out.println("internal error:" + ex);

}

public static void main(String args[]) {
JtiSharedSample app = new JtiSharedSample();
app.startSharedSample () ;
app.dispose();

87

Appendix APPENDIX

ITRON side (jtron.c)

List A.2 jtron.c

1 #include "jti_shared.h"

2 #define WAIT_TIME 10 /* Maximum lock waiting time */

3

4 struct JSharedObj *p; /* Structure by javah of the shared object */

5

6 void maintask() {

7 JNO shoid;

8 ER ercd;

9 /* Obtains the shared object id with the jti_get_obj by using the name */
10 ercd = jti_get_obj("Shared", &shoid);

11

12 while(1) {

13 /* Intends to lock the shared object with the jti_loc_obj. Waiting time is 10 milliseconds */
14 ercd = jti_loc_obj(shoid, MAX_TIME);

15 if (ercd == E_0K) { /* When the object could be locked */

16 /* Obtains the address of the shared object with the jti_get_mem */
17 jti_get_mem(&p, shoid);

18 /* Prepares the data to be given to the Java program side */

19 /* Sets the data to the region specified by the p */

20

21 /* Unlocks the shared object with the jti_unl_obj */

22 ercd = jti_unl_obj(shoid);

23 }

24 }

26}

88

A.3. Stream Interface

A.3 Stream Interface

A.3.1 Communication examples by real-time task and Java program

ITRON side (jtron.c)

List A.3 jtron.c

1 #include "jti_stream.h"

2 #tdefine SIZE_WBUF 100

3 char WBUF[SIZE_WBUF];

4

5 #tdefine N_DATA 100

6

7 /* ITRON => Java */

8

9 void maintask() {

10 ER ercd;

11 T_JTI_CSTHM pk_cstm;

12 int writedata, readdata;

13 int i;

14

15 /* Creates a stream (Write side only) */

16 pk_cstm.exinf = 0;

17 pk_cstm.stmatr = TA_WRITE;

18 pk_cstm.wbuf = WBUF;

19 pk_cstm.wbufsz = SIZE_WBUF;

20 pk_cstm.rbuf = 0;

21 pk_cstm.rbufsz = 0;

22

23 ercd = jti_cre_stm(JTI_MAIN_STREAM, &pk_ctsm);
24

25 /* Sends the data */

26 /* Enters the waiting status until the ItronDataStream() is called on the Java side */
27 /* Sends the N_DATA units of data from the ITRON side */
28

29 for (i = 0; i < N_DATA; i++) {

30 writedata = ij;

31 ercd = jti_wri_stm(JTI_MAIN_STREAM, &uritedata, sizeof(int), TMO_FEVR);
32 /* What to do in case of error? */

33 if (ercd !'= E_O0K) {

34 /* Processes the error */

35 }

36 }

37 /* Ends the data sending */

89

Appendix APPENDIX

38
39
40
41
42
43

ercd = jti_sht_stm(JTI_MAIN_STREAM);
/* Deletes the stream */
ercd = jti_del_stm(JTI_MAIN_STREAM);

ext_tsk();

90

Java side (JtiStreamSample.java)

List A.4 JtiStreamSample.java

A.3. Stream Interface

1 import java.net.*;

2 import java.io.*;

3 import java.util.;

4

5 import jp.gr.itron.jtron.x*;

6

7 public class JtiStreamSample {

8 public static void main(String args[]) {

9 JtiSteamSample jtiss = new JtiStreamSample();
10 jtiss.startStreamSample();

11 }

12

13 public void startStreamSample() {

14 JtiDataStream ids = null;

15 InputStream is = null;

16 int ¢ = 0;

17

18 try {

19 // Connects with the ITRON side

20 ids = new JtiDataStream(MAIN_STREAM);
21

22 // Obtains the InputStream

23 is = ids.getInputStream();

24 while (true) {

25 // Obtains the data sent from the ITRON side
26 ¢ = is.read();

27

28 if (¢ == -1) {

29 // Closes and terminates the process if the EOF was sent
30 is.close();

31 return;

32 }

33 // Process for the data read

34 3

35 is.close();

36 return;

37 } catch (IOException ioe) {

38 System.out.println("Exception:" + ioe.getMessage());
39 return;

40 }

41 }

91

Appendix APPENDIX

42 3}

92

Index

Attachclass i 1
chanmel 62
close Method
JtiDataStream class 79
JtiDataStreamImpl class 80
CLOSED ... 62
connected i i 62

disconnect status

enforced— i i, 62
dynamic APT 3
enforced closingol 62
1310 o) g oY L= TP 3
error codes

All the API may return— 4

Implementation-dependent— 3

Main— ..ottt e e 3

Sub— ... 3
forceUnlock method

Sharable interface 51

ShareaObjectManager class 56

SharedObject class 54
garbage collection

—Relation with L 22
getCause method

ShmlllegalStateException class 59
getCause Methods

JtiDataStreamException class 81
getContent method

Sharable interface 52

SharedObject classcovv... 54
getIDSTimeOut Method

JtiDataStream class 79

JtiDataStreamImpl class 80
getInputStream Method

JtiDataStreamImpl class 80
getInputStream Method

JtiDataStream class, 78
getOutputStream Method

JtiDataStream class 78

JtiDataStreamImpl class 80
getProperty method

JtiSystem Class 16
getSharedObjectManager method

ShareaObjectManager class 55
getStreamId Method

JtiDataStreamImpl class 80
getTimeout Method

JtiDataStreamImpl class 80
identification numbers 62

Jp-gr.itron. jtron package

JtiSystem Classl 16
Jp-gr.itron. jtron.shared package

Sharable Interface 51

SharedObject classoo.e 53

SharedObjectManager class 55

ShmlIllegalStateExceptionClass 58

ShmTimeoutException class 60
Jp-gr.itron. jtron.stream package

JtiDataStream Class 78

JtiDataStreamException class 81

INDEX

JtiDataStreamImpl Class 80
JTICRESTMcooiiiiiiiiiiiiiaiaann 66
Jtlcrestm ... i e 66
JtiDataStream Class 78
JtiDataStreamException class 81
JtiDataStreamImpl Class 80
Jtidelstm ... 68
Jtides tgr ... e 45
Jtidesthr i 42
Jtifunloby 30
JTIGET HPR ..., 14
Jtiget hpr ... 14
JHLget Jpr oo 40
JTIGET LPRo i, 15
Jtiget lpr ... 15
Jtigetmemol 27
Jtigetoby ... 26
Jtiget tgr ... 44
Jtigetthr 32
Jtiant_thr ... 34
Jtiasathr ... o 33
Jtiasithr ... oo 35
Jtidocob] ..o 28
Jtlreastm e 72
Jtixefstm L 75
JELrsm tgr ... 47
Jtirsmthr ... oo 37
Jtiset hpr 13
JEISEt T vt e e 41
Jtishtstm ... 73
Jtistathr o 38
JUStptgr . 48
Jtlsus tgr ... 46
Jtisusthr ..o o 36
JtiSystem Classoviviiiiinin. 16
Jtithrstp .o o 39
Jtiunloby ... 29
JELWTLSEIM oo vt i e 70
lock

—semantics of L. 22

lock method

Sharable interface 51

ShareaObjectManager class 55, 56

SharedObject classcovv... 53
mapping

PIIOTI Y — oottt et i 11

the Java thread and the real-time task— . 11

name
class package names, 7
TRON API naming rule 3
package
class package names 7
Jp-gr.itron.jtron package 16
Jp.gr.itron.jtron.shared package 49
Jp-gr.itron.jtron.streampackage 76
pending e 4
Polling ... 4
PTIOTILY ..ot 11

setIDSTimeOut Method

JtiDataStreamImpl class 80
setIDSTimeOut Method

JtiDataStream class 79
setStreamId Method

JtiDataStreamImpl class 80
setTimeout Method

JtiDataStreamImpl class 80
Sharable Interface, 51
share method

ShareaObjectManager class 55
shared object il 21
Shared object interface 1
shared object interface 21
SharedObject classccoiiiia.. 53
SharedObjectManager class 55
ShmExceptionClass 57
ShmlllegalStateExceptionClass 58
ShmTimeoutException class 60
static APT 3
Stream interface il 3

94

stream interface L. 61
stream status o i i iiiin 62
system propertiesooiiiiiiii i 7
time-out
—unit of time L. 4
tIMEoUt ..ottt e e 4
type of cooperation
ATTACH CLASS 19
Attachclassol 1
Brings the Java programming in the real-time
task. ... 3
Shared object interface 1
shared object interface 21
Stream interface 3
stream interfaceo 61
UNCONNECTED statuscccccovun... 62
unlock method
Sharable interface 51
ShareaObjectManager class 56
SharedObject classcooven. .. 54
unshare method
Sharable interface 51
ShareaObjectManager class 55
SharedObject class 54

INDEX

95

